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Abstract

We review numerical results obtained by deriving and solving a
set of Langevin equations corresponding to a hard sphere system.
We present results showing the different relaxation regimes that
are found to exist at moderately high densities, and the different
time scales that influence the behavior of the system at higher
densities. The results are discussed in connection with those from
experiments, molecular dynamics simulations, and mode coupling
theory.



I. INTRODUCTION

When a liquid is cooled to temperatures below the equilibrium freezing
temperature at a rate which is sufficiently fast to prevent crystallization, it
enters a metastable supercooled state. The dynamic behavior of a liquid in this
state exhibits many interesting features'?, the most prominent among them
being a rapid growth of the characteristic relaxation time, as reflected in a large
number of experimentally measured quantities such as viscosity and dielectric
relaxation. Angell has proposed? a classification of supercooled liquids into
two categories on the basis of the form of the temperature dependence of the
viscosity. Liquids for which the viscosity exhibits a simple Arrhenius form
of growth are called “strong” in this scheme, whereas liquids called “fragile”
are those in which the viscosity exhibits a faster-than- Arrhenius growth as the
temperature is lowered. This non-Arrhenius growth of the viscosity (and other
quantities, such as the inverse diffusion constant, which characterize the time
scales of relaxation processes) in fragile liquids has been a subject of much
experimental, numerical and theoretical investigation. Another interesting
feature of the dynamics of fragile liquids in the supercooled state is non-Debye
relaxation. Experiments and simulations show that certain time-dependent
correlation functions of such a liquid do not show a simple exponential decay
in time. One generally finds a complicated form of relaxation with several
distinct regimes characterized by different forms of the decay in time. At
sufficiently low temperatures, the viscosity becomes so large that the system
behaves like a disordered solid for most purposes. This state of matter is called
a glass. The glass transition temperature T} is conventionally defined as the
temperature at which the viscosity reaches a value of 10! P.

In spite of extensive efforts spanning several decades, a complete under-
standing of the dynamics of dense supercooled liquids near the glass transition
is not yet available. In recent years, considerable progress in this direction
has been achieved through the development of so-called mode coupling (MC)
theories® of the glass transition. In MC theories, the slowing down of the
dynamics near the glass transition is attributed to a nonlinear feedback mech-
anism arising from correlations of density fluctuations in the liquid. The exis-
tence of this feedback mechanism was first pointed out by Leutheusser? who
proposed, on the basis of detailed kinetic theory calculations, an approximate
equation for the decay of time-dependent correlation functions of the liquid
which predicted a divergence of the relaxation time at a characteristic “ideal
glass transition” temperature. Similar results were independently obtained by
Bengtzelius, G6tze and Sjolander® at about the same time. The kinetic the-
ory approach to the MC description has been subsequently generalized and



extended by Gotze and co-workers®’. A description very similar to the one
obtained from the kinetic theory approach has also been derived®® from a per-
turbative treatment of the equations of nonlinear fluctuating hydrodynamics
(NFH) which describe the dynamics of the liquid in terms of Langevin-type
equations for a small number of “hydrodynamic” variables such as number
density and current density. Initial calculations within the MC framework did
not take into account the details of the equilibrium short-range structure of
the dense liquid. For this reason, these calculations did not lead to reliable
predictions for the wavenumber dependence of the relaxation. More recent
studies®!"1? have attempted to incorporate information about liquid struc-
ture in the MC description of the kinetics.

As mentioned above, the original version of MC theories*® predicted a
power-law divergence of the characteristic time scales of the liquid at an “ideal
glass transition” temperature T.. Experimental and numerical results for the
first few decades of the growth of relaxation times in fragile liquids are con-
sistent with this prediction. However, the predicted divergence at T is not
found experimentally. The value of T, extracted from a power-law fit to data
at higher temperatures is found to be substantially higher than T}, the conven-
tional glass transition temperature. The power law form breaks down at tem-
peratures close to and lower than 7., and relaxation times at T, are typically of
order 10~%s. The growth of relaxation times in fragile liquids at temperatures
lower than T is described reasonably well by the Vogel-Fulcher law?3. Thus a
temperature that is slightly higher than the T. obtained from a power-law fit
to the data at higher temperatures may be called a crossover temperature T,
which separate two distinct regimes of the dynamic behavior of such liquids.
These two regimes are characterized by different forms of the temperature
dependence of relaxation times. A number of other experiments'4*3 also sug-
gest the existence of a crossover between two qualitatively different dynamical
regimes at a temperature close to T,. Recent versions of MC theories”™® have
established the existence of cutoff mechanisms which are supposed to round
off the predicted divergence at T, and to restore ergodicity over a much longer
time scale. However, these calculations do not lead to definite predictions
about the behavior to be expected at temperatures lower than T.. It is gener-
ally believed that “activated processes” play an important role in the dynamics
at these temperatures. However, the nature of these “activated processes” has
not been elucidated so far.

MC theories have also been fairly successful in providing a qualitatively cor-
rect description of the decay of the time-dependent density correlation function
of the supercooled liquid at temperatures higher than T.. The decay according
to this scheme takes place in a succession of several regimes: after a fast decay



in times of order of the inverse phonon frequency, a first slow decay occurs
which MC theories predict to be an inverse power law in time. This is called
the (-relaxation regime. Evidence for power-law decay of correlations in the
B regime is provided by light and neutron scattering experiments'®. Accord-
ing to MC theories, this decay is to a nonzero value (an apparent nonergodic
phase) from which the system eventually moves away leading to the primary
or a-relaxation regime. The relaxation in the a regime is found to follow the
so-called Kohlrausch-Williams-Watts “stretched exponential” form!”. The du-
ration of the 8 relaxation and the time scale of the stretched exponential decay
in the o regime are found to increase sharply as the “glass transition” is ap-
proached. In some cases, the 8 and the o regimes are separated by a region of
so-called von Schweidler relaxation which has a power law form. The stretched
exponential behavior in the o regime and the von Schweidler relaxation are
seen in dielectric measurements and neutron scattering experiments'®. Thus,
MC theories provide a qualitative understanding of a number of experimen-
tally observed features of glassy relaxation. However, some of the detailed MC
predictions are not in agreement with experiment!® and the MC description
clearly fails to account for the behavior observed at temperatures close to and
lower than T..

In contrast to MC theories, which portray the glass transition as being
purely dynamic in nature, there have been a number of attempts'®~>? to de-
velop a “thermodynamic” theory in which some of the interesting behavior
observed near the glass transition (especially the behavior observed at tem-
peratures lower than T}) is attributed to an underlying continuous phase tran-
sition. These attempts have been motivated by the fact that the observed
growth of the relaxation time in fragile liquids is well-described by the Vogel-
Fulcher law!?® which predicts an exponential divergence at a characteristic tem-
perature Tp. This temperature is found to be well below the conventional T,.
This observation suggests the possibility of a so-called “thermodynamic glass
transition” that would take place at the temperature Ty if thermodynamic
equilibrium® could be maintained down to this temperature. Such a transi-
tion is also suggested by the observation?® that the temperature at which the
entropy difference between the supercooled liquid and the crystalline solid ex-
trapolates to zero is close to Tp. Development of a large number of glassy local
minima of the free energy and slow dynamics resulting from activated tran-
sitions between these local minima are key ingredients of the thermodynamic
description. Since in practice the system falls out of equilibrium at tempera-
tures close to Ty, a direct experimental test of the existence of such a transition
is not possible. Also, no calculation that explicitly demonstrates the existence
of such a transition in a physically realistic system is yet available. Thus, the




“thermodynamic glass transition” scenario remains essentially speculative.

It is evident from this brief survey of the current status of the glass tran-
sition problem that a need exists for the development of new analytic and
numerical methods which may address some of the outstanding issues related
to this problem. In this article, we review the results?*~?’ obtained from the
application of a new numerical method to a study of the dynamic behavior
of a dense hard-sphere liquid near the glass transition. This method consists
of direct numerical integration of a set of Langevin equations which describe
the nonlinear fluctuating hydrodynamics of the system. Information about
the static structure of the liquid is incorporated in the Langevin equations
through a free-energy functional which has a form suggested by Ramakrishnan
and Yussouff (RY)2%. It has been shown??? that the RY free energy functional
provides a correct mean-field description of the statics of the glass transition
in this system. In showing this, a numerical procedure was used to locate local
minima of a discretized version of the RY free energy appropriate for the hard
sphere system. A large number of glassy local minima with inhomogeneous
but aperiodic density distribution were found to appear as the average density
was increased above the value at which equilibrium crystallization takes place.
At higher densities, the free energies of these minima were found to drop below
that of the minimum representing the uniform liquid, signaling a mean-field
glass transition. The success of the RY free energy functional in providing
a correct description of the statics of the glass transition of the hard sphere
system suggests that a good starting point for a study of the dynamics of this
system would be obtained by incorporating this free energy in the appropriate
NFH equations.

Several important issues are addressed in the dynamical studies reviewed
here. A comparison of the results of these studies with existing molecular
dynamics (MD) results®!32 on the same system provides a way of testing the
validity of the NFH description which is cast in terms of coarse-grained number
and current density variables instead of the coordinates and momenta of indi-
vidual particles. The correctness of the NFH equations considered, although
usually taken for granted, is not obvious in view of the fact that the hydrody-
namic terms in these equations describe the physics at relatively long length
scales, whereas the terms arising from the free energy functional involve length
scales of the order of (or smaller than) the interparticle spacing. In the RY free
energy functional, information about the microscopic interactions is incorpo-
rated in the form of the Ornstein-Zernike direct pair correlation function3?® of
the liquid. This appears to be adequate for a correct description of the stat-
ics of the freezing of the liquid into both crystalline?® and glassy?>° states.
One of the questions addressed in the work reviewed here is whether this is




also sufficient for a correct description of the dynamic behavior. Since the
NFH equations considered incorporate the correct short-range structure of the
dense liquid, these Langevin studies provide an opportunity to investigate in
general the role of static structure in the dynamics of a dense liquid. As men-
tioned above, the MC equations can be derived from perturbative treatments
of NFH equations which are very similar to the ones consider here. Apart from
numerical errors arising from spatial discretization and the integration proce-
dure, the numerical treatment of these NFH equations is exact. In particular,
their numerical solution is obviously nonperturbative. Therefore, a compari-
son of the Langevin results with MC predictions provides a way to test the
validity of some of the approximations made in analytic studies. Finally, by
monitoring which minima of the free energy are visited during the simulated
time evolution of the system, it is possible to determine whether the observed
dynamic behavior arises from nonlinearities of density fluctuations in the lig-
uid or from transitions among different glassy minima of the free energy. It is
not possible to distinguish between the effects of these two kinds of processes
in conventional MD simulations.

The rest of the paper is organized as follows. In Section II, we define the
models considered in the work reviewed, discuss their statics and the derivation
of the appropriate NFH equations, and describe the numerical method used
to integrate these equations forward in time. The results obtained from the
numerical work are described in detail in Section III. We also compare and
contrast the results with those obtained from MD simulations of the hard-
sphere and similar systems and the predictions of MC theories. Section IV
contains a summary of the main conclusions drawn and a discussion of their
implications for the interpretation of experimental and numerical data on the
dynamics of simple supercooled liquids.

II. MODEL AND METHODS

The work that we review here is grounded in the numerical solution of a set
of Langevin equations appropriate to a dense hard-sphere fluid. The statics
of the model is given in terms of a free energy functional of the two fields in
the problem: the number density field p(r,t) and the corresponding current
density g(r,t). This free energy has two terms:

Fralp,8) = (mo/2) [ arEL 1 p 1)

where mg is the mass of a hard sphere and pp is the average number density.
In most of the work considered here F[p] is taken to be of the RY form?2:
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Flp] = Filpo] + k5T | [ dr{p(x) n(p(x)/ o) = 89(r))
- (1/2)/dr/dr'C(|r—r'l)ép(r)&p(r')] . (2.2)

In Eq.(2.2), 8p(r) = p(r) — po is the deviation of the number density field
from its average value po, F} is the free energy of the uniform liquid at density
po, T is the temperature, kp is the Boltzmann constant, and C(r =r']) is
the Ornstein-Zernike direct pair correlation function of the uniform liquid at
density po. The inclusion of this function in the free energy ensures that
upon linearization of the logarithm in the first term on the right hand side of
Eq.(2.2), one obtains the usual expression for S,(k), the wavevector dependent
static structure factor of a simple fluid in terms of the Fourier transform of C:

Sa(k) = 1/[1 = poC (k)] (2.3)

For hard spheres a simple expression for C(r) can be obtained in the Percus-
Yevick approximation®3:

C(€) = =M — bnpdaf — (/M€ 5 €< (24a)
C=0; €£€>1 (2.4b)
where £ = r/o, 1 is the packing fraction:
ns = (7/6)poc® = (7/6) n* (2.5)
and:
M= (1+2n)7/(1 ~ng)* (2.6)
A2 = —(1415/2)*/(1 = np)". (2.7)

In the above equations, ¢ is the diameter of a hard sphere. The dimensionless
density n*, which is the basic control parameter for the hard sphere system,
is defined in Eq.(2.5). We have written po in the denominator of the ¢* term
in Eq.(2.1), rather than p(r) , so that the full density dependence of the free
energy is given by the RY form. As pointed out in Ref.[ 34], if p were used,
one would obtain upon functional integration with respect to g* a In(p) contri-
bution involving density fluctuations associated with the kinetic energy which
were already included in Eq. (2.2).

In order to rewrite all equations in terms of dimensionless quantities, it is
convenient to take mg as the unit of mass, to choose h, the lattice constant
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of the computational lattice to be the unit of length, and to take the unit of
time to be

to = h/c | (2.8)

where c is the speed of sound. After the ratio h/c is chosen as discussed below,
this unit of time is?® of the same order as the inverse characteristic phonon
frequency and within a factor of order unity of the usual hard-sphere ,Enskog:’5
collision time.

The followmg dimensionless quantities can then be defined:

=r/h (2.9)
n = ph® (2.10)
j=gh¥/c | ‘ (2.11)

and also the dimensionless free energy F|n, j]:

Fln,j] = (1/2) / dx-lj—(n’fu213 + Fuln] | (212)

Faln] = Finlno] + K [ [ dx{n(x) In(a(x) /mo) - n(x)}
~ (1/2) [ ax [ axc(ix - x’|)6n(x)6n(x')] o (2.13)

where K = & c, £8T. and ny is the average dimensionless density. For ha.rd spheres
K depends only on the density.

The dynamics of the system is given by the Langevin equations for the set
of hydrodynamic variables {¥,} = {n(x,t),j(x,?)}. These equations can be
written as®3%: |

0o 6F '
e = Vel = Ty 40, (2.14)

 where T is a matrix of transport coefficients, © are gaussian noise fields, and
the V, are the streaming velocities, which incorporate the nondissipative part
of the equatnons of motion. After calculating the P01sson brackets exphmtly
one obtains?®

a"(’"t) S L (1/n0)V.(nj) =0 (2.15)
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and:

d37; 5F
ajt —nV;— — (]-/no)zV ]'.7.7) - (l/nO)E]J t]J + (1/no)77V2]= + ©;

(2.16)

where 7 is the dimensionless bare shear viscosity when one uses the units in-
troduced above. The combination (¢ +7/3), where ( is the bare bulk viscosity,
is set to zero, mainly for simplicity in generating the noise correlations. The
moments of the fields ©;(x, ) satisfy:

< 0i(x,8)0;(x', 1) >= —2K Aqnob; ;V28(x — x')8(t — t'), (2.17)

where the angular brackets denote an average over the gaussian probability
distribution of the noise fields and A is a dimensionless measure of the equi-
librium fluctuations. For hard spheres,3 7 can be written in terms of K and
the density.

An important feature of Eq.(2.16) is that the term in § F;,/én which involves
the direct correlation function C(r) is an integral over space with range o.
Thus, one has to solve a set of integrodifferential equations with noise terms.

The procedure followed in the work reviewed here is to numerically solve
Eqns.(2.15) and (2.16) on a three dimensional cubic lattice of size N°. A
simple Euler method is used for the time integration. The main complication
is the spatial integral involving the direct correlation function C(r). This is
overcome by creating, in the initialization of the computer program, a table
listing for each lattice site the location of all neighboring sites to be integrated
over and their corresponding values of C(r). Additionally, since the sphere of
radius o (which is the range of C(r) in the Percus-Yevick approximation) is
imbedded on a coarse discrete lattice, a finer mesh than defined on the original
lattice can be used to improve the accuracy of the integration. The procedures
employed to integrate the resulting set of differential equations over time and
to generate the gaussian noise are described in detail in Ref. 38 and references
cited there.

The primary objective of the work reviewed here is to study the dynamic
correlations of the system. As discussed below, this is only possible at rela-
tively low densitites n* < 0.93, where the system reaches equilibrium within
computationally attainable times. The analysis is focused on the time depen-
dence of the dynamic structure factor S(q,t). Specifically, the angular average
of S(q,t) is analyzed. On a cubic computational lattice, it is appropriate to
define q, the effective length of q, as

q* = 2(3 — cos g; — cos g, — cos q;), (2.18)
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and to perform angular averages of q-dependent quantities by averaging over
values of q in the first Brillouin zone, in a spherical shell of mean radius (as
given by q) corresponding to that of the vector (7Q/N,0,0) and thickness
7 /N. The value of Q ranges from 1 to approximately 32N, although only a
smaller range is free of finite size effects. We will, for simplicity of notation,
denote quantities averaged in this way by simply dropping the vector symbol
from the wavevector argument, and often we will indicate the values of g by
the “shell number” Q.

The correlation functions introduced above are spatially short ranged. It
is therefore not necessary to use extremely large lattice sizes. It was found?®+8
that N = 15 is adequate. The choice of the ratio o/h which fixes the length
scale for the problem, is dictated by two concerns. The first is that one wishes
to be able to study the dependence of the dynamics on wavevectors in a region
which is of interest from the point of view of the static structure factor S(¢) =
S(g,t = 0). Thus, the unit of length must be chosen so that the position gmes
of the main peak in S(g) falls in the middle part of the range of wavevectors
within the first Brillouin zone of the computational lattice. Secondly, to retard
the onset of crystallization at the higher densities studied, it is helpful to choose
a value of h such that o/h is not an integer and N is not an integral multiple
of o/h. Selecting o/h = 4.6 clearly satisfies the second requirement. This
choice also leaves gmq; Well away from the zone edge for all densities, near the
Q = 8 shell. Most of the numerical studies reviewed here were carried out
with this value of o/h. As explained in Ref.[ 38], it is necessary to include
the parameter A to represent the actual fluctuations through gaussian noise.
Its precise value is not crucial, since it essentially amounts to a choice of the
normalization of the static fluctuations S(q), but it clearly must be small since
the local density variables n(x,t) must always be positive. The results reviewd
here use A = 0.001. All other quantities depend on n* only.

To study the density correlations, it is necessary to store, for running times
to > tx, where g is the time measured from the initiation of the computation
and tx the equilibration time for the current correlations®, the products of
the form 6n(x, to)én(x’, to+t) for all x, x’. This must be done at a sufficiently
large number of time bins. One then monitors the spherically averaged spatial
Fourier transform, S(q,t,%0) of the quantity: :

S(X, X’,t,to) =< 617.(){, to)6n(x', to + t) > (219)

where the average is understood to be over a number n; of time bins sepa-
rated by an interval At. The time range covered by the averaging process is
tr = mpAt. In order for S(q,t,t0) to be an adequate approximation to the
thermodynamic average S(q,t), this quantity must be not only independent
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of tg, but also independent of ¢t within statistical error. Dependence on to
indicates the presence of a transient. Dependence on tr indicates that the
averaging time is too short for ergodicity to hold. A very important point is
that the minimum value of the transient time for density fluctuations is not
tx, but it is?® of the order of the slowest characteristic decay time 7" in the
system. As discussed in the next Section, 7* is a strongly increasing function
of density, and is much longer than the equilibration time for the kinetic en-
ergy. Similarly, it is necessary for the average to include a range tr of order of
several times 7*. It turns out?® that S(q,t,%,) at higher densities has consider-
able oscillations over ¢y time ranges smaller than 7*. Due to these reasons, the
obtention of statistically reliable results for the correlation functions requires
averaging over a large number of time bins. This amounts?*3® to averaging
over an “effective number of runs”.

The above methodology is used at densities n* < 0.93. As the density is
increased beyond this value, the behavior of the system undergoes a qualitative
change. Instead of locally equilibrating after a more or less brief transient,
the system does not seem to reach a steady state in the time scale of the
computation. Instead, the mean field free energy keeps slowly drifting. By
further increasing n* it is found?? that the drift is to a value below that of the
liquid minimum. The quantity

6F = F,[n] — Fiu[no) (2.20)

becomes negative. If one attempts to carry on with the numerical computa-
tion, very large density fluctuations begin to occur, which are characteristic of
the incipient formation of a solid. It is then impossible to follow the further
evolution of the system to equilibration: for one thing the time scales involved
are simply too long, and furthermore, the large scale fluctuations lead to nu-
merical instabilities. Physically, we may say that a liquid-like formalism is no
longer adequate.

A different strategy?’ is then needed. One again integrates the dynamical
equations (2.15) and (2.16). As a function of time, the equal time current
correlations, the maximum value of the density field, and é6F, as defined in
(2.20) are then monitored. After an initial transient ¢x the current correlations
settle again to their equipartition theorem value. The maximum density and
OF vary very slowly. The former increases with time, while the latter which
at time of order tx is small and positive, drifts downwards. Eventually these
trends accelerate, the maximum value of n(x) sharply increases, and § F crosses
zero. In Ref.[ 27] we defined the time 7’ (which will be discussed in the next
Section) as the value of t at which this crossover occurs. For ¢t > 7/, § F becomes
more negative, and the fluctuation phenomena described above become more
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pronounced. A reliable value of 7/ can be obtained by averaging over several
runs, this time in the ordinary sense of the word: each run being a computation
carried out from random initial conditions.

III. NUMERICAL RESULTS

The numerical calculation outlined in the preceding Section was carried
out for several values of the dimensionless density n* in the range 0.75 < n* <
1.10. As stated above, the system could be equilibrated in the liquid state
during computationally accessible time scales for values of n* < 0.93. It was
found in Ref.[ 29] that a hard sphere system described by a discretized version
of the RY free energy exhibits a crystallization transition near n* = 0.83. Since
the Langevin simulations decribed above use the same discretized free energy
as that of Ref.[ 29], the system may be considered to be in the “supercooled”
regime for a large part of the density range in which equilibrium results could
be obtained. Equilibration was tested by comparing the numerical result for
the static structure factor S(q) with the expected one, Eq.(2.3). Good agree-
ment between the calculated S(q) and the expected S,(g) was found® for all
values of n* satisfying n* < 0.93. We turn first to a discussion of the equi-
librium dynamic correlation functions observed in this regime. As in Ref.[ 25]
we present the results in terms of the normalized correlation function C(g,?)
defined as:

S(q,t)
where we are dealing with angularly averaged quantities as explained above
with g defined in (2.18).

In analyzing the correlation results for hard spheres, previous results ob-
tained from simpler models can be used as a guide. Specifically, we recall the
results34?8 obtained by the same Langevin method with simpler forms of the
free energy. The model studied in Ref.[ 38] can be described for our purposes
here as being similar to the hard sphere model of Egs. (2.1),(2.2) but with a
much simpler static structure. We refer the reader to the original work for the
technical details. The linearized static structure factor S,(g) for that model is
given by:

Sa(q) o< 1/[1+ a(q® — ¢3)’] (3.2)

where a and qo are constants. This expression should be contrasted with
Eq.(2.3). This model, which contains the simplest possible “one peak” struc-
ture in its statics, has been studied theoretically by MC methods®®. The
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correspondence between the parameters in this model and a hard sphere sys-
tem is a somewhat intricate question3®. However, we can say that a qualitative
change in the dynamic behavior was found as the density was increased: at
lower densities the decay of C(q,t) in time was simply exponential, while at
higher densities it became a stretched exponential at wavectors larger than go.
At the highest densities and largest wavevectors studied, evidence for a power
law decay regime was also seen. Nonexponential decay at short wavevelengths
had already been found in a structureless model®.

In the hard sphere system described in the previous Section, one begins
by attempting to characterize the decay of C(q,t) with a single characteristic
time by fitting the data to a stretched exponential form:

C(q,t) = e~ /7" (3.3)

where the parameters 8 and 7 are functions of n* and q. At fixed density within
the range n* < 0.93 where this study is possible, 7 is a strong function of ¢
having a sharp maximum at the value of ¢ where the static structure factor®®
S(q) has its first and most prominent peak. We identify this maximum value
of 7, 7*(n*), with the slowest decay rate in the system. It is possible to fit this
quantity to a Vogel-Fulcher!® law:

(") = ac=) (34)

where v = 1/n*. The fit to the data obtained in Ref.[ 25] is shown in Fig. 1.
The value of v, in the fit corresponds to n} = 1.23, in very good agreement with
the MD result, n? = 1.21 obtained in Ref.[ 31]. Although a three parameter fit
of the same data to a power law is also adequate, it was found that the form
(3.4) is better. Despite the fact that the time 7* is peaked, as a function of ¢,
at the same value g,z as S(g) the simple form 7*(¢q) « 7.5(q) is not obeyed.
This indicates the existence of strong renormalization effects in the transport
properties near glass formation, which is not surprising.

The stretched exponential form (3.3) is not always a satisfactory fit to the
data for C(q,t). At larger values of q it begins to be inadequate at densities as
low as n* &~ 0.75, while when n* > 0.90 it fails over a wide range of wavectors,
including the peak value (Q = 8 in the notation introduced earlier). It was
found that a general form that fits the data for C(gq, t) at all densities n* < 0.93
is:

Clg,t) = (1 = fle ¥/ 4 fe~ti™ (3.5)

The form (3.5) reduces to (3.3) when f = 0 or alternatively, when 7, = 7, and
B = 1. It can also represent quasinonergodic behavior (decay to a constant)
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whenever 7, — oo, which means in practice a value of 7, larger than the
longest time computationally considered. This behavior was found?® at larger
wavevectors at n* = 0.93, for example.

In Fig. 2 and Fig. 3 we show a selection of data from Ref.[ 25] and fits of
the form (3.5), at densities n* = 0.90 and n* = 0.93, and several wavevectors.
In these figures the solid curves are the fits and the dashed curves the cor-
responding numerical data. The case Q = 6 (Q is defined in the paragraph
below Eq.(2.18)) corresponds, for the densities shown, to the situation where
(3.3) yields a good fit to the data, with 8 =~ 0.86. For @ = 10 the decays shown
are unstretched exponentials. In all other cases shown the full form (3.5) is
required, with values of f ranging up to f = 0.5 at Q = 13. The parameter f
depends strongly on q and weakly on the density. All characteristic times, on
the other hand, depend strongly on both n* and q.

We believe that these results in the two-decay regime of the full Eq. (3.5)
should be interpreted as representing first the merged effects of phonon and
B relaxation, leading eventually in most cases to the second decay, which we
then identify with a relaxation. Thus, the data is consistent with the widely
believed scenario®?® of successive relaxation regimes: first a fast decay at time
scales of order of the phonon time, (unity in the case discussed here) followed
by B relaxation to a nonergodic phase, from which the system decays again
through the von Schweidler and o (primary) relaxation regimes. The first two
of these different relaxation regimes seem to have been compressed and merged
together in the Langevin dynamics of the hard sphere liquid. As mentioned
above, the numerical results do not show a distinct S-relaxation regime with
a power-law decay of correlations: At all densities and wavevectors, the first
part of the decay of C(q,t) is better fit by a stretched exponential (as indicated
in (3.5)) than by a power law.

As mentioned above, the characteristic time 7* obtained from the Langevin
method is in good agreement with MD results.! One can also try to compare
the Langevin results for the dynamic correlation functions with MD work. The
comparison is obscured by the fact that in MD work glassy behavior has been
discussed in terms of soft sphere mixtures®®* or Coulomb systems*'. The
results of Ref.[ 39] correspond to a shorter time scale, while those of Refs.[ 40]
and [ 41] do not follow C(g,t) for long enough times to see it decay to a small
value. These authors also assume that their system has equilibrated when the
kinetic energy reaches its equipartition theorem equilibrium value. For the
Langevin system, this assumption was found?® to be erroneous. While these
caveats should be kept in mind, it is nevertheless true that the Langevin and
MD results seem fully compatible. The main difference is the absence in the
Langevin case of any sharp feature in the phonon scale. This absence should
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be attributed to Langevin coarse graining of the time scale, or perhaps, to poor
equilibration in the MD work. Otherwise the Langevin results are consistent
with MD in the sense that the form (3.5) with well separated time scales and
relatively large f provides a good description of the MD plots.

We turn now to the results for higher densities?”. We have earlier explained
how the correlation functions cannot be evaluated for n* > 0.93. One can then
use the strategy described in the last Section to evaluate the characteristic time
7' defined as the time at which §F' (see Eq. (2.20)) vanishes.

The values of 7/ were obtained in this fashion in Ref. [27]. They were found
to vary from run to run but only slightly. The average value as a function of
density is plotted in Fig. 4. The results for 7' from the fit 3.4 are also shown
for comparison. One clearly sees that 7' decreases very sharply with increasing
density, until it becomes approximately independent of n* beyond n* ~ 1.

Since 7*, on the other hand, increases with density, the curves for 7~ and
7' cross, at a density n* = 0.98. The main feature of the observed dependence
of 7' on the density is the sharp change in 7/ which takes place as the density
approaches a crossover value n}, = 0.95.

The evolution of the system beyond time 7’ can be inferred in the following
way?’: The final state configuration at time 7', as obtained from the dynam-
ical simulation, is used as the input in a minimization routine that finds the
free-energy minimum lying closest in phase space to the initial configuration.
The nature of the distribution of the local density at this free-energy minimum
can then be examined. The minimization routine, then, acts as a surrogate
fast dynamics to quickly determine the nature of the configuration the system
would slowly evolve to. If the minimization procedure is applied to configura-
tions obtained when 6F is still positive, the flow is invariably found to be to
the uniform liquid minimum. In contrast, the minima to which configurations
obtained after 6 F has become negative converge correspond to highly inhomo-
geneous distributions, with the density concentrated at only a few points. A

There are several quantities which characterize the nature of the density
distribution at these minima. One of these quantities is a two-point density
correlation function u(r). The function u(r) for a particular minimum reached
by the system, characterized by the values {n;} of the dimensionless density
variables at the computational lattice points {¢}, is defined as:

u(r) = 1 2Zi>j n;n; fi
(naﬂ) 2i>j f ij
where n,, is the average value of n; and f;j(r) = 1 if the separation between

the mesh points ¢ and j of the computational lattice lies between r and r + Ar,
and f;; = 0, otherwise. This function describes spatial correlations of the time-

: (3.6)
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averaged local density at a local minimum of the free energy. It is different from
the more familiar pair distribution function g(r) which describes equal-time
correlations of the instantaneous local density. The function u(r) is equal to
unity for all 7 in the uniform liquid minimum. In an inhomogeneous minimum
it is not strictly equal to zero for all r < o because the average density near
a point where a particle is localized in such a minimum is smeared out over a
region of width = 0.30. The results for u(r) obtained in Ref[ 27] do not corre-
spond to a liquid. The r-dependence of u(r) for r < 2.5¢ (information about
larger distances is less reliable due to sample size effects) looks very similar to
that of the pair-distribution function of the “slowly quenched” glassy states
found in MD simulations3? of the hard sphere system. There appear to be sig-
nificant differences between the form of u(r) and that of the pair-distribution
function g(r) of the imperfect crystalline state obtained via nucleation from
the liquid state in MD simulations®2. In particular, g(r) of the nucleated crys-
tal exhibits a pronounced peak at r =~ 1.60, which is just barely present in
the data for u(r). The heights of the secondary peaks of u(r) (which are near
r & 1.90 and r = 2.30) are smaller than the heights of the corresponding
peaks of g(r) for the nucleated crystalline state. These discrepancies may be
due to differences in sample size, boundary conditions etc., and in the absence
of reliable data on the form of u(r) for larger values of r, it is difficult to decide
from this information alone whether the inhomogeneous minima obtained in
Ref.[ 27] are glassy or crystalline with defects.

The nature of the local arrangement of the particles can be further in-
vestigated through evaluation of the bond-orientational “order parameters ”,
Q: and W,, introduced by Steinhardt et al?. These quantities are defined as
follows: The mesh points at which the density is peaked in an inhomogeneous
minimum of the free energy represent the locations of the hard-sphere particles.
Two such particles are considered to be neighbors if the separation between
the corresponding mesh points is less than 1.40, the approximate value of r
at the first minimum of u(r). Let R; denote the location of such a particle
and let §*(R;) and ¢*(R;) be the polar and azimuthal angles which specify
the orientation of a unit vector pointing from this particle to its ath neighbor.
Following Ref.[ 43], one defines the quantity Qi,(R;) for this particle as

Qum(Ry) = mi T Yim(0°(R2), 6°(R:)), (3.7)

where m; is the number of neighbors of this particle and Y,,(8, ¢) is a spher-
ical harmonic. The “order parameters” @Q;(R;) and W)(R;) are defined as
rotationally invariant combinations of the Q;,(R;):
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where is a Wigner 3 symbol. The values of Q)(R;) and
my mg M3

Wi(R;) for | = 4 and 6 provide*?*3 useful information about the symmetry
of the local arrangement of particles surrounding the one at R;. For example,
the values of Q4, Qe, W4 and W are (0.19, 0.57, - 0.16, - 0.013), (0.036, 0.51,
0.16, 0.013), (0.097, 0.48, 0.13, - 0.012) and. (0, 0.66, 0, - 0.17) for fcc, bcc,
hcp and icosahedral clusters, respectively. The results for Q4 and Qs, obtained
for the inhomogeneous local minima found in Ref.[ 27], are consistent with lo-
cal fcc order: The distribution of Q4(R;) peaks near 0.21, which is also the
average value of Q4(R;). This value is close to what is expected for a cluster
with fcc symmetry. The distribution of Qs(R;) peaks near 0.43 and its aver-
age value is close to 0.46. Since all close-packed structures (fcc,bce,hep and
icosahedral) have large values of Qg, it is not possible to draw any conclusion
about the nature of the local bond-orientational order from this observation.
The distribution of W, shows significant weight in the region near - 0.14, close
to the value (- 0.16) expected for a fcc cluster. However, the distribution is
fairly wide and the average value of W, (= - 0.026) is rather different from
the fcc value. The distribution of Ws(R;) exhibits a peak in the neighborhood
of the value (- 0.013) expected for a fcc cluster, but has significant weight
at negative values with a larger magnitude, indicating the presence of a sub-
stantial amount of local icosahedral order which is expected*? in a random
close-packed arrangement of hard spheres. The observed distribution of W is
consistent with similar data obtained in MD simulations*® of glassy states of
a Lennard-Jones system.

To summarize, the nature of the arrangement of the local density in the
inhomogeneous minima reached by the system (at larger values of n*) after it
makes a transition away from the uniform liquid minimum shows that these
minima exhibit a number of features characteristic of a fcc solid. At the same
time, some of the features expected for a random close-packed structure also
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appear to be present. Of course, there is no meaningful difference between the
short-range correlations of a glass and those in a very disordered crystal, so
that the question of whether a finite-size system is glassy or a very defective
crystal is not really well-posed.

The observation that the system makes a transition away from the uni-
form liquid minimum of the free energy within computationally accessible time
scales if the density exceeds a certain crossover value n} is in qualitative agree-
ment with results obtained from MD simulations® of the hard sphere liquid.
These simulations show that the hard sphere system cannot be locally equi-
librated in the supercooled liquid state if the density n* exceeds a “critical
value” n? =~ 1.08. If the liquid is allowed to evolve in time at a density equal
to or higher than n?, then it spontaneously freezes into an imperfect fcc solid
during the time scale of the simulation. If, on the other hand, the system is
rapidly compressed from the liquid state at a density lower than nj to a density
close to the random close packing density (n* ~ 1.23), then it ends up in an
amorphous state. The degree of “glassiness” of this amorphous state increases
with the rapidity of the process of compression. These results look similar
to the behavior observed in the Langevin numerical results if we identify the
crossover density n: obtained from these computations with the critical density
n* found in the MD simulation. The value of n} obtained from our simulation
(n: =~ 0.95) is somewhat different from the result (n; ~ 1.08) of MD simu-
lations. This difference probably arises from the fact that the value of n* at
which the discretized version of the RY free energy functional used in Refs.|
25-27] exhibits a thermodynamic crystallization transition (n} = 0.83)%%% is
substantially lower than the crystallization density obtained in MD simula-
tions (n} ~ 0.943)%2. The value of the ratio, n}/n} =~ 1.14, obtained® in the
Langevin equation work is quite close to the value of n}/n} (= 1.15) obtained
in the MD simulation.

IV. DISCUSSION

We first summarize the main results obtained from the work reviewed here.
For hard spheres the density, rather than the temperature, is the control pa-
rameter. The effect of increasing (decreasing) the density is analogous to that
of decreasing (increasing) the temperature of systems for which the usual con-
trol parameter is the temperature. In the Langevin method computational
results described above, it was found that the system can be locally equili-
brated in the metastable “supercooled” liquid state during computationally
accessible time scales as long as the density is relatively low (n* < 0.93). The
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dynamic behavior observed in this regime exhibits a number of characteristic
glassy features. These include stretched exponential decay of correlations, two-
stage relaxation, and Vogel-Fulcher growth of relaxation times. The observed
behavior is in quantitative agreement with existing MD data on the dynamics
of the hard-sphere liquid and in qualitative agreement with other MD results
obtained for similar systems. These observations help establish the correctness
of the NFH description used in this work and also demonstrate that the RY
free energy contains the essential physics of the dynamics of this system. These
calculations also reproduce qualitatively a number of predictions of MC theo-
ries. Another important observation is that the onset of glassy features in the
decay of S(q,t) occurs at relatively lower densities for wavevectors close to the
first and second peaks in the static structure factor. This result clearly illus-
trates the important role played by the equilibrium structure in the long-time
dynamics of the liquid. The observed ¢-dependence of the decay of S(q,t) also
suggests that the glassy behavior sets in earlier (at lower densities) at shorter
length scales. Finally, the system is found to fluctuate about the liquid-state
minimum of the mean field free energy in the density range studied. This
implies that all the glassy features found in this regime arise from nonlinear
interactions of small-amplitude density fluctuations about the uniform liquid
minimum of the free energy. The qualitative agreement between the Langevin
method results and the predictions of MC theories suggests that these theories
provide an adequate description of the physics of these nonlinear interactions.

The numerical results at higher densities reveal the existence of a new
time scale 7/(n*), which corresponds to the amount of time a system, initially
prepared in a state close to the uniform liquid minimum of the free energy,
spends in the vicinity of this minimum before making a transition to one of
the many inhomogeneous local minima of the free energy. This time scale is
found to decrease sharply as the dimensionless density n* is increased above
a characteristic value, n} ~ 0.95, and it exceeds the time scales accessible in
numerical work for lower values of n*. The free-energy minima to which the
system makes transitions for n* > n% are highly inhomogeneous, represent-
ing either crystalline states with many defects or glassy states. Comparison
with existing MD data suggests that these states should be identified as near-
crystalline ones. The fact that in simulations carried out at densities equal to
or greater than n}, the liquid is able to freeze into a state which is close to
the crystalline one indicates that the free-energy minima which represent near-
crystalline states must be fairly easy to reach. Otherwise, the system would
not be able to bypass the large number of glassy minima which are known?%°
to be present at such densities. There are other simple model systems (such
as the Lennard-Jones liquid and the one-component plasma) which, according
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to MD results, exhibit nucleation** of the crystalline phase at sufficiently high
degrees of supercooling. This observation suggests that a similar picture holds
for these models too.

The observations summarized above suggest the following scenario for the
dynamics of such simple liquids in the supercooled regime. For densities lower
than the crossover density n® (alternatively, for temperatures higher than a
crossover temperature T, when the temperature T is the control parameter),
the system remains in the vicinity of the uniform liquid minimum during the
time scale of observation. The dynamics in this regime is, therefore, governed
by small fluctuations about the liquid minimum. Nonlinear interactions of
these density fluctuations lead to a growth of the relaxation time as the den-
sity is increased (temperature is decreased). As noted above, MC theories are
expected to provide a good description of the non-linear feedback mechanism
that causes this growth of the relaxation time. Therefore, the dynamic behav-
jor of the system in this regime would be well-described by MC theories. As
the density is increased above nZ (the temperature is decreased below T;), the
system undergoes a transition from the liquid minimum to a near-crystalline
one within the time scale of observation and remains in its vicinity for all later
times. Typically, the value of n% (T%) is found to be lower (higher) than that
of n* (T.) extracted from power-law fits to the data at lower densities (higher
temperatures). For example, the value of n obtained from MD simulations®?
of the hard sphere liquid is close to 1.08, whereas power-law fits to the MD
data®! for the diffusion constant!? and the relaxation time data obtained in
the work?5?6 reviewed here yield values of n] in the range 1.10 - 1.15. Thus,
questions about a crossover in the dynamic behavior of the supercooled liquid
near n* (T.) do not arise in these systems and the dynamics over the entire
accessible supercooled regime is well-described by MC theories. All existing
simulation data, including our own, on these systems are consistent with this
scenario.

There are, however, many systems for which this simple picture is not appli-
cable. Many model systems, such as two-component mixtures with spherically
symmetric interactions3®°4% do not show any sign of crystallization during
the time scale of MD simulations. There are also a large number of exper-
imentally studied systems (so-called good glass-forming liquids'®) which can
be maintained in the liquid state for long times at high degrees of supercool-
ing without the occurrence of crystallization. The results of the simulations
reviewed here suggest the following picture of the dynamics of such systems
in the supercooled liquid regime.

As T is lowered below the equilibrium freezing temperature T, the ap-
propriate free-energy functional describing the system is expected to develop
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a large number of inhomogeneous local minima. Some of these minima have
crystalline or near-crystalline structures and the others are amorphous. At
temperatures well below 77, all of these minima have free energies lower than
that of the uniform liquid minimum. The conventional mean-field description
of metastability suggests that the typical height (V) of the free-energy bar-
riers which separate the liquid minimum from these inhomogeneous minima
should decrease as the temperature is lowered. This, however, does not nec-
essarily mean that the typical time scale for transitions away from the liquid
minimum also decreases with temperature. This time scale is expected to be
proportional to e¥/7, which may increase as T is decreased even if V' decreases
with decresing T. Thus, it is not easy to predict whether the time scale 7’
ever becomes experimentally accessible in such a system. However, we note
that there exist a large amount of experimental data (summarized in Ref. 2)
which indicate that the dynamics of the liquid at temperatures close to and
lower than T is dominated by processes associated with the exploration of a
large part of the full phase space (excluding the regions near the equilibrium
crystalline states). These observations suggest that the time scale 7’ in these
systems becomes comparable to typical experimental time scales at a temper-
ature T, which is higher than T.. If this is so, then the following situation can
be expected for the dynamics of the system in the supercooled regions. For
temperatures higher than T, a system initially prepared in the liquid state
remains in the vicinity of the liquid minimum for long times and its dynamic
behavior is well-described by MC theories. Since temperatures higher than T
are substantially higher than T, the temperature dependence of the relaxation
time in this regime would follow the power-law form predicted in the original
version of MC theories. We believe that all temperatures at which a liquid
can be equilibrated within the time scale accessible in MD simulations lie in
this regime. This would explain the observed agreement between the results
obtained from MD simulations3®™! and the predictions of MC theories. The
growth of relaxation times in this regime is a purely kinetic phenomenon, not
related to or caused by the growth of any spatial correlation. This is consistent
with two recent numerical studies?3**® which looked for a growing correlation
length in this regime and did not find any evidence for its existence.

The dynamic behavior for temperatures lower than T would be qualita-
tively different. At these temperatures, the system would make a transition
from the liquid minimum to one of the inhomogeneous minima of the free en-
ergy during the time scale of observation. In good glass-forming liquids, these
inhomogeneous minima are more likely to be glassy than crystalline. Since
these free-energy minima are expected to have lower free energies than that of
the uniform liquid minimum at temperatures lower than T3, the liquid mini-
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mum would not play any significant role in the dynamics at later times. To
understand the nature of the dynamics in this regime, it is necessary to have
estimates of the heights of free energy barriers which separate different glassy
minima. Unfortunately, reliable information about the distribution of these
barrier heights is not available. Approximate calculations?’ and the experi-
mental observation that the system behaves like a liquid over a substantial
range of temperatures below T, suggest that these barrier heights remain fi-
nite in the thermodynamic limit at these temperatures. If this is so, then the
system would visit many such minima during its evolution over a long time.
It would, therefore, behave like a liquid over such time scales, in the sense
that the time-averaged local density would be uniform. However, the dynam-
ics of the system would be very different in this regime because the decay of
density fluctuations would be determined primarily by activated transitions
among various glassy local minima of the free energy. Thus, the presence of a
crossover in the dynamic behavior of the system near a temperature T, which
is higher than the temperature T, obtained from power-law fits to the data
obtained at higher temperatures would follow naturally from these considera-
tions.

If the picture described above is correct, then the dynamics of such sys-
tems at temperatures lower than T, would have many similarities with that
of quenched random systems such as spin glasses which are known*® to ex-
hibit a large number of local minima of the free energy at low temperatures.
In particular, the suggestion!??*?? that a true thermodynamic phase transi-
tion would take place at a lower temperature T, if thermodynamic equilibrium
could be maintained all the way down to this temperature would become a
distinct possibility. It is interesting to note in this context that the results
obtained from a recent experiment!® have been interpreted as evidence for the
existence of a length scale that grows as the temperature is lowered below T..

In the absence of any direct corroborative evidence, this description of
the dynamics of good glass-forming liquids in the supercooled region remains
essentially speculative. It would be very interesting to look for evidence for or
against this scenario in experiments and simulations.
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FIGURES

FIG. 1. The characteristic time 7* as defined in the text, as a function of density
n*. The symbols denote numerical results and the solid line is the best fit to the

Vogel-Fulcher form.

FIG. 2. Normalized, angularly averaged correlation function C(q,t) plotted vs
time, for Q = 14 (top curve), @ = 12 and Q = 6 (see text for notation). Results are
for n* = 0.90 (panel (a)) and n* = 0.93, (panel (b)). In this and the next Figure

the solid curves are the fits and the dashed ones the data.

FIG. 3. As in the previous Figure but for @ = 8 (top curve), @ = 13, and

Q = 10, (bottom curve).

FIG. 4. The characteristic times 7* (dashed curve) and 7’ (symbols) as a function

of density.
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