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The putative proteasome-associated proteins Mpa

(Mycobaterium proteasomal ATPase) and PafA (protea-

some accessory factor A) of the human pathogen

Mycobacterium tuberculosis (Mtb) are essential for viru-

lence and resistance to nitric oxide. However, a direct link

between the proteasome protease and Mpa or PafA has

never been demonstrated. Furthermore, protein degrada-

tion by bacterial proteasomes in vitro has not been accom-

plished, possibly due to the failure to find natural

degradation substrates or other necessary proteasome co-

factors. In this work, we identify the first bacterial prot-

easome substrates, malonyl Co-A acyl carrier protein

transacylase and ketopantoate hydroxymethyltransferase,

enzymes that are required for the biosynthesis of fatty

acids and polyketides that are essential for the pathogen-

esis of Mtb. Maintenance of the physiological levels of

these enzymes required Mpa and PafA in addition to

proteasome protease activity. Mpa levels were also regu-

lated in a proteasome-dependent manner. Finally, we

found that a conserved tyrosine of Mpa was essential for

function. Thus, these results suggest that Mpa, PafA, and

the Mtb proteasome degrade bacterial proteins that are

important for virulence in mice.
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Introduction

Most individuals who are infected with Mycobacterium

tuberculosis (Mtb) do not develop tuberculosis. In these

cases, the immune system is able to prevent the bacteria

from growing uncontrollably. However, despite effective con-

trol of Mtb growth in healthy individuals, Mtb is rarely

sterilized from the body (Hernandez-Pando et al, 2000).

Mtb resides primarily in macrophages, a cell type that

normally controls bacterial growth. Although numerous as-

pects of the immune system are responsible for slowing the

growth of Mtb, increasing data suggest that nitric oxide (NO)

is essential for this process (Nozaki et al, 1997; MacMicking

et al, 1997b; Bekker et al, 2001; Chan et al, 2001; Scanga et al,

2001; Jung et al, 2002). NO, which can form other reactive

nitrogen intermediates (RNI), has antimicrobial activity and

is produced by the inducible nitric oxide synthase (iNOS) in

macrophages and other cell types (MacMicking et al, 1997a).

Genetic inactivation of iNOS in mice results in severe sus-

ceptibility to Mtb; iNOS�/� mice succumb rapidly after

infection with wild type (WT) Mtb (40–80 days)

(MacMicking et al, 1997b; Mogues et al, 2001; Scanga et al,

2001; Darwin et al, 2003). In contrast, WT mice live more

than a year after infection with WT Mtb.

In an effort to identify new targets for tuberculosis therapy,

over 10 000 Mtb mutants were screened for hyper-suscept-

ibility to the lethal effects of NO and other RNI (Darwin et al,

2003). This screen identified Mycobacterium proteasomal

ATPase (Mpa), which forms hexameric ATPase rings, and

proteasome accessory factor A (PafA), a protein of unknown

function (Darwin et al, 2003, 2005). Because Mpa and PafA

are encoded in proximity to the Mtb proteasome genes (prcA

and prcB) and Mpa is homologous to ATPases found in the

regulatory cap of the eukaryotic 26S proteasome, these

proteins were presumed to be involved in proteasome func-

tion (Nagy et al, 1997).

Proteasomes are present in all eukaryotes and archaea, and

in some bacteria of the class Actinomycetes, which includes

Mtb (Butler et al, 2006). The proteasome is a multisubunit,

ATP-dependent protease and is the major cytosolic protein

degradation structure in eukaryotic cells (Baumeister et al,

1998). 20S proteasome core particles are composed of two

rings of catalytic b-subunits sandwiched by rings of a-sub-

units that form a barrel-shaped structure. Access to the

channel and the catalytic sites of the b-subunits is obstructed

by a gate formed by the a-subunits (Groll et al, 1997; Unno

et al, 2002; Benaroudj et al, 2003; Hu et al, 2006; Lin et al,

2006). The eukaryotic 26S proteasome is composed of the 20S

core particle and one or two 19S regulatory caps. The cap is

composed of numerous proteins, including six AAA (ATPases

associated with various activities) ATPases, and is involved in

the recognition, unfolding, and translocation of ubiquitinated

proteins into the 20S proteasome core (Pickart and Cohen,

2004). It is not known how proteins are targeted for degrada-

tion in prokaryotes where 19S regulatory caps and ubiquitin

appear to be absent. Attempts to demonstrate ATPase-depen-

dent degradation of proteins by bacterial proteasome cores

in vitro have not been successful (our unpublished data)

(Wolf et al, 1998), most likely due to the lack of additional co-

factors required for protein degradation.

Little is known about bacterial proteasome biology.

Questions that remain to be answered include those regard-

ing the role of proteasomes in bacteria, the requirement of

cofactors for proteasome function, and the mechanism by
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which substrates are targeted for degradation by the protea-

some. In this work, we identify the first natural substrates of

a bacterial proteasome that will allow us to begin to address

these questions.

Results

The C-terminus of Mpa is essential for Mtb virulence

and resistance to RNI

Earlier studies described mpa607, a mutant with a transposon

insertion in the penultimate codon, which caused the dele-

tion of the last two amino acids: tyrosine and leucine (Darwin

et al, 2003). It was previously determined that Mpa forms a

hexameric AAA ATPase that is homologous to proteasomal

ATPases (Darwin et al, 2005). Mpa607 retains the ability to

hydrolyze ATP in vitro (Darwin et al, 2005). Notably, the

mpa607 strain was as sensitive to RNI in vitro as the mpa null

strain, suggesting that the terminal amino acids are essential

for the function of Mpa in RNI resistance (Darwin et al, 2003,

2005).

It was reported that the mpa607 mutant was attenuated in

mice, as determined by enumerating colony-forming units

(CFU) from the lungs and spleens 8 weeks after infection

(Darwin et al, 2003). Since that study, we have determined

that WT mice and mice deficient for iNOS live significantly

longer when infected with the mpa607 mutant compared to

infection with WT Mtb (Figure 1A). WT mice infected with

the mpa607 strain of Mtb had a 60% survival rate after one

and a half years, whereas those infected with WT Mtb only

had a 20% survival rate (Figure 1A). Importantly, WT mice

that had been infected with any of the mutant strains of Mtb

were killed around 600 days after infection for reasons other

than tuberculosis; these mice exhibited symptoms of aging,

including tumors and perturbed walking, but were otherwise

maintaining robust body weight and active movement (not

shown). In contrast, WT mice infected with WT Mtb were

hunched, thin, ruffled, slow-moving and had labored breath-

ing, which are typical symptoms of mice succumbing to Mtb

infection (not shown). Although genetic inactivation of iNOS

resulted in increased susceptibility of the mice to Mtb, the

mpa607 mutant was still severely attenuated in these mice

compared to the WT Mtb strain (Figure 1A). Similar effects

were seen when mice were infected with the pafA null strain

of Mtb (Figure 1A) or the mpa null strain (Darwin et al,

2005). This outcome demonstrates that, like the mpa null

strain (Darwin et al, 2005), the mpa607 and the pafA null

strains are highly attenuated in the mouse model of Mtb

infection and support the hypothesis that Mpa and PafA

operate in a common pathway. Additionally, these experi-

ments indicate that the C-terminus of Mpa is essential for

Mpa function.

Because the truncation in Mpa607 drastically impaired the

virulence of Mtb, we sought to define the functional rele-

vance of the missing residues. We aligned the WT Mpa

sequence with the sequences of other proteasome-associated

ATPases to determine if any of the C-terminal amino acids

were conserved. We found that the penultimate tyrosine of

Mpa was conserved across all proteasome-bearing bacteria,

most archaea, and some of the ATPase subunits of the

eukaryotic 19S cap (Figure 1B). The conservation of the

penultimate tyrosine across all domains of life suggested

that this residue is important for the proper functioning of

these proteasome-associated molecules.

We mutagenized the conserved penultimate tyrosine to

determine if it was essential for Mpa function. We substituted

the tyrosine with phenylalanine (MpaY608F) to test if a

closely related amino acid would affect Mpa function.

Additionally, we mutated the tyrosine to glutamic acid

(MpaY608E) to introduce a negative charge that can mimic

constitutive tyrosine phosphorylation. This strategy was

based on reports that the related eukaryotic ATPase Cdc48

(p97/valosin-containing protein) was determined to be phos-
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Figure 1 The C-terminus of Mpa is essential for Mtb virulence and
resistance to RNI. (A) Survival of WT and iNOS�/� C57BL/6 mice
infected with WT, mpa607 and pafA strains of Mtb. Each data point
represents the percentage of mice that were alive at the time point
shown on the x axis. (B) Alignment of the C-terminus of Mpa with
the C-termini of proteasome-associated ATPases from representative
actinomycetes, archaea and yeast. The conserved penultimate
tyrosines are highlighted. Sequences were compiled from the
NCBI server. (C) Substitution of the penultimate tyrosine of Mpa
abolished protection against RNI in Mtb and increased the steady-
state levels of Mpa protein. (Top) Each data point represents the
average of triplicate samples. These results are representative of
at least three independent experiments. Error bars represent þ s.d.
(Middle) (Bottom) Immunoblot analysis of Mpa, PafA and DlaT
(dihydrolipoamide acyltransferase, loading control) in Mtb lysates
from the same cultures harvested just prior to the nitrite survival
assay.
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phorylated on the penultimate tyrosine; mutagenesis of this

tyrosine to glutamate resulted in Cdc48 that behaved as if it

were constitutively phosphorylated (Egerton et al, 1992;

Madeo et al, 1998).

The mpa point mutant plasmids were introduced indivi-

dually into the mpa null strain of Mtb on an integrative

plasmid. Both mpaY608 alleles failed to protect Mtb against

RNI in vitro (Figure 1C). Notably, the mpaY608F Mtb strain

was as vulnerable to RNI as the mpa null strain, despite

replacement of the penultimate tyrosine with another aro-

matic amino acid (Figure 1C). The mpaY608E Mtb strain was

also as susceptible to RNI as the mpa null strain (Figure 1C),

suggesting that phosphorylation of the tyrosine is not

important for Mpa-dependent protection against RNI.

Consistent with this hypothesis, phosphotyrosine immuno-

blot analysis of Mtb lysates did not detect tyrosine-phos-

phorylated Mpa (data not shown).

Because the Mtb strains expressing the mutant mpa alleles

were as sensitive to RNI as the mpa null strain, we checked

for the presence of the MpaY608-mutant proteins with anti-

bodies against Mpa. The mutant proteins were observed at

higher steady-state levels than those seen in WT Mtb or the

mpa null strain complemented with WT mpa (Figure 1C)

(Darwin et al, 2005). We also examined PafA levels in these

strains. PafA was present at slightly increased levels in the

mpa null mutant but not in the penultimate tyrosine mutants

or the mpa complemented strain (Figure 1C). It is not clear if

the increased amount of PafA in the mpa null strain is

significant in light of the observation that PafA levels appear

WT in the other Mpa-defective strains.

Taken together, these data show that the extreme C-term-

inal residues of Mpa, particularly the highly conserved

tyrosine, are indispensable for Mpa function. Furthermore,

the results suggest that the same residues are important for

the maintenance of WT steady-state protein levels of Mpa.

Mpa and PafA work with the Mtb proteasome to

regulate Mpa protein levels

The accumulation of the MpaY608-mutant proteins was not

entirely unexpected because previous analysis revealed ele-

vated levels of the Mpa607 protein in the mpa607 mutant

(Darwin et al, 2005). Additionally, studies of Mpa with

mutations in the ATPase catalytic site demonstrated increased

steady-state levels of Mpa (Darwin et al, 2005). These data

suggested that the process that regulates Mpa protein levels

requires the penultimate tyrosine and ATPase activity of Mpa.

Because both Mpa and PafA are thought to be involved in a

common pathway, we also tested whether endogenous Mpa

levels were affected in the pafA null strain. The pafA null

strain showed increased abundance of Mpa (Figure 2A)

comparable to that seen in the Mtb strains expressing the

MpaY608 point mutants (Figure 1C) or the Mpa catalytic site

mutants (Darwin et al, 2005). Taken together, these results

further establish a link between Mpa and PafA and suggest

that Mpa protein levels are regulated by a mechanism that

requires at least Mpa and PafA.

Proteasome-associated ATPases mediate the entry of pro-

tein substrates into the catalytic chamber of the proteasome

(Kohler et al, 2001a; Smith et al, 2005). It has been suggested

that the C-termini of these ATPases are important for opening

the gate of the proteasome core (Forster et al, 2005). These

findings, in conjunction with the differences in Mpa protein

levels observed in the various mpa mutant strains, led us to

the hypothesis that Mpa stimulates gate opening of the Mtb

proteasome core and promotes its own turnover. If Mpa were

a substrate of the proteasome, then Mpa protein levels would

increase in the absence of proteasome protease activity.

We inhibited the Mtb proteasome in cultures treated with

epoxomicin, a specific eukaryotic proteasome inhibitor that is

effective against the Mtb proteasome (Kisselev and Goldberg,

2001; Darwin et al, 2003; Lin et al, 2006) and assessed Mpa

levels in Mtb. Consistent with our hypothesis, Mpa protein

was more abundant in a WT strain that had been treated with

proteasome inhibitor than in a WT strain incubated with

nothing or the vehicle control (Figure 2B). In contrast, the

levels of the proteolytic b-subunit of the Mtb proteasome,

PrcB, or the loading control protein dihydrolipoamide acyl-

transferase (DlaT) remained constant (Figure 2B). This find-

ing demonstrates that the proteasome-dependent regulation

of Mpa was specific. Quantitative real-time PCR (QRTPCR)

showed that there were no changes in mpa transcript levels

between the WT strain incubated with or without epoxomicin

(Figure 2C), suggesting the regulation of Mpa protein levels

occurs post-transcriptionally.

Taken together, the findings of these experiments are the

first to link Mpa and PafA to proteasome protease activity.

Moreover, this activity appears to regulate the steady-state

levels of a specific protein, Mpa, the presumptive protea-

some-associated ATPase. To our knowledge, this is also the

first demonstration that proteasomal ATPase levels can be

autoregulated by the proteasome pathway.

FabD and PanB levels are regulated by the Mtb

proteasome in an Mpa- and PafA-dependent manner

As Mpa protein levels were regulated by the concerted efforts

of Mpa, PafA and the Mtb proteasome, we hypothesized that
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Figure 2 Mpa protein levels are regulated by the Mtb proteasome.
(A) Anti-Mpa immunoblots of whole-cell lysates from a WTand the
pafA null strain of Mtb. Both strains contain pMV306, the empty
vector used for complementation analysis. DlaT shows equivalent
loading. (B) (Top) Anti-Mpa immunoblots of whole-cell lysates
from WT Mtb and WT Mtb that had been incubated with DMSO
or 50mM of the proteasome inhibitor epoxomicin in DMSO.
(Middle) Anti-PrcB immunoblots of the same samples. (Bottom)
Immunodetection of DlaT was used as a loading control for both
experiments. (C) QRTPCR analysis of mpa transcript levels in WT
Mtb that had been incubated with either DMSO or 50mM epoxomi-
cin in DMSO. The copy number of each transcript was normalized
to a non-differentially regulated RNA, rpoB for each strain tested.
Values represent two biologically replicate RNA samples.

Mycobacterium tuberculosis proteasome substrates
MJ Pearce et al

&2006 European Molecular Biology Organization The EMBO Journal VOL 25 | NO 22 | 2006 5425



Mpa is necessary for the proteasome-dependent degradation

of other protein substrates in Mtb. To search for other natural

proteasome substrates in Mtb, we compared the steady-state

proteomes of WTand mpa null strains using two-dimensional

(2D) gel electrophoresis. Global changes in protein levels

were not observed between the WT and mutant strains;

however, this could have been due to the limit of sensitivity

of 2D gel analysis. Two proteins were reproducibly more

abundant in gels prepared with lysates from the mpa null

strain when compared to gels prepared from WT strains

(Figure 3A). This was observed whether the strains were

grown under standard conditions or in acidified media with

or without nitrite (Figure 3A). The two proteins were identi-

fied by matrix assisted laser desorption/ionization-time of

flight (MALDI-TOF) analysis as malonyl Co-A acyl carrier

protein transacylase (FabD) (Kremer et al, 2001) and keto-

pantenoate hydroxymethyltransferase (PanB) (Chaudhuri

et al, 2003; Sugantino et al, 2003).

To determine if the difference in protein levels was due to

an increase in fabD or panB transcripts in the mpa mutant,

we analyzed the transcript levels of both genes by QRTPCR.

There were no statistically significant increases in fabD or

panB transcripts in the mpa null strain compared to the WT

strain, demonstrating that the increased abundance of FabD

and PanB in the mpa mutant was not due to amplified gene

expression (Figure 3B).

To test the hypothesis that FabD and PanB are Mtb protea-

some substrates, we examined steady-state FabD and PanB

protein levels in proteasome protease inhibited WT Mtb.

Similar to the proteome of the mpa null strain, endogenous

FabD (as confirmed by MALDI-TOF) and presumed PanB

spots were increased in intensity in proteasome-inhibited

samples compared to untreated WT Mtb samples

(Figure 3A, far right). There was no statistically significant

change in the panB transcript between the treated and

untreated WT Mtb strains; however, this was not the case

for fabD (Figure 3B). Expression of fabD was reduced 50–

60% in epoxomicin treated cultures (P¼ 0.0002; Student’s

unpaired t-test). One possible explanation is that the accu-

mulation of FabD results in increased amounts of long-chain

fatty acid intermediates in the cell that exert a negative effect

on fabD expression. This form of gene control is well
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Figure 3 FabD and PanB are candidate substrates of the Mtb proteasome. (A) 2-D gel electrophoresis of total lysates from untreated WT Mtb
compared to mpa mutant Mtb and WT Mtb incubated with the proteasome inhibitor epoxomicin. Spots corresponding to FabD and PanB are
circled. The 2-D gels were prepared with filtered total cell lysates from the Mtb strains and separated by isoelectric focusing on a pH 4–8
gradient in the first dimension and 10% SDS–PAGE in the second dimension. Only the portion of the gels that showed reproducible differences
is shown. Proteins were visualized by silver staining and the relevant spots were identified by MALDI-TOF. Spots corresponding to FabD and
PanB were observed in at least four different paired samples by 2D gel analysis. Nine peptides representing 44% coverage of FabD and six
peptides representing 37% coverage of PanB were identified. (B) QRTPCR analysis of fabD and panB transcript levels. The copy number of each
transcript was normalized to non-differentially regulated rpoB. Values are shown as copy number per 10 000 copies of rpoB and represent two
biologically replicate RNA samples. The differences in the transcript values for fabD and panB between the WT and mpa strains were not
statistically significant as determined by unpaired t-tests (P40.05). The two- to three-fold difference in fabD expression after epoxomicin
treatment is statistically significant (P¼ 0.0002). (C) Anti-FLAG immunoblots of whole-cell lysates to examine the steady-state protein levels of
epitope-tagged versions of FabD and PanB in untreated WT, mpa null, pafA null and proteasome-inhibited WT Mtb strains. WT Mtb was
incubated with 50 mM epoxomicin in DMSO to inhibit proteasome protease activity. Immunodetection of DlaT is shown as a loading control.
(D) Anti-FLAG immunoblots of whole-cell lysates to examine the steady-state protein levels of recombinant DlaT in untreated WT, mpa null
and pafA null Mtb strains. Equivalent cell numbers were analyzed.
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characterized for the fad/fab genes of Escherichia coli (Raman

and DiRusso, 1995; Raman et al, 1997), but it is not known if

a similar mechanism occurs in Mtb. Furthermore, it is not

clear why this would occur in epoxomicin treated samples

and not in the mpa mutant. Nonetheless, this result empha-

sizes the observation that FabD protein levels are not

increased due to an increase in fabD transcription in the

proteasome-defective strains.

We validated the results seen on the 2-D gels by using

immunoblotting to follow changes in the levels of epitope-

tagged versions of FabD and PanB in recombinant strains

of Mtb. WT, mpa and pafA strains of Mtb were transformed

with plasmids encoding FLAG-fabD-His6 and FLAG-panB-His6

cloned downstream of a heterologous Mycobacterium bovis

Bacille Calmette-Guerin hsp60 promoter (Scholz et al, 2000)

and an E. coli ribosome binding site. Anti-FLAG immunoblots

of total cell lysates revealed a dramatic increase in the steady-

state levels of the FLAG-tagged proteins in the mpa and pafA

mutant strains compared to WT Mtb (Figure 3C). This further

strengthened the functional association between Mpa and

PafA. We also observed increased levels of the recombinant

proteins in a WT strain that had been incubated with protea-

some inhibitor (Figure 3C). In contrast, the recombinant

proteins were barely detectable in the untreated WT strain,

consistent with the results of the endogenous proteins ob-

served by 2D gel analysis (Figure 3C).

In contrast to FabD and PanB, epitope-tagged DlaT protein

was equally abundant in the WT and mutant Mtb strains

(Figure 3D). These data suggest that the accumulation of

recombinant FabD and PanB in the mutant strains was due to

intrinsic features of these proteins, rather than experimental

artifact. Furthermore, the design of the heterologous expres-

sion system controls for possible changes in transcription and

translation initiation rates, supporting the hypothesis that the

recombinant protein levels were increased because the pro-

teins were not efficiently degraded. Therefore, FabD and PanB

steady-state levels, like those of Mpa, are regulated in Mtb by

a pathway that requires Mpa, PafA and proteasome protease

activity.

We assessed the potential effects the accumulation of FabD

and PanB might have on several important fatty acids.

Mycolic acid methyl esters, fatty acid methyl esters, methy-

lated lipids, triacyl glycerols, and wax esters in WT, mpa,

mpa-complemented and pafA strains were examined. All of

these molecules appeared to be normal in mpa and pafA

mutant strains (Supplementary Figure S1). However, we

cannot rule out other effects that are not detectable by even

these extensive assays. We also observed that the mpa

mutant consistently appeared to have reduced uptake of

palmitic acid (Supplementary Figure S1C and D), whereas

uptake looked WT in the complemented and pafA strains. We

do not yet understand the significance of this phenomenon.

Despite this observation, our analysis suggests that there are

no dramatic changes in the fatty acid and lipid profiles of mpa

and pafA mutants.

The C-terminus of Mpa is required for maintaining

wild-type steady-state levels of FabD and PanB

The C-terminal Mpa mutants were unable to maintain WT

Mpa protein levels, suggesting a loss of function of Mpa.

Therefore, we determined whether or not the two amino acid

truncated form of Mpa was able to regulate the protein levels

of the newly discovered candidate substrates. We examined

the steady-state protein levels of FLAG-FabD-His6 and FLAG-

PanB-His6 in the mpa607 strain. Anti-FLAG immunoblots

revealed increased levels of FLAG-FabD-His6 and FLAG-

PanB-His6 in the mpa607 strain compared to WT Mtb

(Figure 4), similar to the increases seen in the mpa null

and pafA null strains of Mtb (Figure 3C). The inability of

Mpa607 to regulate the recombinant protein levels further

suggests that the C-terminal residues are essential for Mpa to

function in the proteasome degradation pathway.

Discussion

Mpa, PafA and the Mtb proteasome were previously linked to

each other because of their ability to provide resistance to

RNI in Mtb (Darwin et al, 2003). In addition, both mpa and

pafA mutant strains of Mtb are similarly attenuated in mice,

suggesting that both Mpa and PafA participate in a common

pathway needed for in vivo survival. We further substantiate

this association with the discovery that Mpa, PafA and the

proteasome are involved in the regulation of FabD, PanB and

Mpa protein levels. Mpa and PafA are equally important in

maintaining physiologic levels of FabD and PanB because the

amounts of these proteins are similarly affected in mpa and

pafA mutant strains. The inability to regulate Mpa protein

levels in the absence of pafA or in proteasome protease-

inhibited WT Mtb further provides evidence that Mpa, PafA

and the proteasome core are functionally linked. Thus, we

propose a model that suggests Mpa interacts with the protea-

some core in a PafA-dependent manner to promote the

degradation of proteins such as FabD, PanB and Mpa itself

(Figure 5).

In order to conclude that the Mtb proteasome degrades

FabD, PanB and Mpa, it will be necessary to reconstitute the

proteasomal system in vitro. Proteolysis of peptide substrates

by the Mtb 20S proteasome has been demonstrated in vitro

(Lin et al, 2006). However, this process is not comparable to

proteolysis of a globular substrate; accessory factors, such as

an ATPase, are not required to promote peptide degradation.

Previous attempts to reconstitute degradation of a folded

protein by the homologous Rhodococcus erythropolis protea-

some system in vitro with 20S proteasome cores and the

ATPase ARC have been unsuccessful (Wolf et al, 1998). This

is not surprising because we found that the Mtb proteasome

system requires at least two co-factors, Mpa and PafA, in

addition to the proteasome core to regulate the levels of

WT mpa
mpa
607 WT mpa

mpa
607

FLAG-FabD-His6 FLAG-PanB-His6

FLAG

DlaT

Mtb strain:

Figure 4 The C-terminus of Mpa is necessary to promote the
apparent proteasome-dependent degradation of FabD and PanB.
Anti-FLAG immunoblots of whole-cell lysates to examine the stea-
dy-state protein levels of epitope-tagged versions of FabD and PanB
in WT, mpa null, mpa607 Mtb strains. Immunodetection of DlaT is
shown as a loading control.
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candidate substrates. So far, direct interactions between Mpa,

PafA and the proteasome core have not been detected, most

likely due to the lack of other co-factors required for protein–

protein contacts (MJ Pearce and KH Darwin, unpublished

results). We are currently working to determine if proteaso-

mal degradation of endogenous substrates requires additional

co-factors in Mtb.

Our genetic analysis suggests that a truncation at the

C-terminus of Mpa prevents the proteasome-dependent de-

gradation of FabD, PanB and Mpa. A possible explanation for

these results is that the C-terminus of Mpa is essential for

opening the gate of the Mtb 20S proteasome. Studies in other

organisms employing proteasomal ATPase and proteasome

gate mutants suggest that the ATPases are responsible for

activating 20S proteasomes by opening the gate to allow

access to the site of proteolysis in the core particle (Groll

et al, 1997; Kohler et al, 2001b; Benaroudj et al, 2003; Smith

et al, 2005). The importance of the ATPase C-terminus in

proteasome gate opening is supported by a finding that C-

terminal truncation of the archaebacterial ATPase proteasome

activating nucleotidase prevented it from degrading casein in

vitro (Forster et al, 2005). In an analogous bacterial degrada-

tion system, the C-terminus of the ATPase HslU (ClpY) is

required for the activation of the HslV (ClpQ) protease. The

binding of ATP to HslU induces a conformational change in

its C-terminus that allows the C-terminus to interact with

pockets inside the HslV protease causing an opening of the

HslV entry pore (Wang et al, 2001; Seong et al, 2002).

Together, these studies establish a theme that the C-termini

of protease-associated ATPases are critical for the interaction

with and the activation of their partner proteases, and our

data indicate that the same might be true for the activation of

the Mtb proteasome by Mpa. Interestingly, the amino-acid

substitution in MpaY608F leaves an aromatic ring missing a

hydroxyl group that is present in the usual tyrosine side

chain. This missing hydroxyl group may be important for

forming hydrogen bonds with residues in the Mtb proteasome

a-subunits that stabilize the interaction of Mpa with the

proteasome.

Eukaryotic proteasomes contribute to the regulation of

many cellular processes by degrading proteins (Coux et al,

1996), but there is little data regarding how the 26S protea-

some components are themselves turned over (Chen and

Hochstrasser, 1996; Schmidtke et al, 1996; Hirano et al,

2005). Our results indicate that Mpa, the proposed protea-

some-associated ATPase, is itself degraded by the Mtb protea-

some. Studies of the Clp protease in Gram-negative bacteria

have revealed that the ClpA ATPase is a substrate of the ClpP

protease, a situation that resembles our observation with Mpa

(Maurizi et al, 1990). In the Clp system, either the ClpA or

ClpX ATPase associates with ClpP to direct the degradation of

particular substrates (Gottesman, 2003). It is possible that the

degradation of ClpA by ClpP quickly resets the protease

system to allow interactions with ClpX. It is tempting to

speculate that a similar situation might apply to Mtb because

Mpa is not essential for normal growth in vitro, while the

proteasome protease genes are predicted to be essential or

required for optimal growth (Darwin et al, 2003; Sassetti et al,

2003). Perhaps, there are additional ATPase regulators of the

proteasome in Mtb that function in protein turnover.

FabD and PanB are involved in fatty acid metabolism and

FabD is also required for polyketide synthesis. About 6% of

the Mtb genome (B250 genes) is devoted to the metabolism

of fatty acids, suggesting that these macromolecules are

important for the mycobacterial lifestyle (Kinsella et al,

2003). So far, the fatty acid profiles of the mutant strains

appear to be normal; however, we cannot rule out that

changes are occurring in the mutant strains. Importantly,

we do not believe that the accumulation of these enzymes

is necessarily responsible for the attenuation of the mpa and

pafA mutants.

Although our proteomic analyses identified two putative

substrates, it is likely that more exist. We are currently

exploring other methods to identify additional proteins that

are regulated by the Mtb proteasome with the hope that their

discovery will help us understand how proteins are targeted

for proteolysis. Furthermore, identification of these substrates

may reveal why the mpa and pafA mutants are attenuated

in vivo.

This work has identified the first putative natural sub-

strates of a prokaryotic proteasome. These proteins will be

useful tools as we continue to study Mpa, PafA and the Mtb

proteasome in their involvement in cellular protein degrada-

tion and virulence. Furthermore, we have described the

essentiality of the extreme C-terminus of Mpa for protea-

some-dependent regulation of protein levels, and we have

elucidated an auto-regulatory circuit involving proteasome-

associated factors. Most importantly, we have provided the

first compelling evidence that Mpa, PafA and the Mtb protea-

some core protease function to regulate protein levels in Mtb.

We favor the hypothesis that Mpa and PafA work directly

with the proteasome to promote the degradation of target

proteins; however, other mechanisms of regulation may exist.

Regardless of the underlying mechanism, a better under-

standing of the biology of the Mtb proteasome and the

characterization of its substrates may provide new targets

for the treatment of tuberculosis.

Materials and methods

Bacterial strains, growth conditions and primers
The bacterial strains, plasmids and primers used in this study are
listed in Table I. All primers were purchased from Invitrogen. Mtb
strains were grown in Middlebrook 7H9 broth (Difco) supplemented
with 0.2% glycerol, 0.05% Tween-80, 0.5% bovine serum albumin,
0.2% dextrose and 0.085% sodium chloride (ADN). Cultures were
grown without shaking in either 25 or 75 cm2 vented flasks
(Corning) in humidified incubators with 5% CO2 at 371C. 7H11
agar (Difco) supplemented with oleic acid, albumin, dextrose and

FabD, PanB or
Mpa monomer

COOH
Mpa

C
Proteasome core

C

Degraded 
substrate

PafA

C

Other factors? PrcB

PrcA

Figure 5 Proposed model of the Mtb proteasome. The C-termini of
Mpa hexamers may interact with the PrcA subunits, thereby pro-
moting opening of the gate formed by the PrcA N-termini and
allowing access into the proteolytic core. Interactions of Mpa with
the protease core (b-subunit¼PrcB; a-subunit¼PrcA) appear to
require the presence of PafA. Direct interactions between substrates,
Mpa, PafA and the proteasome core have not yet been detected,
possibly due to the requirement of additional factors.
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catalase (BBL) was used for growth on solid medium. The
antibiotics kanamycin and hygromycin were each used at a
concentration of 50mg ml�1 as needed. For epoxomicin experi-
ments, cultures were grown in 7H9þADN to an OD580 of B0.5
after which either a final concentration of 50 mM epoxomicin in
DMSO (Boston Biochem) or an equal volume of DMSO was added.
Cultures were harvested 4 days after addition of the compound as
described below.

Plasmids and site-directed mutagenesis
WTand mutant forms of mpa were expressed from pMV306 (HygR),
which integrates into the attB site on the Mtb chromosome. For site-
directed mutagenesis of pMV-mpa, the Stratagene QuikChange XL
system was used as described elsewhere (Darwin et al, 2005).

To make epitope-tagged proteins, panB and fabD were amplified
by PCR from Mtb genomic DNA using primers encoding the FLAG
epitope (MDYKDDDDKI; Table I). The resulting PCR products were
cloned into pET24b(þ ), which adds a His6 tag to the cloned gene.
The pET24b(þ )-cloned inserts, including the consensus E. coli

ribosome-binding site from pET24b(þ ) and both epitope tags, were
PCR amplified and cloned into pMN402 that has the Mtb hsp60
promoter that allows expression of the cloned gene. To make the
epitope-tagged control plasmid, dlaT was PCR amplified from Mtb
genomic DNA using a 50 primer that encoded the FLAG epitope and
a 30 primer that encoded the His6 epitope with sequences exactly
as found in the fabD and panB plasmids (Table I). The amplified
product was cloned directly into pMN402.

Pfu polymerase (Stratagene) was used for all PCR-product
cloning. Restriction enzymes were purchased from New England
Biolabs. All clones were sequenced by the NYU DNA Sequencing
Core Facility to confirm the correct DNA sequence. DNA was
introduced into Mtb by electroporation as described previously
(Hatfull and Jacobs, 2000).

Nitrite survival assay and mouse infections
Nitrite survival assays and mouse infections were carried out as
described in detail elsewhere (Darwin et al, 2003, 2005). For mouse
infections, groups of mice purchased from Jackson Laboratories

Table I Bacterial strains, plasmids and primers used in this work

Strain Genotype/sequence Source or reference

Plasmids
pET24b(+) Kanr; for production of epitope-tagged protein Novagen
pMV306 Hygr; integrates at attB site on the Mtb chromosome Stover et al (1991)
pMV-mpa Hygr; pMV306 with 2.6 kb ClaI fragment containing mpa Darwin et al (2003)
pMN402 Hygr; replicating mycobacterial plasmid with gfp under the control of the BCG hsp60

promoter
Scholz et al (2000)

pMV-mpaY608F Hygr; pMV-mpa but with a Y608-F point mutation This work
pMV-mpaY608E Hygr; pMV-mpa but with a Y608-E point mutation This work
pMN-FLAG-fabD-His6 Hygr; pMN402 with gfp replaced by FLAG and His6-tagged fabD This work
pMN-FLAG-panB-His6 Hygr; pMN402 with gfp replaced by FLAG and His6-tagged panB This work
pMN-FLAG-dlaT-His6 Hygr; pMN402 with gfp replaced by FLAG and His6-tagged dlaT This work

E. coli
DH5a supE44 DlacU169 (j80 lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 Gibco, BRL

Mtb
H37Rv wild type (WT) American Type Culture Collection 25618 ATCC
MHD4 Kanr; mpa608HFMycoMarT7 Darwin et al (2003)
MHD5 Kanr; mpa77HFMycoMarT7 (Kanr) Darwin et al (2003)
MHD18 Hygr; H37Rv pMV306 Darwin et al (2003)
MHD22 Hygr, Kanr; MHD5 pMV306 Darwin et al (2003)
MHD23 Hygr, Kanr; MHD5 pMV-mpa Darwin et al (2003)
MHD60 Hygr, Kanr; MHD5 pMV-mpaY608F This work
MHD61 Hygr, Kanr; MHD5 pMV-mpaY608E This work
MHD62 Hygr, Kanr; pafA282HFMycoMarT7 pMV306 This work

Primers
mpaY608Ffa GAGTCCAACCTCGGCCAGTTCCTGTAGGGCTCAGGCGGTCAC
mpaY608Fra GTGACCGCCTGAGCCCTACAGGAACTGGCCGAGGTTGGACTC
mpaY608Efa GATACCGAGTCCAACCTCGGCCAGGAGCTGTAGGGCTCAGGCGGTCACC
mpaY608Era GGTGACCGCCTGAGCCCTACAGCTCCTGGCCGAGGTTGGACTCGGTATC
FLAGpanBNdef2 GGAATTCCATATGGATTACAAGGATGACGACGATAAGATGTCTGAGCAGACTATCTATGGG

GCC
panBNotr2 ATAAGAATGCGGCCGCGAAACTGTGTTCGTCAGCGGGGAA
FLAGfabDNdef2 GGAATTCCATATGGATTACAAGGATGACGACGATAAGATGATTGCGTTGCTCGCACCCGGA
fabDHindIIIr2 CCCAAGCTTTAGGTTTGCCAGCTCGTCCAGGTC
PET24NheIf CTAGCTAGCCCTCTAGAAATAATTTTGTTTAAC
PET24PstIr AACTGCAGTCAGTGGTGGTGGTGGTG
RBSFLAGdlaTPacI CCTTAATTAAGAAGGAGATATACATATGGATTACAAGGATGACGACGATAAGATGGCCTTC

TCCGTCCAGATGCCG
His6dlaTPstI AACTGCAGTCAGTGGTGGTGGTGGTGGTGCAGTCCTAAATCGGCCTCGAACGC
rpoBf1 TCGTTCTCTGACCCTCGTTTC
rpoBr1 ACGTGCCCTTCTCGGTCATCA
mpaf1 CGAGAATGTCATCGTGATCG
mpar1 GGCAAGAACTCGGTCAGGTA
fabDf CAAACCGAGGGAATGTTGTC
fabDr GCTATCACACCGGCGATT
panBf GACCAAGATCCGCACCC
panBr CCTCGTAGCTGCCGAAC

aUnderlined nucleotides indicate those changed from the WT sequence.
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were infected with aerosolized Mtb using a Glas-Col Inhalation
Exposure System (Terre Haute, IN). Each mouse received about
100–200 CFU as determined by enumerating bacteria from the lungs
of three mice per Mtb strain, 24 h after infection. Mice were
humanely killed upon observation of any symptoms of illness
(hunched posture, labored breathing, thinning and ruffled fur).

Immunoblotting
Total protein lysates were prepared from equivalent cell numbers,
determined by culture optical density at wavelength 580 (OD580).
Either 5 or 10 OD equivalents were harvested. Bacteria were
collected by centrifugation and washed in 5 ml of 0.05% Tween-80
in phosphate buffered saline, resuspended in 300ml of lysis buffer
(100 mM Tris–Cl, 100 mM KCl, 1 mM EDTA, 5 mM MgCl2, pH 8) and
transferred to bead beating tubes with 200ml of zirconia silica beads
(BioSpec Products). Cells were lysed by bead beating 2–3 times in
a BioSpec Mini Bead Beater for 30 s. Total cell lysate (150ml) was
mixed with 50 ml of protein sample buffer. The samples were boiled
at 1001C for 10 min and equal volumes representing equivalent cell
numbers were separated by SDS–PAGE in a 10% gel.

For immunodetection, FLAG antibodies were purchased from
Sigma (St Louis, MO) and were used according to the manufac-
turer’s instructions. Polyclonal antibodies to Mpa-His6, PrcB-His6

and DlaT-His6 were used as described elsewhere (Darwin et al,
2005; Tian et al, 2005; Lin et al, 2006). For all immunoblots,
experimental membranes were stripped and incubated with anti-
DlaT to check equivalent loading of samples (Darwin et al, 2005;
Tian et al, 2005). Horseradish peroxidase (HRP) coupled anti-rabbit
secondary antibodies were used according to the manufacturer’s
instructions (Amersham). Detection of HRP was performed using
either SuperSignal West Pico or West Femto Chemiluminescent
Substrate (Pierce).

QRTPCR
Mtb strains were grown to late logarithmic phase (OD580B1.0) in
7H9þADN broth in the presence of the appropriate antibiotics.
Cultures were added to an equal volume of 5 M guanidium
isothiocyanate, 0.5% sodium-N-lauryl sarcosine, 25 mM tri-sodium
citrate, 0.1 M b-mercaptoethanol to stop transcription and cells were
harvested by centrifugation. RNA was extracted from the bacterial
pellets using TRIzol Reagent (Invitrogen). The pellets were
resuspended in 1.2 ml TRIzol Reagent and the samples were lysed
by bead beating as described above. The remaining RNA purifica-
tion steps were carried out as described in the TRIzol protocol
and repeated to ensure removal of genomic DNA. The Reverse
Transcription System (Promega) was used to synthesize cDNA from
100 ng of Mtb RNA with 4 ng of random hexamers (Amersham) to
prime synthesis. The cDNA equivalent of B1.9 ng of total Mtb RNA
was analyzed by quantitative PCR using Platinum SYBR Green
qPCR SuperMix UDG (Invitrogen) in a DNA Engine Opticon 2
Continuous Fluorescence Detection System (MJ Research) (for
primers, see Table I). For quantification, transcript copy numbers
were determined by comparison to a standard curve of Mtb
genomic DNA. The relative amounts of each transcript were
normalized to that of rpoB, a control gene that is not differentially
regulated in any of our Mtb strains (unpublished data). cDNA were
synthesized from at least two biologically replicate RNA samples
and QRTPCR was performed twice, in triplicate, for each cDNA.

Proteomics analysis
Two-dimensional SDS–PAGE analysis of filtered (0.22mm) soluble
Mtb lysates was performed at Kendrick Labs (www.kendricklabs.
com). Gels were silver stained and protein spots were excised and
shipped by Kendrick Labs to the Columbia University Protein Core
Facility for MALDI-TOF analysis.

Mycolic acid biosynthesis
Mtb cultures were grown to mid-log phase. In total, 5mCi of 14C-
acetate or 14C-propionate were added to 10 ml cultures and

incubated for 16 h at 371C. Mycolic acids were extracted from
acetate or propionate fed culture pellets using the protocols
described in the previous study (Phetsuksiri et al, 1999). In brief,
the cells were harvested by centrifugation at 3000 g. The cell pellets
were treated with 2 ml of 20% tetrabutyl-ammonium hydroxide at
1001C. After 12–14 h, 2 ml of dichloromethane and 300ml of methyl
iodide was added. All the tubes were mixed by gentle vortexing and
incubated for 1 h at room temperature. After centrifugation at
2000 r.p.m. for 10 min, the aqueous layer was removed. The organic
phase was washed twice with acidified water before drying under
vacuum. The pellet was dissolved in 4 ml diethylether and liquid
phase was removed by aspiration. The dried residue was dissolved
in 200 ml of dichloromethane and quantified by scintillation
counting. Approximately 10 000 c.p.m. per sample was spotted on
silica gel 60 F254 TLC plates (Merck) and developed thrice in
hexane:ethyl acetate (95:5, v/v).

Methylated (sulpholipid) lipid biosynthesis
Mtb cultures were grown to mid-log phase. 14C-propionate (5mCi)
was added to 10 ml cultures and incubation continued for 16 h at
371C. Extractable lipids were isolated from cell pellets of propionate
fed cultures using previously described methodologies (Converse
et al, 2003). The harvested cell pellet was treated with 0.5 ml
of chloroform:methanol (1:2, v/v) and vortexed. Acidified water
(0.5 ml) was then added and organic and aqueous layers were
separated by centrifugation for 30 s. The lower layer (organic
chloroform layer) was transferred to a fresh glass tube and dried in
a vacuum concentrator. The residue was resuspended in chloroform
and approximately 25 000 c.p.m. per sample was spotted per
sample. Lipids resolved on silica gel 60 Å with fluorescent indicator
(Catalogue No. 4802-400, Whatman) or silica gel 60 Å F254(Cata-
logue No. 1.05554.0007, Merck), developed in chloroform:metha-
nol:water (60:30:6, v/v) at ambient temperature.

Extraction of apolar lipids
Mtb cultures were grown to mid-log phase. 14C-palmitate (5mCi)
was added to 10 ml cultures and incubation continued for 16 h at
371C. The 14C-palmitate-labelled apolar lipids were extracted by
adding 2 ml of chloroform/0.3% NaCl (100/10; v/v) and 2 ml of
petroleum ether to the cell pellet followed by stirring for 30 min.
After centrifugation, the upper petroleum ether layer was removed,
and 2 ml of petroleum ether was added to the lower phase, and the
process was repeated. The combined petroleum ether extracts were
then evaporated under nitrogen to yield apolar lipids that were
resuspended in CH2Cl2 and analyzed by toluene/acetone (99/1;
v/v) (Kremer et al, 2005). The wax esters were resolved on silica gel
60 Å F254 (Catalogue No. 1.05554.0007, Merck) and developed in
hexanes:diethyl ether:acetic acid (80:20:1, v/v) (Kalscheuer and
Steinbuchel, 2003).

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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