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1. Introduction

The purpose of this paper is to seek conditions under which a Borel automorphism
T on a Borel space (X,#) admits a non-trivial finite T-invariant measure. For
simplicity we will assume that 4 contains singleton sets. It is easy to see that if T
admits periodic points, such a measure always exists. Hence we assume that T"x # x
for all ne Z — {0}. Going back to classical ergodic theory, especially the work of Hopf
[5] on the existence of a finite invariant measure equivalent to a given quasi-invariant
measure, we are able to define the notion of incompressible set intrinsically (ie.,
without reference to any measure) as follows:

An invariant set Ae4 is said to be compressible if we can write A as a disjoint
union of two sets C and D in 4 such that

oo 0
\U T"Cc= | T'D=4
n= - n=—w
and A is equivalent by countable decomposition to either C or D. An invariant set
in 4 is said to be incompressible if it is not compressible.

If there is a finite T-invariant probability measure on 4 then X is incompressible.
In the converse direction we are able to prove, under a mild condition which is
satisfied whenever 4 is countably generated, that if X is incompressible then there
exists a function

m: #xX —[0,1] such that

(i) m(A4,.) is measurable for all A,m(X,x)=1
(i) m(A, x)=m(TA,x)=m(A, Tx)(mod )
(i) m(4, x) = 0(mod ) if and only if Ae#

(iv) m(u24;,x) = E2 m(A;, x)(mod #) whenever 4,, A,, As,... are pairwise disjoint
sets in &.

(v) If Ec4 is an invariant set (ie, TE=E) then for xeE,m(AnE,x)= m(A4, x)
(mod ).
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204 M G Nadkarni

Here # is the o-ideal of all sets Ae# such that U% _,, T"4 is compressible. #
is called the Hopf ideal.

The classical theorem of Hopf can be recovered by integrating the function m with
respect to the quasi-invariant measure in the statement of Hopf’s theorem ([3], [5]).
We mention, however, that the purpose here is not to give yet another proof of Hopf’s
theorem, but rather to isolate the descriptive content in Hopf’s definition of
incompressibility. When (X, %) is a standard Borel space the function m can be so
chosen that (i) - (iv) hold for every x (.., not modulo ) and the measures (m(.,x)
yield all the probability measures on 4 invariant and ergodic under T. The method
of proof, which we give in sufficient detail, relies on elementary ideas of ergodic theory
[3], [4] and the method of Murray and von-Neumann [6] wherein they obtain a
measure on the class of projections in a factor. This paper may be viewed as a
contribution to the theme of descriptive ergodic theory [1], [2], [7]-[12]. The paper
considers the problem of the existence of a finite invariant measure formulated in
[8]. The result here differs from the one in [7] in that the g-ideal with respect to
which incompressibility is defined is described intrinsically and no assumption is made
about the ergodicity of T with respect to the o-ideal. ‘

2. Preliminaries and the main theorem

2.1 Let (X, %) be a Borel space, i.., a non-empty set X together with a o-algebra £
of subsets of X. Let T:X — X be a one-one onto map such that T#= T~ ' % = 4.
Such a map is called a Borel automorphism of (X, %). We will assume that T has no
periodic points. For any A € X we write s4 = U;% _, T"A4 and call s4 the saturation
of 4. Ttis the smallest T-invariant subset of X containing 4. We write s* 4 =u®2, T"4.

2.2 A subset A < X is said to be wandering if T"An T™A = & wherever m # n. The
o-ideal of # generated by all wandering sets in £ is denoted by %" and called the
. Shelah-Weiss ideal of T (see [8], [9], [11]).

2.3 Two sets 4,Be4 are said to be equivalent by countable decomposition or
descriptively isomorphic if (i) we can partition 4 into a countable number of pairwise
disjoint sets A;e4, ieN (ii) we can partition B into a countable number of pairwise
disjoint sets B;e 4, ieN (iii) we can find integers n;, ieN such that foreach i, T" 4; = B,.
Here and in the sequel N denotes the set of natural numbers. If A and B are equivalent
by countable decomposition then the map from A to B whichis T"on 4;,i=1,2,3,...
is called a descriptive isomorphism between 4 and B. It can be shown that equivalence
by countable decomposition is indeed an equivalence relation.

24 A set Ae4 is said to be compressible if we can write A as a disjoint union of
two sets C,De# such that s4 =sC=sD and A is equivalent to C by countable
decomposition. 4 is said to be incompressible if A is not compressible. If X is
compressible then T'is called compressing Borel automorphism.

25 Orbit of a point is compressible and so is the saturation of any wandering set in
4.1t is not true, however, that every compressible invariant set in 4 is the saturation
of a wandering set in 4 except in special cases.
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2.6 A finite non-empty set is not compressible nor is a set 4 compressible if the orbit
of a point intersects 4 in a finite non-empty set. If there is a probability measure on
# which is invariant under T, then no set of positive measure is compressible. In
particular, in such a situation, X is incompressible. The purpose of this paper is to
investigate the extent to which the incompressibility of X implies the existence of a
finite T-invariant probability measure on 4. At least when (X, %) is a standard Borel
space we will show that incompressibility of X implies the existence of a T-invariant
probability measure on 4.

2.7 Since finite non-empty sets are incompressible, it is clear that a subset of
compressible set need.not be compressible.

28 A set Ec4 is said to the T-invariant or simply invariant if TE=E. If Ee4 is
invariant and compressible and Fe 4 is an invariant subset of E, then F is compressible
since a compression of E when restricted to F yields a compression of F. Countable
pairwise disjoint union of compressible invariant sets in 4 is again compressible.
Finally any countable union of compressible invariant sets in 4 is compressible since
such a union can be expressed as a countable pairwise disjoint union of compressible
invariant sets in 4.

2.9 Compressible sets in # do not form a o-ideal but compressible invariant sets in
4 are closed under countable union and taking of invariant subsets in 8. Consequently
the collection #° of sets in 4 whose saturations are compressible form a o-ideal in
% which we call the Hopf ideal. We note that # < & since the saturation of any
set in ¥ is the union of all the iterates under T of a suitable wandering set in 4.

2.10 A set A in 2 is said to be decomposable if we can write 4 as a disjiont union
of two sets C and D in 4 such that s4 = sC = sD.

2.11 Not every set in & is decomposable. For example a singleton set in 4 is not
decomposable nor can a set in % be decomposable if it intersects an orbit in exactly
one point. In the sequal we will need decomposability (mod #). A set Ae4 is said
to be decomposable (mod #") if there is a set We#~ such that AA W is decomposable.
It can be shown that when # is countably generated every non-empty set in & is
decomposable (mod #7) see [8].

212 Let » =4 be a o-ideal such that (i) To= T ' =2 (ii) # = » We call such a
system (X, 4, », T) a descriptive dynamical system. The quadruplets (X, 4, #", T),
(X, B, #, T) are examples of such systems. If 4 is a o-finite measure on 4 whose
null sets in 4 are preserved under T and T is conservative, then (X, 4, ,, T)is such
a system where », = u null sets in 4. If two sets A, Be# are such that AABe» then
we say that 4 and B are equal (mod ») and write 4 = B (mod »). It is well known
and easy to prove that (mod #’) the sets s4 and s, A are equal and more generally
the sets s4 and T" 5. A are equal (mod #") (see [8] 5+4). Since W < « we also have
A= T"s, A (mod ») for all Ac# and neZ.

2.13 Two sets 4, Be# are said to be equivalent by countable decomposition (mod )
or descriptively isomorphic (mod +) if we can find sets N, Mex such that A-N and
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B-M are equivalent by countable decomposition, and, we then write A ~ B (mod #).
We note that if A ~ B (mod ) then s = sB (mod »). We say that 4 and B are strictly
equivalent by countable decomposition if A ~ B (mod ). A set A is said to be
compressible (mod ») if there is a set Nex such that A-N is compressible. In case A
is compressible (mod #) we say that 4 is strictly compressible. For a T-invariant set
in % compressibility (mod #"), compressibility (mod #) and compressibility are all
equivalent. A set A& is said to be decomposable (mod #) if there exists Nex such
that A-N is decomposable. If A is decomposable {mod #") then A is decomposable
(mod #) since % < ». If 8 is countably generated then every non-empty set in & is
decomposable (mod #’) hence also decomposable (mod ).
The main result of this paper is the following;

2.14 Theorem. If X is incompressible and every set in % is decomposable (mod W)
then there exists a function m on % x X such that

() m(A4,x) =0, m(X,x)=1 and m(4,x) is measurable in x
(i) m(4,x)=m(T"*4,x)=m(A, T 'x) (mod &)
(iii) m(4,x)=0 (mod #)=AeH
(iv) whenever Ay, A,,As,... are pairwise disjoint set in %

m( U Ai,x) =
i=1 i

(v) If E€% is an invariant set then for all Ae# and xeE
m(ANE,x)=m(4,x)(mod ).

18

m(A;,x)(mod ).

1

A proof of this theorem will emerge as a consequence of a series of discussions
which follow.

2.15 We say that B is a copy of A(mod ») if 4 ~ B(mod ). If inside A there are two

or more pairwise disjoint copies of 4(mod #) then A is compressible (mod =). If X

accommodates infinitely many pairwise disjoint copies of A(modx) then sA is

compressible (mod ). We write 4 < B(mod ) if there isa C < Bsuchthat 4 ~ C (mod #).

If in addition s(B~C) = sB(mod #), then we write A < B(mod ). If A< A(mod ) then
. sA < A(mod ) and sA ~ A(mod »). A proof of this can be found in ([8], 57).

2.16 If A and B are sets in & for which one of the relations A~ B, AXB, A<B
holds then the relation also holds for AnE and BN E for any T-invariant set E in .

2.17 Notation. Suppose A, Be# and B admits n or more pairwise disjoint copies of
A(mod ) then we can write B=B, UB,u...uUB,UR, where B,, B,,...,B,,R are
pairwise disjoint and 4 ~ B, ~ .- ~ B,. We express this by writing B=n©QA®R,
R = B. We also write n(® A < B to express the fact that B admits n or more pairwise
disjoint copies of 4(mod ).

2.18 In the rest of this section we will deal only with the g-ideal # and the relations
~, <, =< will be with respect to this g-ideal. We will therefore drop the qualification
(mod ) after these symbols.
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219 Lemma. Given A,Be# we can write
A=EUE,UE;, sEnsE;= ifi#]
B=F UF,UF,, sFinsF;=@ ifi#j
such that modulo # we have

(i) F\<E, E;~F, E;<F,
(i) sSExNB=F, sE,nB=F,,sF;nA=E,,sF;nA=E,,

Moreover such a decomposition is unique (mod ).

Proof. We define sets A(n), B(n), 4,, B,, n=0,1,2,3,... by the following inductive
procedure

A0)=4 B(0)=B

Ay = A(0)n B(0) B, = B(0)n A4(0)

A(ly=A(0)— 4, B(1)=B(0) - B,

A, = A(1)n TB(1) B,=T"4,= T"*4(1)nB()
An+1)=Am)— 4, B(n+1)=B(n)— B,

Apey = A+ DAT"* ' Bn+1) B, = T" 'A(n+1)ABm+1)

The sets A(n) are decreasing and we write A, for their intersection. Similarly the sets
B(n) are decreasing and we write B, for their intersection. From our construction
we have

s

A=) AUA, AinA=F ifi#)

W

L

s

B={)BUB, BinB;=¢ ifi#]

1
T'B,=A, fori<o

sothat U2, A;~ U2 | B;. Our construction also shows that for k > 1, T* B, is disjoint
from A, so that U, T*B, is disjoint from A,. In view of remarks in 2.12
sA,NsB,e# hence also in # since W < #. We write

t

E,=AnsA, F,=BnsA,
Ey=AnsB, Fy=BnsB,
E;=A—(E,UE;) F,=B—(F,UF,).
Now
F,=Bnsd = O(B,-msAw)u(sAmew)= Q(BinsAw)(mod"lV)
n=1 n=
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E,=Ansdg=A,u | (4ins4,,).
n=1

Hence we see that F; < E, Similarly E;<Fj.
Finally

n=1

E2=A—'(E1UE3)= U AI_S(AD:JUBID)

n=1

so that E, ~ F,. This proves (i). Now (ii) follows from our construction. It remains to
prove the uniqueness part. To this end suppose that A=E} U E; U E;, B=F UF,UF,
is another decomposition of A and B as in the lemma. Then the sets E, NE, and
F,(F) satisfy the relations E; nE; ~ F; N F; and also F;nF; <E; N E, which is a
contradiction unless E, N E, F; N F} belong to #. Indeed

F,AFy=sE;nBNFy=sE,nFy~sE,nEy=sE,nANE,=E,NE,
F,nFy=F,nBnsEy=F,nsEy<E;nsEy=E,nAnsE;=E NE;.

Similarly we can show that if i#j, E;nEj, F;nF; belong to . Thus the
decomposition of 4 and B satisfying the requirements of the lemma is unique (mod 3#).
(q.ed.)

2.20 COROLLARY
Given A,Be# we can write

A=EUF SEnsF=(

B=GUH sGnsH={
such that (mod 3#) (i) G E F<H, (ii) SEnB=G, sHnA=F. Moreover such a

decomposition is unique (mod ).

Proof. Weset E=E,, F=E,UE,, G=F,, H=F,UF;. Then G and H satisfy (i)
and (i). The uniqueness follows as before. (qe.d)

221 COROLLARY

If Ae®B— 3 is decomposable then a decomposition A=CuD, CnD=(, sC=
sD = sA(mod ) can be so chosen that C<D.

2.22 Arepeated application of corollary 2.20 gives us the following important lemma.

2.23 Lemma. Given P,Qe%, P=< Q we can decompose P and Q as follows

(i) P= )PP, sPinsP;= fori#j

i=1

i) 0= 00nms s =2 fori%]
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(il]) for eachi< 0, SPi=SQi and Qi=i®Pi®Ri$Ri<Pi
(iv) P ci#.

Moreover such a decomposition of P and Q is unique (mod ).

Proof. Since P=<XQ we can write Q = 1O P® R, R = Q. We apply corollary 2.20 with
A=Pand B=R and let P=EUF, R =GUH be the decompositions of P and R
provided by the corollary. Put P, =E=sEnP,Q,=sENnQ P\=F=P—-P,,Q; =
Q—0Q,. We have

P=P1UP’1 SPlﬂSP']_‘—-‘Q
0=0,v0 s0,nsQ =

sPy=50,, 0;=10P,®R,, R,<P,, 20P, =Q). Suppose we have obtained
P,..,P,P,0,,...,0, 0, such that

P= () P,UP,,sP;nsP;=&,i#jsP;nsP,= for all i
i=t

Q = U QiUQ;lszimst=®ai;éj!sQinsQ:t=Q fOf an i *
i=1

$Qi=5sP;,0;=iOP,®R,R;<P;,(n+1)OP,=Q,
Since (n+ 1)© P, < Q,, we can wirte
Q,=n+1)OP,®R,, R, <0,
We now apply corollary 2.20 with A=P,, B=R,. If P,=E,UF,,R,=G,UH, be
the decomposition of P;, R, provided by the corollary, then we set
P,,+1=E"=P:lﬂSE" P;+1=P:1_Pn+1 an
Qnr1=0uNsE, Qniy =0 —Qysy-
The sets Py, Py,..., Pyy i, Pry 1,041,002, 0,0, 1,0Q, 4 satisfy (¥) with n replaced by
(n+ 1). We observe also that for each n,P,,, =P, Q,,,<Q,,(n+ 1)OP,<Q,. If

we set P, =n;2, P, and Q,=n;%,0Q, then Q. accommodates infinitely many
pairwise disjoint copies of P, whence P e . We thus have

P= ) PUP,,sPinsP;= ifi#j
n=1

Q= U 0iv04,5QinsQ; = ifi#j
n=1

sP;=50;,0,=iOP,®R;,R,<P;, for i<oo,P e which is the decomposition
required by the lemma. The uniqueness (mod 5#) of the decomposition follows as
before.
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Remark. Yf Ee® is invariant and P,Q are as in the above lemma then the
decomposition of ENP,Q provided by the lemma will be

s

EnP={}(EnP)U(EnP,)

W
ot

(Ein)U(Q'— -I\;{EnQi)'

s

Q=.

13

[}

1
2.24 Let A,Be4 and let
A=EuP SEnsP={
B=GuQ sGns@=¢

G<E, P<Q be the decomposition of 4 and B provided by corollary 2.20. Let
(P)1<i< o0, Q;1<i< oo be the decompositions of the pair P,Q provided by
lemma 2.23. If Ae# — # then we define

E ()= i ifxesP; i<w
A *=10 otherwise,
In view of the uniqueness (mod ) of the decompositions provided by corollary

2.20 and lemma 2.23 the function [B/A] is unambiguously defined (mod ). We
further observe that

(@ C~B= I:%} = [g} {mod )
(ii) C~A= [%] = [g} (mod #)

(i) if A<B then [g} < [g] (mod #) whereas if

A A
< — =] =
Cx<D then [CjI/I:D}(mOd”)

(iv) if £ is T-invariant then for xeE [—i—](x) = [B AL

y il(x) (mod #)

2.25 PROPOSITION

If E be the set of points x where [B/A](x) < [C/A](x), then E is T-invariant and
EnB<EnC.

Proof. Clearly the set E is T-invariant. Let i = [B/A](x) and j = [C/4](x) and assume
that i <j. Let I be the set of points x where [C/A](x) =j and [B/A](x) =1i. Then I is
T-invariant and BNI=iOQ{ANI)@R, R<AnI whereas Cnl=jO(AN)SS,

S<AnI Since i <jand R<ANI, we see that BnI<CnL (qed)

2.26 Lemma. (i) [A/B][B/C]<[A/C]<([A/B]+1) ([B/C] + 1)(mod )
S’i) [A/C]+[B/CI<[AUB/C] < [A/C]+[B/C]+2 (mod #) where A and B are
isjoint.
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Proof. Let [A/B)(x)=1i, [B/C](x)=j, [A/C](x)=k and let E be the set of points
where [4/B] =i, [B/C] =J, and [A/C] = k. We can ignore triplets (i, j, k) for which
the set E is compressible since we wish to prove the result (mod ). Assume therefore
that the set E is incompressible. Now E n B admits j pairwise disjoint copies of ENC
and En A4 admits i pairwise disjoint copies of EnB whence En A admits at least ij
pairwise disjoint copies of EnC. Thus k = number of copies of EnC inside En A4 is
bigger than or equal to ij. This proves first half of (i). To prove the second half assume
that k > (i + 1)(j + 1). Then E n 4 admits at least (i + 1) (j + 1) pairwise disjoint copies
EnC. Bach collection of (j+ 1) such copies of (CnE) will admit a copy of BNE,
since [B/C]=j on E. Thus En A admits at least (i + 1) pairwise disjoint copies of
EnB. Since [A/B] =i on E and E is incompressible we have a contradiction. Hence
k<(@+1)(j+1) and (i) is proved.

Proof of (ii). If x¢sAsB then at least one of the integers [ A/C](x), [B/C](x) is zero
and the other is equal to [(4 U B)/C](x) so that the inequality is valid for x¢sAnsB.
Assume therefore that xes4 nsB and let i = [4/C](x) and j = [B/C](x). Let E be the
set of points where [4/C]} =i and [B/C] =j. We can ignore the pairs i,j where E is
compressible. Now

EnA=iQ(EnNC)®R, R<ENC
EnB=jO(ENC)®S, S<ENC.
Since AnB = J. We have
(ENA)U(ENB)=(+j))O(ENC)®(RUS), R<EnC,S<EnC.

Thus [(4 U B)/C] is at least equal to (i + j) on E but it cannot exceed (i + j + 1) since
Ru S can admit atmost one copy of EnC inside it. Thus we have (i +/) < [(4u B)/C] <
i+j+2 on E, which proves (ii). (q.ed)

2.27 Let X be incompressible. A sequence (F, )%, of sets in 4 is said to be fundamental
if for all n, sF,=X and [F,/F,,,](x})>=2 (mod #). We note that the requirement
[F,/F,s11(x) =2 (mod #) implies that F,,, <F, (mod s#). If X is incompressible
and every set in 4 — J# is decomposable then there exists a fundamental sequence
(F,)% ,in 4. This follows on setting F; = X and using successively the decomposability
in the manner described in corollary 2.21.

2.28 Lemma. Let (F,)*-, be a fundamental sequence in B. Then for Ae%, lim,,
[A/F,](x) exists (mod #). The limit is equal to zero on X — sA and equal to c0 on sA.

Proof. Since F, ., <F,, [A/F,]1<[A/F,+] Further by lemma 2.26 (i)

A A F, A
o [R 2 f fimeam

Hence on the set of points x where

I:-;.—J(x)#o, IiFikjl(x)—»oo as k— oo.

i




212 M G Nadkarni

Thus either [A/F,](x)=0 for all n or [A/F,](x)— o as n— oo (mod ), and so the
limit in question exists. If Ae#, then the limit is zero (mod ). Now if Ae# — #,
then [F,,,/A] < [F,/A] since F,,, € F,. Further

b

Since [F,/A] is finite valued and [F,/A] is non-negative integer valued, we see that
[F,/Al(x)—0 as n— co.

Let E, be the set of points x where [F,/A](x) is zero. Then E,,, 2 E, and their
union is X (mod #). Now AnE,— A(mod s#) and since [F,/A] vanishes on E,,
[A/F,]>0 (mod #) on s(AnE,) whenever ANE,e® — #. From the first part of
this lemma we see that [A/F,](x)—~ o on s(AnE,). Since this holds for all k,
lim [A/F,](x) = oo for xesA(mod ). (ged.)

For any two sets A, BeZ and any Ce% — #, the ratio [4/C](x) + [B/C](x) will
be assigned the value zero whenever the numerator is zero (even in the case where
the denominator is also zero). If the numerator is non-zero and the denominator is
zero, the ratio will be assigned the value + co.

229 Lemma. Let (F,)>-, be a fundamental sequence in B. Then for all A, Be%,
lim, ., , {[4/F,1(x)}/{[B/F,1(x)} exists (mod #’) and it assumes non-zero finite value
on sAnsB(mod ).

Proef. The numerator is zero on X —sA4 and the denominator is zero on X — sB.
Hence on X — sA the limit is zero and on X — sB the limit is zero or co depending
on the value of the numerator. If s4A nsBe## then there is nothing left to prove since
the limit is claimed to exist (mod ). Assume therefore that sAnsBe# — #. There
is no loss of generality if we assume that s4 = sB. Now by lemma 2.26 (i)

<)) (L)

B H> B us whence
TLELFns ]

1i+j < 'Ii . i+j < 11' .
_\ [ } ) } )
1I‘+i Ji 1i+l'

>

we have

limsupg , thatis,

; B ST
e _Fi”jl(x) [FJ(X)

lim sup=—

n-w B
F,

.

P T —

rgm———

*®

i

¥'>fbwﬂag¢y§%‘wg%§% -
i
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Now [B/F;](x) 7 oo on sB(mod #) hence there is an invariant compressible set N
such that for each xesB — N, there is an i for which [B/F,;](x) # 0. The limsup on
the left hand side is therefore finite for xesB— N. Now i— oo gives, considering

[B/F;]{x) # o0 on sB—N,
-
= |
[F" ,xesB—N.

i L)
i

HE
Thus
A
e
lim B" exists and is finite valued (mod )

|7 e

on s4 =sB=sAnsB. Interchanging the role of 4 and B proves that the limit is
non-zero on sA N sB. (ge.d.)

lim sup: < lim inf

n—o

)
)

A

HE
2.30 For Ae# write m(4,x) = lim s>
noo| X

I:F:|(X)

where (F,);, is a fundamental sequence in 4. The function m(4, x) is measurable in
x and in addition has the following properties:

Lemma. (i) A~ B=>m(A,x)=m(B,x) (mod )

(ii) m(4, x) = m(A, T~ ' x) (mod #)

(iii) m(A, x) =lim, ., [4/F,1(x)/[s4/F,](x) (mod #)

(iv) m(4,x) =0 (mod )< AeH, m(4,x) > 0(mod #) on sA

(v) If AnB=  then m(AuU B, x) = m(4, x) + m(B, x), (mod )

(vi) If E be the set of points where m(4,x) <m(B, x), then AnEXBnNE.

Proof. Properties (i), (i) and (iii) follow immediately from the definition of m(4, x).
Property (iv) is proved in lemma 2.29. To prove (v) we note that (from lemma 2.26 (ii))

1] 7] [eL )
HIEANE

Since [X/F,]>2" we see on letting n— oo that m(A4,x)+m(B,x) <m(AuB,x)<
m(4, x) + m(B, x) which proves (v). To prove (vi) let E, be the set of points x where
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ie., E, is the set of points x where [4/F,](x) < [B/F,](x). From the proposition 2.25,
E,nA<E,nB.Now E= U, EnE, = U ,G,, where Gy, G,, G, .... is the usual
disjointification of ENE,, ENE,,..., ie, G,=ENnE,—UiZH(ENE), n=123,....
Each G, is T-invariant and G, € E,, whence G,n A< G, B. Since G,’s are pairwise
disjoint we see that AnE=<BnE. This proves (vi). (qed.)

2.31 Lemma. If m(4,x)>Z2 m(A,x) (mod #) where Ay, A,, A, ... are pairwise
disjoint sets in % then U, A; < A

Proof. Since m(4,x) <m(Ay,x), by 2.30 (vi) there is a set B, = 4 such that B, ~ 4;.
By 2.30 (v) m(4, x) = m(4 — By, x) + m(By,x) > L ; m(A,, x). Since m(A,,x) =m(By,x)
by 2.30 (i), we have m(4 — By, x) > Zi% ,m(A,,x). We apply the same argument to
obtain a copy B, of 4, in A — B,. Proceeding thus we see that U2, 4, < A. (qed)

2.32 Lemma. If A,,A,,As,... are pairwise disjoint sets in B then m(UiZ, Ay, x) =
TP m{Ay, x) (mod 3£).

Proof. If the function m is not countably additive in first variable then there exist
Ay, Ay, A,,...in B pairwise disjoint such that m(UZ A;,x) # ZiZ ;m(A;, x) (mod ).
Inasmuchas m(U®, 4;,x) > m(UZ, A;,x) = ZZ , m(A4;, x) we see that m(UZ, 4;,x) #
T2 m(4;,x) means that m(Uj- 4;,x) > Zi-; m(A4,;,x) on an incompressible set in 4.
There is no harm in assuming that U2, 4;= X, for otherwise we can simply replace
Ay by 4;U(X — U2, 4;). Now, since the set on which m(Ui2 4;,x) > Z{2m(4;,X)
is incompressible, for some k, the set E of points x where m(U{Z4;,x)—1/k>
L2 ,m(A;,x) is incompressible. We can assume without loss of generality that E = X,
otherwise we can treat E as our space X. Choose n such that m(F,) < 1/2" < 1/2*.
Then m(X — F,,x)>1—(1/2")> 1 —(1/k) =m(X, x) — (1/k). We have assumed that
U2, 4;=X. Thus m(X—F,,x)>m(u 4,x)—(1/k)>Z2,m(4;,x). By 231,
U2 4;<X —F,. Since sF,=s(X — F,) =X we see that X is compressible which is
a contradiction. (qed.)

233 If Ec4 is T-invariant then for all Be# and for xeE
m(B,x) =m(BNE, x) (mod #).

This holds because from the definition of the quantity [ B/F,](x) we note that for xeE,

[ngi(x) - [B ;E ji(x) (mod ).

n

Summing up we have

2.34 Theorem. Let X be incompressible (mod ") and assume that there exists a
fundamental sequence in 2. Then there exists a function m: B x X —[0,1] such that

(i) m(4,x) is measurable in x for all Ac®B, m(X,x)=1

(i) m(A,x) =m(T~' 4, x)=m(4, T~ x) (mod #)

(iii) m(A4,x)=0 (mod #) if and only if AcH

(iv) m(uiZy 4;, %) = X2 m(Ay, X) (mod ) whenever A, A,, As,...are pairwise disjoint
sets in 4.
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(v) If Ee# is T-invariant then for all Be# and xeE, m(B,x) = m(BNE, x) (mod H).

The main theorem 2.14 follows because whenever every set in % is decomposable
mod W', then there exists a fundamental sequence in %.

Remark 1. One can develop integration with respect to m in a natural fashon and
prove the maximal ergodic theorem. If £ is integrable with respect to m then the set

1n—1 ’
E= {x:; Y. f(T*x) does not converge as n— oo}
k=0

can be shown to be such that m(E, x) = 0 (mod ), i.e, Ec . This yields ‘universal’
form of Birkhoff’s ergodic theorem.

Remark 2. Given a system (X, %; », T) one can form the o-ideal # of those sets Be %
whose saturations are compressible with respect to ». It seems that the above analysis
can be carried out with respect to & and we can get the ‘transition probability’ m
(with respect to ) whenever X is incompressible (mod ).

3. The case of standard Borel space

3.1 In this section we show that in case (X, %) is a standard Borel space incompressible
under T then there exists a probability measure on £ invariant under T. We do this
by putting together theorem 2.14 and some well known facts about measures and
topologies on a standard Borel space. (see K R Parthasarathy’s book on Probability
Measures in Metric Spaces, Academic Press, 1967).

3.2 A result of Ramsay and Mackey states that we can assign to X a complete
separable metric topology Z such that T is a homeomorphism under this topology
and the Borel g-algebra generated by the topology coincides with # (see Weiss [11]).
If we are given a countable collection 7 < 4, the topology can be so chosen that
1< .7. (We will not need this latter fact.)

3.3 Lemma. Let X be a complete metric space with metric d. Let (F,) , be a decreasing
sequence of closed sets such that for each n, F, is covered by finitely many closed balls
each of diameter < 1/n. Then the set F = N, F, is compact. It is non-empty whenever
each F, is non-empty.

Proof. Ttis clear from hypothesis that F is closed and totally bounded hence compact.

Ifeach F, is non-empty we choose a point x,eF,,n=1,2,3,....,. The sets G, = closure
of {X,,X,41,...; are non-empty closed and totally bounded with G,,, € G,<F,.
Hence G = n{% G, is non-empty and contained in F. (q.e.d)

3.4 An outer measure u* on the power set 2% of a metric space (X,d) is called a
metric outer measure if u*(EU F) = u*(E)+ pu*(F) whenever d(E,F)>0. If y* is a
metric outer measure then every open set (and therefore every Borel set) is p*
measurable. Thus p* is a measure on the class of Borel sets of X whenever u* is a
metric outer measure on 2*. (see Halmos ‘Measure Theory’, p. 48 exercises 8a, 8b).
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3.5 We now return to our problem. Let T be a Borel automorphism yvithout periodic
points on a standard Borel (X, %) and assume that X is incompressible with respect
to T. Let m be the function on % x X given by theorem 2.14.

We use Ramsay-Mackey result quoted above to assign to X a complete separable
metric topology  (with metric d) whose Borel sets form the class % and under which
T is a homeomorphism. Let % be a countable open base for F/' . The collection
obtained by taking finite unions and finite intersections of sets in the collection
U _»{T"U:Ue%} is again a countable open base for 7 which is closed under
finite unions, finite intersections, and application of T. We therefore assume that %
itself has these properties. Let % denote the closures of sets in % and & the algebra
generated by % U% which is also countable. Let {U,,, Uz Usp»--.} denote the
collection of members in % of diameter < 1/n,n=1,2,3,.... We know that

(i) m(AuB,x) =m(4,x)+m(B,x) (mod #) whenever AnB = J, 4, BeoZ
(i) for each n, im,., o, m(Ut=, Uy, x) = m(X, x) = 1 (mod )

Now (i) and (ii) above are countable number of conditions, hence there exists a
T-invariant set NeJ# such that for all xeX — N we have

(a) m(AUB,x)=m(4,x)+m(B,x) whenever AnB =, A, Beof
(b) for each n,m(U¥_, U, x)— 1 as k— 0.

Fix an xeX — N and write m(4, x) = m(A) for Ae/. Define the outer measure m*
on the power set of X by setting for any B X

18

m*(B)=inf{ m(U,:B< ) U, Uie for all i}
) N

i

i=

We note that m* is T-invariant and bounded by 1.

3.6 Lemma. m*(X)=1.

Proof. We show that given >0 there exists a compact set F=F, such that
m*(F) 2 1 —e. From (b) above we can get for each n a k, such that m(Uk= , U, ) >
1= (/2" ). I F, = 3. USL, Uy, then for all n, ) F, 2 F, . 1, (ii) F, is closed, (iii) F,
is covered by finitely many closed balls of diameter < 1/n, (iv) F,e (v) m(F,)>1—e
The set F = N2, F, is compact by lemma 3.3. We show that m*(F)>1—¢ Fixn>0
and let Uy, Uy, Us,... be sets in % covering F such that T2, m(U,) — n <m*(F).
Since F is compact there is an integer p such that F < UP_, U,e (since % is closed
under finite unions). By lemma 3.3 we conclude that for some integer q.F, s uf- U,
Finally 1 —e—n<m(F))—n<m(Ul-, U) —n <2, m(U,) —n <m*(F). Since n >0
is arbitrary we see that m*(F)> 1 —e. (q.ed.)

3.7 Lemma. If K <X is compact then the restriction of m* to K is a metric outer
measure.

Proof. Let E,F < K be positive distance apart. Since E, F are compact and positive
distance apart we can find U, Ve%, Un V = &f such that E < U, Fc V. Fixe>0
and let W,, W,,... be sets in % covering EU F such that L m(W,)—e<m*(EUF)
<m*(E)+ m*(F). Now W,nU,n=1,2,3,...cover E and the sets W.nV,n=1,23,...
cover F. Moreover these sets belong to 4.

-2
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Therefore

s

m*(E)+ m*(F) — g <

n

m(W,nU)+ Y m(W,nV)—¢
n=1

1

<
n

iee

m(Wn)_a

< m*(EUF) < m*(E) + m*(F).

Thus if E and F are positive distance apart in K then m*(Eu F) = m*(E) + m*(F),
i.e., m* is a metric outer measure on K. (ge.d)

By a result quoted earlier every Borel subset of K is m* measurable and m* is a
countably additive measure on the Borel field of K. Moreover if A< K is m*
measurable and if TA< K, then m*(A)=m*(TA). Thus the collection of m*
measurable sets contain all compact sets and by lemma 3.3 there exists a o-compact
set Y < X such that m*(Y) = 1. This set Y can be made to be T-invariant by replacing
Yby U -, T" Y. We thus see that m* is a T-invariant probability measure on Borel
subsets of X, i.e. on 4.

Remark 1. If », denotes the class of u null sets of a T-invariant probability measure
i oon (X, 4), then », 2 . We see now that J# = n», where intersection is taken
over all T-invariant probability measures .

Remark 2, If X = uX;, iel an indexing set, be a partition of X generated by countable
number of T-invariant Borel sets in X, then incompressibility of X implies the
incompressibility of at least one of the X;. This follows on taking the regular
conditional probability of a T-invariant probability measure on X with respect to
. the partition.

Remark3. Let o/ = {A;,A,,A,,...} beacountable algebra generating 4 and consider
the measurable map X —[0.1]*° given by

x-(m(A,,x),m(4,,x),...).

This map gives a countably generated measurable partition of X into T-invariant
sets. A typical element of this partition is of the form C, = {y:m(4;,y) = m(4;, x) for
all A;ee/}. The incompressible members of this partition are uniquely ergodic
under T and every ergodic T-invariant probability measure is supported on some
member of this partition.

4. Historical background and Hopf’s theorem

The question of existence of invariant integrals (equivalently finite invariant measures)
was discussed by G D Birkhoff and P A Smith in their expository paper ‘Structure
analysis of surface transformations’ Journ. de Math. Tome VII — Fasc 1V, 1928, pp.
345-379. Many elementary and basic ideas of classical ergodic theory are set forth
in this paper, although in the setting of continuous or analytic invertible maps of a
surface. Let us briefly review the contents of §4 of this paper of Birkhoff and Smith.
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Let T be an analytic invertible transformation of a surface S onto itself. Birkhoff
and Smith show that a necessary and sufficient condition that there exists invariant
integrals of a certain type on S, or part of §, is that S be not compressible into an
arbitrarily small area. This result is an intuitive statement of their result which we
explain below.

They begin by introducing a function ¢(e), e being a measurable set of S, defined
as follows: Let e be divided into a finite number of mutually exclusive measurable sets

e=1Jd, 6né;= fori#j.
Then ¢ (e} is the lower bound of the sum
Y m(T™38;) (m= surface area)

with respect to all possible methods of subdivision of e into finite number of measurable
sets, and all possible choices of integers n;. Here use is made of the fact that the
property of measurability is preserved under analytic transformation.

It is clear that function ¢ may be identically zero, in which case, § is compressible
into an arbitrarily small area. This happens, for example, when T is an analytic
transformation of a sphere such that each circle parallel to the equator closes down
on the north (or south) pole on indefinite iteration of T'(or T!). On the other hand,
for a transformation which preserves the area measure m, we have @(e) = mfe).

In any case, it follows immediately from the definition, that (e} < m(e), and hence
¢(e) is bounded and absolutely continuous with respect to m. The importance of ¢
is due to the following theorem of Birkhoff and Smith.

Theorem. ¢ is countably additive and invariant under T. Moreover there exists a finite,
non-trivial T-invariant measure on S absolutely continuous with respect to m if and
only if ¢(S)>0.

Itis interesting to note that Birkhoff and Smith are careful to qualify their invariant
integrals as invariant intergrals of a certain type by which they seem to mean invariant
integrals which are finite non-trivial and absolutely continuous with respect to m.
The question of finding necessary and sufficient conditions for the existence of finite
non-trivial invariant integrals, not necessarily absolutely continuous with respect to
m, seems to have remained uninvestigated. ‘

On the suggestion of Birkhoff, the question of the existence of a finite invariant
measure was further taken up by Hopf in his paper [5] where the notion of
compressibility due to Birkhoff and Smith was modified as follows: Consider a measure
space (X, 4, ;1) where we assume that (X, %) is standard Borel and u(X)=1. Let
T:X — X be one—one onto measurable map which preserves y-null sets. Two sets A,
Be# are said to be equivalent by countable decomposition (mod ) if we can find
p-null sets M, Ne28 such that A — M, B— N are equivalent by countable decomposition
in our sense, i.e, in the sense of definition 2.3. A set Ac % of positive measure is said
to be compressible in the sense of Hopf if we can decompose 4 into pairwise disjoint
sets C,De, each of positive measure and further 4 is equivalent to C by countable
decomposition (mod p). It is clear that if a set 4 is compressible in our sense then it
is compressible in the sense of Hopf. But the converse need not hold. For example
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let X =Ru S! with the usual Borel structure and a probability measure having same
null sets as Lebesgue measure on R and S*. (Here S! = circle group). Let T act on X by
translation by one on R and irrational rotation on S'. Then X is compressible in the
sense of Hopf with respect to the measure u but not in our sense.

Theorem. (Hopf). If X is incompressible in Hopf's sense then there exists a unique
T-invariant probability measure on # having same null sets as .

Hopf’s proof of the theorem was considered difficult. Simplified proofs and alternative
necessary and sufficient conditions for the existence of finite invariant measure
equivalent to a given one for a non-singular transformation were therefore sought.
The best known is the theorem of Hajian and Kakutani which says that a non-singular
T on the measure space (X,4%,u) admits a finite equivalent T-invariant measure if and
only if there is no weakly wandering set of positive measure, where a set Ae4 is said
to be weakly wandering if there exists a sequence (n,);% ; of integers such that iterates
T A are pairwise disjoint (see [3]).

Hopf’s theorem follows easily from the above quoted result of Hajian and Kakutani
because the existence of a weakly wandering set of positive measure immediately
implies compressibility (mod g) in the sense of Hopf. We can use theorem 2.14 of this
paper to prove Hopf’s theorem as follows. If X is incompressible in the sense of Hopf
(with respect to u) then X is incompressible in the sense of definition 2.4. Also since
(X,%) is standard Borel every non-empty set in % is decomposable (mod #°). Thus
the hypothesis of theorem 2.14 is satisfied. If m be as in theorem 2.14 we write

P(A)=f m(A, x) du.
X

It is easy to show, using properties of m, that P is a T-invariant probability measure
having same null sets as y and that it is unique.

Since we have mentioned the theorem of Hajian and Kakutani, (Trans. Amer Math.
Soc. 110 (1964) 136-151) it is natural to ask whether compressibility of X under T
implies the existence of a weakly wandering set We4 such that s W = X. One may
assume, if necessary, that (X,4%) is a standard Borel space. A related question is
whether a compressing (in the sense of definition 2.4) homeomorphism of a Polish
space admits a weakly wandering non-empty open set. It is not necessarily required
that the saturation of such an open set be all of X.

Another question which can be formulated is as follows: Suppose f is a non-negative
measurable function on (X, %) and T a Borel automorphism on X. Can one define
a notion “X is incompressible with respect to f” which implies that whenever X is
thus incompressible there exists a o-finite measure m on # quasi-invariant under T
such that dm/dm = f.
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