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Abstract—There is a competition between several face centered cubic (FCC)-based ordered inter-metallic
phases in Ni-Mo alloys containing 8-33 at% Mo. The transformation behavior of these alloys in terms of
ordering instabilities has been studied. First-principles tight-binding-linear muffin-tin orbital (TB-LMTO)
method coupled with augmented space recursion (ASR) in conjunction with orbital peeling (OP) technique
has been employed to extract the concentration dependent effective pair interactions. Further, the mean-field
statistical mechanics based static concentration wave (SCW) model has been used to determine the free
energies of these ordered phases as functions of temperature, composition and order parameter. This ASR-
OP-SCW approach, applied to Ni-Mo alloy system, gives the correct ground state stability sequence as
observed experimentally. Furthermore, it has been shown that such an approach can be used to study the
complex transformation behavior involving several competing superstructures as well as competing first order
and second order ordering processes. 

Keywords: Order–disorder phenomena; Thermodynamics; Ni-Mo alloys; First principles calculations

1. INTRODUCTION

The Ni-rich side of the Ni-Mo system (see Fig. 1) [1]
has three equilibrium ordered inter-metallic phases
viz. β-Ni4Mo (D1a), γ-Ni3Mo (DOa) and δ-NiMo

Fig. 1. The Ni-Mo phase diagram.

(P212121). Some unique features of ordering trans-
formation in this system have attracted the attention
of several research groups. An extensive amount of
research work [2–4] has been dedicated to understand
the behavior of phase transformations that occur in
this system [5, 6]. There have been a number of stud-
ies on the ordering of Ni4Mo and Ni3Mo based alloys.
It has been well established that these alloys, on
quenching from the single phase FCC region, produce
a short range ordered (SRO) state characterized by
diffraction intensity at�11

20�FCC positions and a com-
plete extinction of intensity at�210�FCC positions of
the reciprocal space [7]. Such an SRO structure has
been observed over a range of compositions (8-33
atomic % Mo) in Ni-Mo alloys and in several other
alloys like Au4V, Au4Fe, Au4Mn, Au3Cr [7, 8].

The development of the long range order (LRO)
structures from the SRO state in the�11

20� family of
alloys has often been found to occur through a variety
of intermediate stages [4, 5]. In Ni4Mo-based alloys,
the initial stages of the SRO to LRO transition have
been found to proceed in a continuous manner in a
certain temperature range as evidenced by a continu-
ous transfer of intensity from�11

20� to 1
5�420� pos-

itions. At higher temperatures, however, the transition
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occurs by nucleation and growth of D1a:Ni4Mo par-
ticles. In Ni3Mo-based alloys, the SRO to LRO tran-
sition has been observed to be more complex in that
the SRO state initially decomposes into a phase mix-
ture of two coherent ordered phases: (a) the meta-
stable Ni2Mo (Pt2Mo type, Immm) and (b) the Ni4Mo
(D1a, B2/m). The stoichiometric DO22 structure has
been found to form only under some special circum-
stances e.g. in ternary alloys where Mo is partially
substituted by Al or Ta or in alloys aged at tempera-
tures below 900 K for a long time.

The SRO structure in alloys exhibiting �1
1
2

0� inten-

sity maxima has been described by de Fontaine [9]
in terms of concentration fluctuation with wave vec-
tors close to �11

20�. Development of a �11
20� concen-

tration wave, in an FCC lattice, can produce two poss-
ible distinct real space structures depending upon the
phase relationship of the concentration wave with
FCC lattice. The first of these is a hypothetical “ spe-
cial point” structure proposed by Khachaturyan [10],
which consists of an NNMM type stacking on a
{420} set of planes (also called N2M2 structure). A
phase shift of this wave by p/4 and a reduction in
amplitude by a factor of √2 generate the so-called
imperfectly ordered DO22 structure proposed by Oka-
moto and Thomas [11]. This consists of a sequence
of Ni-rich (N), average (A) and Mo-rich (M) set of
planes (called NAM structure). The N2M2 structure
satisfies all the three Landau–Lifshitz symmetry rules,
thereby making it a candidate for an order-disorder
transition of second kind. The N2M2 structure can
evolve by continuous ordering in the concentration
range of 8-33% Mo. In the treatment of spinodal
ordering [12], it has been shown that at temperatures
below the �11

20� ordering spinodal, the evolution of
ordering can initiate by the amplification of an
�11

20� concentration wave.
Since no off-stoichiometric structure can be stable

at 0 K (for the Nernst theorem requires that the
entropy of a structure vanish at 0 K), the N2M2 struc-
ture can not satisfy this requirement for Ni3Mo alloys.
In such a situation, the alloy is expected to undergo
a secondary ordering giving rise to a stoichiometric
ordered structure or separate into a phase mixture of
ordered structures. Kulkarni and Banerjee [4] con-
sidered three different cases of secondary ordering
involving three different FCC special point concen-
tration waves in the off-stoichiometric N2M2 structure
generated by �11

20� spinodal ordering: (a) generation
of long wavelength concentration waves with k-vec-
tors close to �000� in an off-stoichiometric partially
�11

20� ordered alloy results in a phase separation of
the alloy into a disordered solid solution and a nearly
stoichiometric ordered N2M2 phase, (b) introduction
of a �100� concentration wave in a �11

20� ordered alloy
of Ni3Mo composition, gives rise to the DO22 struc-
ture (secondary ordering), and (c) secondary �11

20�
ordering in a direction perpendicular to the original

ordering k-vector results in the formation of a “N3M”
structure which contain an ordered arrangement of
D1a and Pt2Mo subunit cell clusters (Fig. 2).

The general tendency of the Ni3Mo alloy and some
of its ternary derivatives to decompose into a mixture
of the Ni2Mo and the Ni4Mo phases (avoiding the
DO22 structure which satisfies the stoichiometry) has
been rationalized in terms of nearly equal stabilities
associated with the competing structures. The ground
state analysis, reported by Kulkarni and Banerjee [4],
pointed to the fact that in a �11

20� alloy of Ni3Mo stoi-
chiometry, the super-imposition of either (i) an
�11

20� and an �100� concentration waves or (ii) two
mutually perpendicular �11

20� concentration waves
always results in a structure of lower internal energy
than the off-stoichiometric structure generated by a
single �11

20� concentration wave. Moreover, the
internal energy of an equimolar mixture of the Ni2Mo
and the Ni4Mo phases is found to be same as that of
the Ni3Mo. The calculation of formation energies,
used for such comparisons, are, however, based on
suitable ratios of interaction energies for the first, the
second and the third nearest neighbor pairs. More rig-
orous first-principles calculations have not been
attempted so far.

Earlier [13], we had calculated volume-dependent
effective pair interactions (EPIs) up to the second
nearest-neighbor pairs using the TB-LMTO method
in conjunction with Connolly–Williams inversion
method (IM) in the octahedral-tetrahedral clusters

Fig. 2. The [001] projection showing atomic arrangement in
the “N3M structure” generated by the superimposition of two
perpendicular �420� concentration waves. This structure com-
prises an arrangement of two variants, each of subunit cell clus-
ters corresponding to the N4M (square-shaped) and the N2M

(diamond-shaped) structures (Kulkarni et al. [4]).
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approximation. The basic idea of IM is to para-
meterize the cohesive energy of a given superstruc-
ture in terms of EPIs. In view of the fact that the
stable/meta-stable ordered intermetallic phases in the
Ni-Mo system are stabilized by considering up to the
third or the fourth nearest-neighbor pair interactions,
one needs to go to some higher (more complex) clus-
ter approximations in the IM. This may require cohes-
ive energy calculations of some meta-stable/unstable
superstructures. On the other hand, the starting point
of the ASR-OP method employed here is the com-
pletely disordered phase. We have therefore
employed the ASR-OP method to generate energy
and concentration dependent EPIs for the ground state
instability analysis.

Further, we have used these EPIs in the mean-field
statistical mechanics based static concentration wave
(SCW) model to calculate the free energies of these
ordered phases as a function of temperature, compo-
sition and order parameter. This method has been
used earlier for studying the stability/meta-stability
with respect to ordering and/or clustering reactions
in the PdRh system [14]. The maximum point of the
computed spinodal curve matched reasonably well
(within 15% i.e. the error-bar of the mean field
treatment) with the experimental maximum tempera-
ture of the miscibility gap in this system. Since the
competing super-lattice structures (N4M, N3M, N2M,
N2M2) in Ni-Mo system are all formed when specific
concentration wave perturbations destabilize the per-
fectly disordered FCC alloy, it is appropriate to
deploy the SCW approach in conjunction with the
ASR-OP technique to investigate the
ordering/disordering in this system.

The rest of the paper is organised as follows: in
Section 2, we give the structural description of all the
stable/metastable superstructures in terms of concen-
tration waves. Section 3 is devoted to the compu-
tational details of the ASR-OP method. In Section 4
we present our results on the calculation of EPIs
within ASR-OP method, and the results of ground-
state as well as finite temperature phase stability
within the SCW model. Finally the conclusions are
given in Section 5.

2. THE STRUCTURAL DESCRIPTION

The coherent LRO structures which are encoun-
tered in the Ni-Mo alloy system belong to the �11

20�
family. These structures viz. Ni4Mo (D1a), Ni3Mo
(DO22), Ni2Mo (Pt2Mo type) and Ni2Mo2 (I41/amd)
can be described [4, 9, 10] in terms of stacking of
(420) planes (see Fig. 3) that contain either all Ni or
all Mo atoms. These members of the (420) series are
generally designated as N4M, N3M, N2M and
N2M2, respectively.

The concentration wave description [10] of these
superstructures is described by the concentration delta
function, C(p), written as a function of the magnitude
of the vector p in terms of the plane indices

p = p�lmn�. C(p) is equal to unity at the plane p = 0
and zero elsewhere (p = 1, …, N�1), so that the con-
centration Fourier spectrum along a specific vector k
is given by

C(k) �
1
N �N�1

p � 0

C(p)exp[�2p�k.p] (1)

For each structure, there are exactly N( = 2,3,4,5)
Fourier waves of the same amplitude.

2.1. Ni4Mo (D1a) structure

The unit cell of Ni4Mo structure along with its
stacking description is shown in Fig. 2. It can be seen
that the structure can be described as a layered struc-
ture of (420) layers with every fifth layer being occu-
pied entirely by Mo atoms while the intervening four
layers being filled by Ni atoms. The wave represen-
tation of such a structure or the occupation probability
of Mo atoms on the pth (420) layer can be expressed
as (see Fig. 3)

C(p) � c �
2
5
h�cos

2pp
5

� cos
4pp

5 � (2)

For stoichiometric composition, (cMo � )c = 1
5, and

for order parameter, h = 1 (i.e. fully ordered), the
(420) layered structure of Ni4Mo will, therefore, be,
“Mo Ni Ni Ni Ni Mo…”. This structure can be viewed
as a super-imposition of i

5�420� (i = 1 to 4) waves.

2.2. Ni3Mo (DO22) structure

The DO22 structure can also be described as a (420)
layered structure as shown in Fig. 2. The concen-
tration wave description is given by (Fig. 3)

C(p) � c �
1
4
h�2cos

pp
2

� cospp� (3)

The DO22 structure is the equilibrium structure of
Ni3V and also of some ternary alloys based on Ni3Mo
where Mo is partially substituted by Al, Ti, Ta and
Nb. In a stoichiometric (c = 1/4) and fully ordered
alloy (h = 1) the (420) layering sequence is, “Mo Ni
Ni Ni Mo…”. It can be seen that apart from the four
layer stacking of (420) planes, there exists a concen-
tration modulation in the [010] direction in the DO22

structure. In fact, this structure can be viewed as a
superposition of i

4�420�(i = 1,3) and 2
4�420� � �100�

concentration waves.

2.3. Ni2Mo (Pt2Mo type) structure

The N2M structure can be represented by a layered
structure of (420) planes and the occupation prob-
ability of M atoms on the pth plane can be described
by the concentration wave (Figs 2 and 3)
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Fig. 3. The description of four FCC-based superstructures in terms of stacking of (420) planes in the [001]
projections and static concentration waves. The sequences of Ni (N) and Mo (M) of (420) planes and subunit

cell clusters are also shown.

C(p) � c �
2
3
h�cos

2pp
3 � (4)

The stoichiometric fully ordered alloy exhibits a lay-
ering sequence of (420) planes of “ Mo Ni Ni Mo…”.
This structure can be viewed as a super-imposition
of i

3�420�(i = 1,2) waves.

2.4. Ni2Mo2 structure

This structure can be constructed from the concen-
tration wave with the �11

20� wave vector. The signifi-
cance of this vector is that it terminates on a special
point in the FCC reciprocal lattice where symmetry
elements intersect. The concentration wave associated
with this structure is given by

C(p) � c �
h

√2
sin
p
2�p �

1
2� (5)

For c = 0.5 and h = 1, the layering sequence of (420)
planes is, “Ni Ni Mo Mo Ni Ni…”. This structure can
be viewed as a super-imposition of i

4�420�(i = 1,3)
concentration waves.

3. COMPUTATIONAL DETAILS

3.1. The tight-binding augmented space recursion
method

The recursion method [15: p. 216, 16] offers an
alternative to the band structure method. This method

is suitable for computing the local properties which
are related to the diagonal elements of the resolvent,
where it offers a large computational advantage over
the band structure methods. Moreover, the recursion
method is based on real space and so it does not
require lattice periodicity for its operation, in contrast
to the band structure methods. As a result, both
ordered, disordered and systems with broken trans-
lational symmetry (such as surfaces) can be treated
within the recursion method.

Within the TB-LMTO formalism the Hamiltonian
is usually sparse. In the recursion method one exploits
this sparseness and performs a unitary transformation
on the local orbital basis, through a three term recur-
rence, to produce a tridiagonal representation of the
Hamiltonian. The first orbital in the new basis is
chosen to be the one on which the projected density
of states is sought.

The augmented space formalism, introduced by
Mookerjee [17] is a novel and conceptually attractive
method for the calculation of the configuration aver-
aged Green function of a disordered material. In this
method one transforms the Hamiltonian describing a
given disordered system to an effective non-dis-
ordered Hamiltonian, whose appropriate Green func-
tion matrix elements correspond to the configurational
averages of the Green function of the original dis-
ordered system. This effective Hamiltonian operates
on an enlarged Hilbert Space: which is the space H
spanned by the TB-LMTO basis augmented by the
space � spanned by all possible random configur-
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ations of the system. Configuration averages in real
space are mapped onto particular matrix elements in
this augmented space H��. We shall describe the
main points of the formalism here and refer the read-
ers to the original citation for details.

The disordered Hamiltonian is expressed as a func-
tion of a set of random variables: H({ni}) whose prob-
ability densities are written as the spectral density of
operators {Mi}

p(ni) � �
1
p

Im�gi0|(niI�Mi)�1|gi0� (6)

where |gi0� is the configuration ground state at the
ith site.

The augmented space theorem then states that:

«Gii» � �i�g10�g20…|G̃({Mi})|i�g10�g20…� (7)

For a binary distribution of ni with probability c to
be 1 and (1�c) to be 0:

p(ni) � cd(ni�1) � (1�c)d(ni) (8)

the representation of Mi is a matrix of rank two:

M(i) � � c √c(1�c)

√c(1�c) 1�c � (9)

The relation is exact and approximations are car-
ried out in the exact numerical evaluation of «Gii».
Direct recursion in the augmented space has the
advantage that it does not involve any single site
mean-field approximation or the solution of self-con-
sistent equations to determine the effective medium.
The approximation required is in the termination of
the continued fraction expansion of the configuration
averaged Green function. Excellent termination pro-
cedures are available which retain most of the ana-
lytic properties of the exact Green function [18]. This
method can treat both diagonal as well as off-diagonal
disorder on an equal footing and preserves all the
essential features of the recursive solution of the
Schrödinger equation. The work-load of the recursion
method is proportional to the size of the system. It
can be further reduced if one exploits the symmetry
of the Hamiltonian both in the real space as well as
in the augmented space arising as a result of hom-
ogeneity of disorder. The rank of the irreducible sub-
space of the augmented space, on which the recursion
is effectively carried out, is drastically reduced [19].

The starting point for the augmented space
recursion is the most localized sparse tight-binding

Hamiltonian derived systematically from the LMTO-
ASA theory [20, 21] and generalized to substi-
tutionally disordered random binary alloys:

HbRL,R�L� � ĈRLdRR�dLL� � �̂RLSbRL,R�L��̂R�L�

ĈRL � CA
RLnR � CB

RL(1�nR)

�̂RL � (�A
RL)1/2nR � (�B

RL)1/2(1�nR)

(10)

Here R denotes the lattice sites and L = (lm) are the
orbital indices (for transition metal l�2) CA

RL, CB
RL

and (�A
RL)1/2, (�B

RL)1/2 are the potential parameters of
the constituents A and B (in the most tight-binding
representation of a = b) of the alloy. nR are the local
site occupation variables which randomly take values
1 and 0 according to whether the site is occupied by
an A atom or not. From the discussion given above,
it is clear that the representation of the Hamiltonian
in the augmented space H̃ consists of replacing the
local site occupation variables {nR} by {M̃(R)}, and is
given by:

H̃ � �
RL

(CB
RLĨ � dCRLM̃(R))�PR � …

� �
RL

�
R�L�

((�B
RL)1/2Ĩ � d�RLM̃(R))SbRL,R�L�… (11)

((�B
R�L�)1/2Ĩ � d�R�L�M̃(R�))…�TRR�

where,dCRL = [CA
RL�CB

RL]; d�RL = [(�A
RL)1/2�

(�B
RL)1/2]Ĩ is the identity operator, PR is the projection

operator on the basis labeled by R and TRR� is the
transfer operator |R�� �R|, other parameters have their
usual meaning.

The TB-LMTO-ASR technique has been applied to
a series of alloy systems with considerable success
earlier [19]. These alloys involved among other things
short-ranged ordering, clustering and local lattice dis-
tortions.

3.2. Orbital peeling method

The study of phase stability, starting from the dis-
ordered phase generally begins with setting up of a
concentration fluctuation in a completely disordered
medium and expansion of the change in configur-
ational energy in terms of effective multi-site interac-
tions. The dominant role is played by the EPI’ s which
are defined to be

J2 � Eij � VAA � VBB�VAB�VBA (12)

which give the interchange energy associated with
two sites embedded in an otherwise average medium,
being occupied by A or B type of atom. These effec-
tive pair interactions can be expressed in terms of
band structure contributions as
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Eij � 	
EAA

F

�	

ErAA(E)dE � 	
EBB

F

�	

ErBB(E)dE (13)

� 	
EAB

F

�	

ErAB(E)dE� 	
EBA

F

�	

ErBA(E)dE

where EIJ
F and rIJ(E) denote the Fermi energy and

electronic density of states for a specific case where
at the sites i and j in the random media are occupied
by atoms of the type (I,J = A,B). These EPIs can
further be expressed in terms of the generalized phase
shift d(E) as

Eij � 	
EF

�	

Imd(E)dE (14)

with

d(E) �
1
p

log det
«GAA»«GBB»
«GAB»«GBA»

(15)

where «GIJ»’ s are the configuration averaged Green
functions with two atoms in all possible combinations
embedded at sites i and j.

The brute force method of calculating the EPIs
would be to calculate the various averaged energy
terms and then take the difference as in equation (14).
However, determination of small differences of very
large numbers often lead to numerical instabilities. A
way out is to obtain the difference directly using the
orbital peeling method [22]. The basic philosophy lies
in removing the embedded atoms orbital by orbital
and carrying out the recursion at each step.

According to Burke

d
dE

logG � �p�1

g�1

1
E�Zg

��p

g�1

1
E�Pg

(16)

where Zg (Pg)’ s are the zeros (poles) of the Green
function expressed as continued fraction expansion
evaluated up to p levels. These can be obtained
immediately from the continued fraction coefficients.
Thus, the determination of effective pair interaction
reduces to determination of zeroes and poles of
peeled off Green functions with pair {IJ} embedded
in an averaged medium. One employs the augmented
space recursion coupled with the tight binding lin-
earized muffin tin orbital method (TB-LMTO-ASR)
for a first principle determination of configuration
averaged peeled-off Green functions.

The orbital peeling combined with TB-LMTO-

ASR has been earlier applied to study the phase stab-
ility of binary alloy systems [23].

4. RESULTS AND DISCUSSION

4.1. The EPIs

We calculate the configurationally-averaged con-
centration-dependent effective pair interactions
J(m)

2 (c), up to the fourth (m) nearest-neighbor (NN)
pairs for the Ni-Mo alloys using the first-principles
ASR-OP method described in Section 3. We use the
most-localized (tight-binding) set of potential para-
meters from self-consistent TB-LMTO calculations.
A four-shell augmented space map (generated from a
cluster of 400 sites) has been used, with interactions
up to the first NN pairs, for these close-packed FCC-
based structures.

The number of recursion steps has been restricted
to eight and terminated with the Luchini–Nex termin-
ator [18]. These EPIs in the mth coordination sphere
are defined as

J(m)
2 � V(m)

AA � V(m)
BB�V(m)

AB�V(m)
BA (17)

which gives the interchange energy associated with
two sites occupied by either A or B atom, embedded
in an otherwise perfectly disordered averaged
medium. Table 1 gives the calculated values of the
EPIs up to the fourth NN shell for Ni-Mo alloys at
20, 25, 33 and 50 at% of Mo. The interactions are
seen to be well-converged as a function of shell num-
bers. Figure 4 shows the variation of these EPIs as a
function of concentration.

4.2. SCW analysis

In the SCW model [10, 24], the occupation prob-
ability N(r), at any lattice position, r(p), is given by
the Fourier expansion as:

N(r) � �N
h � 1

Q(k)e�ik(h).r(p) (18)

where Q(k)’ s are the Fourier coefficients given by

Table 1. The concentration dependent EPIs, J(m)
2 , upto the fourth nearest

neighbour pair (mmax = 4) calculated using the ASR-OP method for the
Ni-Mo alloys (in mRy)

Composition (at% Mo)

20 25 33 50

EF (mRy)
J(1)

2 3.692 2.627 0.8492 0.5360
J(2)

2 0.8125 0.3074 0.4032 �0.3291
J(3)

2 �0.2647 �0.2216 �0.1636 �0.1240
J(4)

2 0.0116 0.0207 0.0266 0.0261
J(2)

2 /J(1)
2 0.220 0.117 0.475 0.0261

J(3)
2 /J(1)

2 �0.072 �0.084 �0.193 �0.231
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Fig. 4. The EPIs upto the fourth nearest-neighbor pairs, calcu-
lated using the ASR-OP technique, plotted as a function of Mo

concentration.

Q(k) �
1
N �N

p � 1

N(r)eik(h).r(p) (19)

The first summation is over the N lattice points of
the periodic crystal and the second is over the N
points of the first Brillouin zone. The wave-vector
k(h) and the lattice vector r(p) are defined by:

r(p) = paaa (a = 1,2,3; pα are integers, sum-
mation implied)
k(h) = 2phaba (ha = ma/Na, ma = 0, ±1, ±2, …)

where aa and ba are lattice translation vectors and
primitive translation vectors of the reciprocal lattice
such that aa·ba = dab.

The concentration wave amplitude yQ(k�) corre-
sponding to the wave vector k� that generates the
ordering instability are expressed in terms of nor-
malized (with respect to c) long range order para-
meter, hn, via the following relation,

Q(k) � hn.c (20)

The normalized order parameter (hn) is related to
the standard order parameter (h), as hn = h/hmax,
where hmax is the maximum order parameter attain-
able at a given composition. The internal energy, in
the pair approximation up to an arbitrary coordination
shell, is given as

E �
N
2 �N

h � 1

J(k(h)),Q(k(h))Q∗(k(h)) (21)

where the star (*) indicates the complex conjugate of
the amplitude of the corresponding concentration

wave and J(k), the Fourier transforms of the pair
interactions, are given by†

J(k) � 1/N �N
p � 1

J(r).eik(h).r(p) (22)

The expression for the configurational entropy is
given as

S � kB �N
p � 1

[N(r(p))ln(N(r(p))) � (1 (23)

�N(r(p)))ln(1�N(r(p)))]

which, in terms of sub-lattice probabilities, can be
expressed as

S � kB �J
s � 1

NS[Ns ln Ns � (1�Ns)ln(1�Ns)]

(24)

where T is the total number of sub-lattices, NS and
the NS are the occupation probability and the number
of atoms on the Sth sub-lattice, respectively

The effective pair interactions, J(k) for the wave
vector, k(h) with components (h1, h2, h3), are related
to those in the real space J(s)

2 as

J(k) � �
(s)

f(s)
k J(s)

2 (25)

where, for the FCC and the BCC lattices, the shell
functions, f(s)

k , for an arbitrary coordination shell “s”
are given by the formulae [9]

f(s)
k �

z(s)

6 �3

j � 1

cos(2ph1p(s)
j ).

[cos(2ph2p(s)
j � 1)cos(2ph3p(s)

j � 2) � (26)
cos(2ph3p(s)

j � 1)cos(2ph2p(s)
j � 2)]

where z(s) is the number of lattice points in the coordi-
nation shell “s” , p(s)

j are integers and half-integers
denoting the Cartesian coordinates of a point in the
first octant of the shell “s” and “hi” denote the Car-
tesian coordinates in the first Brillouin Zone, as
defined already. In Table 2, we have given the calcu-
lated values of the shell functions for different �420�
wave vectors up to the fourth coordination shell.

The SCW free energy expressions for these FCC-

† The dependences of r and k on p and h are assumed
if not shown explicitly.
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based ordered super-lattice structures of the (420)
family have been derived as follows:

N4M (D1a) structure: The sub-lattice occupation
probabilities for the D1a structure are given as

N1 � c � 4Q and N2 � c�Q

where Q is the amplitude of the concentration wave
and is related to the normalized (with respect to
composition) order parameter hn, through the relation,
Q=hn.c, giving rise to

N1 � c(1 � 4hn) and N2 � c(1�hn)

The internal energy is given by

ED1
a

�
1
2
(J(000) � ��4

i � 1

j� i
5

�420��h2
n�)c2


(27)

and the entropy is given by

SD1a � �
kB

5
{4F(N2) � F(N1)} (28)

with F(y) � y ln y + (1�y)ln(1�y).
N3M (DO22) structure: Here, we have three sub-

lattices with occupation probabilities given as
N1 = c(1 + h(1)

n + 2h(2)
n ), N2 = c(1 + h(1)

n �2h(2)
n ) and

N3 = c(1�h(1)
n )where h(1)

n and h(2)
n are the order para-

meters belonging to �11
20� and �100� wave vectors,

respectively. The internal energy is given by

Table 2. The shell functions f(s)
k ’ s calculated upto the 4th coordination

shell for fcc lattice for different wave vectors k. z(s) represent the coordi-
nation number for the sth shell and p(s) denotes the cartesian coordinates

of a point in the first octant of the shell

Coordination shell 1 2 3 4
(s) →
z(s) → 12 6 24 12

p(s)

Ordering wave [1
2

1
20] [100] [11

2
1
2] [110]

vector (k)

1
3�420� �3 0 6 �3
2
3�420� �3 0 6 �3
1
5�420� �3 1 4 �3
2
5�420� �3 1 4 �3
3
5�420� �3 1 4 �3
4
5�420� �3 1 4 �3
1
4�420� �4 2 8 �4
2
4�420� �4 6 �8 12
3
4�420� �4 2 8 �4

EDO22 �
1
2
(J(000) �

�J�1
4

�420��h(1)2
n � J�2

4
�420��h(2)2

n � (29)

J�3
4

�420��h(1)2
n �)c2


and the entropy is given by

SDO22 � �
kB

4
{F(N1) � F(N2) � 2F(N3)} (30)

N2M (Pt2Mo) structure: The sub-lattice occupation
probabilities for the N2M structure are given as

N1 � c(1 � 2hn) and N2 � c(1�hn)

The internal energy is given by

EN2M �
1
2
(J(000) � ��2

i � 1

J� i
3

�420��h2
n�)c2


(31)

and the entropy is given by

SN2M � �
kB

3
{2F(N2) � F(N1)} (32)

N2M2 (I41/amd) structure: The sub-lattice occu-
pation probabilities for the N2M2 structure are given
as

N1 � c(1 � hn) and N2 � c(1�hn)

The internal energy is given by

EN2M2 �
1
2

(33)


�J(000) � �J�1
4

�420�� � J�3
4

�420���h2
n�c2


and the entropy is given by

SN2M2 � �
kB

2
{F(N2) � F(N1)} (34)

4.2.1. Ground state analysis. At zero tempera-
ture, there is no contribution from entropy to the free
energy of a solid solution and therefore its stability
is governed by the internal energy alone, which is a
function of effective pair interactions. In Table 1, we
have given the values of these EPIs (J(i)

2 (c), i = 1,4)
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up to the fourth nearest neighbor pairs for FCC-based
Ni-Mo alloys, calculated using the ASR-OP method.

The occurrence of ordering and clustering insta-
bilities in solid solutions has been analyzed by Clapp
and Moss [25] and de Fontaine [9, 12], whereas the
interplay between the clustering and ordering insta-
bilities have been examined by Kulkarni et al. [4], in
terms of concentration waves with wave vector k
which terminate at the so-called special points in the
reciprocal lattice.

These special points are of interest as these are the
locations of the extrema of the k-space potential
energy function, J(k), i.e. corresponding to
∂J(k)/∂k = 0. The nature of the extrema
(minima/maxima/saddle point) is determined by the
second derivative of the free energy function. There-
fore, concentration waves with a wave vector k which
corresponds to a minimum of J(k) are characterized
by maximum value of instability temperature (Ti) and
the amplification rate (a(k)). A FCC solid solution
may exhibit the following special point instabilities
(a) �000� or the clustering instability leading to spino-
dal phase separation and (b) �100�, �1

2
1
2

1
2� and �11

20�
ordering instabilities. The ordered structures gener-
ated by the amplification of a single variant of the
�1
2

1
2

1
2� or the �11

20� waves obey the Landau–Lifshitz
rules I, II and III [9, 12] and are, therefore, candidates
for the order-disorder transformation of the second
kind. In the case of �1

2
1
2

1
2� and �11

20� ordering the coef-
ficients of the third order term in the Landau–Lifshitz
free energy expansion is equal to zero from sym-
metry considerations.

In Table 3, we have given the values of the EPIs
in the reciprocal space calculated using equation (25),
for various wave vectors, k, corresponding to all the
members of (420) family. Kulkarni et al. [4] have
analyzed the �100�, �1

2
1
2

1
2� and �11

20� special point
ordering instabilities by considering (concentration-
independent) effective pair interactions up to the third
nearest neighbor pairs using the mean-field based
SCW model. Their results for the �11

20� special point
ordering instability in the J(2)

2 /J(1)
2 �J(3)

2 /J(1)
2 space are

shown in Fig. 5 where the horizontally-hatched por-
tion represents the region of absolute minimum of
J(11

20) in the EPI space. The region below the dashed
line represents region of phase separation of ordered
solid solution into a pure A and an ordered A1�cBc

phase and the vertically-hatched portion represents
region of combined �11

20� ordering and subsequent
phase separation. We have calculated these EPIs
(concentration dependent) up to the fourth coordi-
nation shell for the FCC Ni-Mo alloys using the ASR-
OP method. Our values of J(2)

2 /J(1)
2 and J(3)

2 /J(1)
2 at the

four compositions viz. 20, 25, 33 and 50 at% of Mo
have been given in Table 1 and have also been super-
imposed onto Fig. 5. These ratios of our calculated
EPIs have been observed to be in the region corre-

sponding to the minimum of J(11
20) i.e. �1

1
2

0� ordering

instability exists in the Ni-Mo alloys.

Table 3. The Fourier transforms of the EPIs calculated using the ASR-
OP method, for various wave vectors, k, corresponding to all the mem-

bers of (420) series

Composition J(000)(mRy) k J(k)(mRy)
(at% Mo)

20 42.966 �11.3571
5
�420�

�11.3572
5
�420�

�11.3573
5
�420�

�11.3574
5
�420�

25 28.298 �11.7491
4
�420�

�6.6432
4
�420�

�11.7493
4
�420�

33 9.002 �3.6091
3
�420�

�3.6092
3
�420�

50 1.795 �3.8991
4
�420�

�3.8993
4
�420�

Fig. 5. The �11
20� special point instability diagram, calculated

using the SCW model, marking different regions in the EPI-
space where clustering and/or ordering instabilities exist.
Superimposed on it are our ASR-OP calculated ratios of EPIs.

The ordering energies (Eord
� = E��Edisordered) of all

the four ordered structures (�) which are members of
(420) family, calculated using the SCW model [10,
24], at different compositions are given in Table 4.
We will now examine the relative ground state phase
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Table 4. The SCW ordering energy (Eord
� = E��Edisordered) values of all

the ordered phases (�) of (420) family of Ni-Mo alloy system as a
function of composition.

Phase (�) Composition (at % Eord
� (K)

Mo)

N4M 0.20 �143.45
0.25 �224.15

N3M 0.20 �95.18
0.25 �148.71

N2M 0.20 �22.79
0.25 �35.61
0.33 �62.05

N2M2 0.20 �24.62
0.25 �38.47
0.50 �153.89

stability of these ordered superstructures (�) from
their ordering energy values, as calculated above, and
compare our results with those observed experimen-
tally. For Ni3Mo based alloys, we immediately see
that

Eord
N2M2


Edisordered at cMo � 0.25, (35)

indicating that N2M2 ordering instability exists in the
disordered solid solution.

Since the introduction of a �100� concentration
wave (secondary ordering) in a �11

20� ordered alloy of
N3M composition gives rise to DO22 structure, the
DO22 structure should be more stable than the off-
stoichiometric N2M2 structure. From Table 4, we
see that

Eord
N3M
Eord

N2M2
at cMo � 0.25. (36)

The secondary �11
20� ordering in a direction perpen-

dicular to the original �11
20� vector gives rise to a

structure which contains an ordered arrangement of
N4M and N2M subunit cell clusters. The condition for
the stability of such a structure relative to the N2M2

structure can be seen to be satisfied from our ASR-
OP calculations as

1
2

[Eord
N4M � Eord

N2M]
Eord
N2M2

at cMo � 0.25. (37)

Hence, the super-imposition of (a) an �100� and an
�11

20� concentration waves or (b) two mutually per-
pendicular �11

20� concentration waves always results
in a structure of lower internal energy than the off-
stoichiometric N2M2 structure. Further, we also see
that

Eord
N3M


1
2

[Eord
N4M � Eord

N2M] at cMo � 0.25 (38)

This prediction of stability of DO22 structure com-
pared to the mixture of D1a and Pt2Mo is contrary to
experimental findings. We, however, notice that the

difference between the formation energies of N3M on
one hand and a mixture of N4M and N2M on the
other, is extremely small. Since these two alternatives
are energetically comparable, the preference for one
of them to form changes with minor variation in alloy
composition. While in binary alloys close to Ni75Mo25

the N4M+N2M develops during the early stage of
ordering, the N3M (DO22) should become more favor-
able in several ternary alloys. It may also be emphas-
ized that this simple version of the ASR-OP used here
does not take into account local lattice distortions
because of large size difference between the Ni and
Mo atoms. The local strain contributes towards the
internal energy and may have considerable effect on
the rather small EPIs. The ASR, in an extended form,
is capable of taking into account the effect of local
strains in the internal energy [27].

The ground state stability analysis at cMo = 0.20
shows the hierarchy as

Eord
N4M
Eord

N2M2

Edisordered

which is consistent with the experimental findings.

4.2.2. Finite temperature analysis. We have cal-
culated free energies of these superstructures, as func-
tions of temperature, composition and order para-
meter using the static concentration wave model [24]
where we have taken the single-site approximation for
the estimation of entropy. Under this approximation,
the long-range correlation are properly treated but
short-range correlations beyond a single site are
ignored.

The instability temperature (T�
i ), defined as the

temperature corresponding to the onset of ordering
instability in the solid solution, is given in the SCW
model by

T�
i � �

J(k)
kB

c(1�c) (39)

for the ordering wave vector k.
The ordering free energy (Ford = F��Fdisord) as a

function of normalized order parameter (hn) for the
N2M2 phase at the stoichiometric composition
cMo = 0.50, and at cMo = 0.20, are plotted in Fig. 6.
The temperature range has been chosen to be around
the instability temperature (Ti � Tc) at a given com-
position. These Landau plots, which we have gener-
ated from our first-principles calculations, show that
the curvature of the Ford vs h plot changes the sign
from positive to negative at Tc, as expected from a
second order phase transition. The N2M2 instability
temperatures for different alloy compositions, in the
binary Ni-Mo system, essentially give the ordering
spinodal line which was reported (schematically) earl-
ier by de Fontaine [9].

Figure 7 shows the variation of ordering free
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Fig. 6. The ordering free energy of the N2M2 phase plotted as a function of hn at the stoichiometric composition,
(a) cMo = 0.50 and at (b) cMo = 0.20, respectively, at several temperatures around the instability temperature (
Ti � Tc). (a) Plots I–V correspond to [T/(Tc)] = 1.02, 0.98, 0.95 and 0.92, respectively. (b) Plots I–IV corre-

spond to [T/(Tc)] = 1.01, 0.95, 0.88 and 0.83, respectively.

Fig. 7. The variation of ordering free energy of N4M phase with the order parameter at the stoichiometric
composition (a) cMo = 0.2. and at (b) cMo = 0.25 respectively, at several temperatures around the transition
temperature (Tc). (a) Plots I–IV correspond to [T/(Tc)] = 1.03, 1.00, 0.97 and 0.94, respectively. (b) Plots I–

IV correspond to [T/(Tc)] = 1.04, 0.97, 0.90 and 0.83, respectively.
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energy of D1a structured N4M phase with the order
parameter at the stoichiometric composition
cMo = 0.2 and at cMo = 0.25. It may be noted that the
plot (II) in Fig. 7(a) corresponds to the order-disorder
transition temperature, Tc, at which the disordered
state (h = 0) and the ordered state (h = hc) have the
same free energy. The hump between these two states
represents free energy barrier at Tc, which is charac-
teristic of first order transitions. Figure 7(b) illustrates
that at a certain degree of under-cooling, instability
with respect to ordering develops, as reflected by the
negative curvature of the Ford versus h plots at
h = 0. The temperature at which such an instability
develops is defined as the instability temperature (Ti)
which can be determined from these plots for differ-
ent super-lattice structures (both equilibrium and
meta-stable) belonging to the (420) family.

The DO22-structured N3M phase, which closely
competes with the HCP-based DOa structure, has two
order parameters (h(1)

n and h(2)
n ) belonging to �11

20� and
�100� wave vectors, respectively. The free energies of
ordering of the DO22 phase as a function of these two
order parameters at the composition cMO = 0.25 are
shown in Fig. 8. The stability domain of the DO22

phase corresponds to the region of negative free
energy values.

Let us now consider a situation when a first order
ordering process competes with a second order
ordering. The completely disordered Ni4Mo
(cMO = 0.20) alloy experiences both kinds of ordering
tendencies viz. the second order �11

20� ordering and

the first order
1
5

�420� ordering. For illustrative pur-

pose, we have calculated the free energy of this alloy

FNi4Mo�h�1
1
2
0�

n ,h
1
5

�420�
n � at a given temperature as

Fig. 8. The variation of free energy of ordering of DO22 phase
with the order parameters (hn�11

20� and hn�100�) corresponding
to �11

20� and �100� wave vectors at [T/(Tc)] = 0.92.

FNi4Mo�h�1
1
2
0�

n ,h
1
5

�420�
n � �

1
2�FN4M(h

1
5
�420�

n ) � FN2M2(h�1
1
2
0�

n )� (40)

The criterion of stability with respect to fluctuation
in order parameter for a given wave vector can be
determined by examining the curvature of the F vs.
h plots at h = 0. Our results have been given in Fig.
9, for illustrating the following 4 distinct situations:

1. Positive curvatures for both �11
20� and 1

5�420�
ordering, implying stability of the disordered state
(Fig. 9(a))

2. Negative curvature for �11
20� and positive curvature

for 1
5�420�, implying instability of the system for

�11
20� ordering, and no ordering tendency along

1
5�420� (Fig. 9(b))

3. Negative curvature for �11
20�, and positive for

1
5�420� at h = 0, but a dip in the free energy plot
with respect to 1

5�420� near h = 0.8. This implies
that the system experiences simultaneous ordering
tendencies towards �11

20� ordering (second order)
and 1

5�420� (first order) (Fig. 9(c))
4. Negative curvature along both �11

20� and 1
5�420�,

i.e. system experiences instabilities for �11
20� and

1
5�420� ordering simultaneously (Fig. 9(d)).

Although D1a is the stable equilibrium structure at
cMo = 0.20, a stronger tendency for the development
of �11

20� ordering can be noticed in the initial stages
of ordering, as reflected by a larger negative curvature
of the free energy surface at h�11

20� = h1
5�420� = 0

along the h�11
20� axis compared to that along with that

along h1
5�420� axis (Fig. 9(a)).

The curvature of the free energy surface is negative
in both the directions in Fig. 9(d) which suggest that
homogeneous ordering is possible for both the
ordering processes. A mixed state consisting of con-
centration waves with wave vector ranging from
�11

20� to 1
5�420� is encountered on the path of the

ordering process at sufficiently low temperatures [26].
Although this first-principles approach has pre-

dicted the general trends of the complex ordering pro-
cesses encountered in this system, precise determi-
nation of the transition temperatures corresponding to
different superlattice structures would require
further refinements.

5. CONCLUSION

From the above analysis, it is clear that the trans-
formation behavior of ordering in alloys in terms of
ordering instabilities can been studied using first-prin-
ciples TB-LMTO method coupled with ASR-OP
technique. This method in conjunction with the mean-
field statistical mechanics based SCW model has been
used to determine the free energies of ordered phases
as functions of temperature, composition and order
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Fig. 9. The ordering free energy of the Ni4Mo-based alloy, exhibiting the �11
20� and the 1

2�420� ordering tend-
encies, plotted as a function of order parameters for the corresponding ordering wave vector at four different

temperatures, (a) to (d) in decreasing temperature sequence (see text for details).

parameter. The SCW model gives the correct ground
state stability sequence as observed experimentally.
Furthermore, it has been shown that such an approach
can be used to study the complex transformation
behavior, involving several competing superstruc-
tures. This approach has been found to be useful in
examining situations in which first and second order
processes compete, as in case of the present Ni-Mo
system.
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