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We present a semiphenomenological calculation of the low-temperature dynamic properties of
a spin-glass model which is a two-dimensional Ising model with Gaussian random nearest-
neighbor interactions. The distribution of the low-lying energy levels of the system is studied
with the aid of a numerical program. The results of this investigation suggest a simple picture
of independent spins and small-size clusters of spins flipping in a frozen-random-background
field. This picure is similar to the phenomenological description of amorphous materials in
terms of two-level systems. Distributions of the quantities which characterize a low-lying energy
state in this picture are obtained numerically. A crude analytic calculation of these distributions
is also included. These distributions are then used to calculate various low-temperature dynamic
properties such as the time-dependent susceptibility, relaxation of the magnetization in an exter-
nal magnetic field, and the remanent magnetization. We find that this simple description pro-
vides qualitative explanations of a large number of results obtained in previous Monte Carlo

simulations.
I. INTRODUCTION

A convenient definition of a spin glass is a system
of spins each of which, in the absence of an external
field, has a nonzero time average and such time aver-
age differs from spin to spin in a random way so that
the sum of all spins becomes zero. At the infinite-
time limit, it corresponds to the spin-glass phase de-
fined by Edwards and Anderson.! The literature on
this subject is vast.23 However, a satisfactory
theoretical understanding has been lacking. The ex-.

istence or nonexistence of the spin-glass phase at the -

infinite-time limit has not been clarified. Recently,

in addition to experiments, there have been extensive
Monte Carlo simulations with spin-glass models*~®
and many results are waiting for explanation. To
provide a qualitative understanding of these results
and other important features of the spin glass, we
present a semiphenomenological study of a spin-glass
model.

The model we study is an Ising model in two di-
mensions with randomly distributed nearest-neighbor
interactions. We are concerned with dynamic (time-
dependent) properties at very low temperatures. No
attempt is made to understand properties near the
transition temperature or the infinite-time limit. Our
work includes a study of the low-energy spin confi-
gurations, in particular the energy minima, or the
metastable states. These energy minima are probed
with the aid of a computer program. The distribution
of energy minima and the heights of barriers separat-
ing them are compiled. Approximate analytic calcula-
tions are also included to derive the qualitative
features of these distributions. The results are then
used as inputs to kinetic equations for calculating

various properties. At low temperatures
[T << (typical interaction energy between a pair of
spins)], only barrier heights and energy changes com-
parable to T are involved. We find that the dynamics
is adequately described by the flipping of a small
number of spins and spin clusters of small sizes.
This picture is very similar to the two-level system
picture in the phenomenological theory of glasses.” 1°

We outline the paper and summarize the major
results as follows: In Sec. II, we define our model as
the Ising model with Gaussian-distributed random in-
terations on a 20 X 20 square lattice. We describe the
program which samples the energy minima and deter-
mines various characteristics of them, the energy bar-
riers between them, as well as the distribution of lo-
cal fields (i.e., effective field seen by a spin as pro-
vided by neighbors). These properties are those of
the "energy surface" defined on the phase space.
They are geometrical properties, from which dynami-
cal properties can be calculated. An important result
is that the energy minima separated by low barriers
can be described as configurations which differ from
each other by the reversal of a small number of
small-size clusters (of two or three spins). Thus,
these energy minima can be characterized by the dis-
tribution of small clusters. We have also performed
similar analysis of a model with interactions whose
magnitudes are Gaussian distributed, but having no
"frustration."!' We obtained qualitatively the same
results. Thus an important conclusion is that frustra-
tion does not play an important role in determining
the low-temperature, finite-time behavior of this
model.

Section III provides a crude analytic study of low-
temperature properties to gain a qualitative under-
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standing. From the simple cluster picture borne out
in Sec. II, we derive static and dynamic properties at
low temperatures. The time variations of physical
quantities are typically proportional to t~7, where ¢ is
the time, T is the temperature, and a a constant
depending on the physical quantity involved and on
the initial state of the clusters. Geometrical quanti-
ties obtained by simple approximations fit the results
of Sec. II reasonably well.

Section IV gives a more detailed analysis of a range
of dynamic properties by solving the kinetic equations
using direct data obtained in Sec. II. Results ob-
tained are found to be in good qualitative agreement
with those observed in previous Monte Carlo simula-
tions.> %38

A few concluding remarks are made in Sec. V.

II. STATISTICS OF LOW-LYING
ENERGY LEVELS

In our numerical study of the properties of ‘the
low-lying energy states of a spin galss, we considered
the Edwards-Anderson model' with Ising spins on a
20 x 20 square lattice with periodic boundary condi-
tion. The Hamiltonian for this system is given by

H=—EJU(T,~0'1 y (21)
@)

where (ij) represents a pair of nearest-neighbor lat-
tice sites, o;’s are Ising spins which take on the
values 1, and each Jj is an independent random
variable with a Gaussian probability distribution

1 —15/212
P(Jy = me

.2)
We took J to be equal to one. The computer was
used to generate several random configurations of
the J;’s distributed according to Eq. (2.2). Since the
sample size was rather small, special care had to be
taken to ensure that the J;’s for a particular random
configuration indeed satisfied the probability distribu-
tion given by Eq. (2.2). For each random configura-
tion of the Jy,’s we calculated (J,;), (J7), and (J;}).
We also determined the number and the locations of
the "frustrated" squares (a square is "frustrated” if the
product of the four J;’s on its four sides is negative).
For a bond distribution that is truly Gaussian, one
should have (Jy) =0, (J}) =1, and (J}) =3. Also,
for such a distribution, half of the total number of
squares should be frustrated, and the frustrated
squares should be distributed randomly on the lattice.
We used only those configurations for which all these
properties were satisfied to a high degree of approxi-
mation.

A. Properties of the "ground states"

After having generated a random configuration of
the J;’s the next step was to locate a "ground state"
of the system for this particular configuration of the
exchange constants. For a spin glass, the concept of
a ground state is not quite well defined. Previous
studies* indicate that a spin-glass system has a very
large number of low-lying local ground states which
are approximately degenerate in energy. Kirkpar-
trick* has estimated the ground-state degeneracy of
an Ising spin glass with J; = +J to be as high as 2
where N is the total number of spins and C ~0.1. |
For the model that we are considering here, one does
not expect such a high degeneracy, essentially be-
cause of the fact that, for a Gaussian bond distribu-
tion, finite clusters which can be turned over with no
energy cost at all form a set of measure zero. How-
ever, the degeneracy may still be quite substantial.
Also, it is an impossible task to numerically locate a
"global" ground state, because one would need prohi-
bitively large amounts of computer time to prove that
no better ground state exists. For these reasons, we
did not attempt to locate a global energy minimum.
Instead, we took a low-lying local minimum of the
energy surface in phase space to be our working de-
finition of a ground state. Such a state was located in
the following way.

For a given random configuration of the bonds, we
started with a random configuration of the spins. We
then applied a deterministic descent procedure to
reach a local minimum of the energy surface. In this
procedure, the first step was to calculate the local ex-
change energy h;(= _G'izu)-’u‘fh where 2(1) means
a sum over nearest neighbors) for each spin in the
starting configuration. The spin with the highest po-
sitive h; was then flipped, and the local energies were
recalculated. This process was continued until the
system reached a metastable configuration. (A confi-
guration is, by definition, metastable if all the A,’s are
negative, so that every single spin flip increases the
energy of the system.) The first such metastable
state obtained from a random starting configuration
was, in general, found to have rather high energy.
We then "warmed up" the system slightly, in order to
get it out of this metastable state. The warming up
procedure that we used was a simple modification of
the standard (Metropolis) Monte Carlo flipping rou-
tine. A Monte Carlo step (MCS) in our flipping rou-
tine consisted of choosing a spin at random, calculat-
ing the total energy E, of the state that would be
obtained by flipping this spin, and flipping it if
E < Eqg+ AE, where Ej is the total energy of the
starting metastable state, and AE is an adjustable en-
ergy increment. This flipping routine generated a
subset of all the states with total energy less than
Ey+ AFE and thus, corresponds to representing the
system in the microcanonical ensemble. This pro-
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cedure allowed us to probe directly the structure of
the energy surface in phase space. We found that if
we let the system evolve for a few MCS/spin with
AE ~5, and then applied the descent procedure, the
system dropped into a different metastable state.
This indicated that the system has a very large
number of metastable configurations, and the single-
spin-flip barriers separating one such configuration

from a neighboring one are, in general, not very high.

This process of warming up and the cooling down
was repeated 25 times and the metastable state with
the lowest energy obtained in this sequence was tak-
en to be a ground state of the system. For a given
configuration of the Jy,’s we located five different
ground states by starting from five different random
configurations. This procedure was repeated for ten
different random configurations of the J;’s. All of
the 50 ground states obtained in this way had energy
per spin in the interval between —1.23 and —1.26.
This is in good agreement with the Monte Carlo
result of Stauffer and Binder,” who found the
ground-state energy per spin for this system to be
close to —1.25. We also found that two ground states
obtained from two different initial random configura-
tions are very nearly orthogonal to each other in the
sense that they differ from each other by the reversal
of ~%N spins. Similar results have been obtained by

Stauffer and Binder.’
In Fig. 1, we show our result for P,(|#]), the dis-
tribution of local exchange energies averaged over
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FIG. 1. Distribution of local exchange energies, P(|#]),
averaged over the 50 ground states. Upper inset: Distribu-
tion of P;(|h|) for small .

the 50 ground states. Since all these states are meta-
stable, h;=—|h,| for all i. It is seen that P,(|h])
peaks at || =2, and approaches a nonzero value as
|h| —0. These features are in qualitative agreement
with the results obtained by Binder® from his Monte
Carlo simulations at low temperatures. In the inset
of Fig. 1, we have plotted P,(|#|) for very small |A].
It appears that P;(|A |) is roughly constant at a value
of about 0.12 for || <0.3. The distribution shown
in Fig. 1 is quite different from the prediction of
Klein’s mean-random-field theory!? according to
which P;(|#]) should be a Gaussian centered at zero
and with a width proportional to the Edwards-
Anderson order parameter.!

B. Properties of the two-level clusters

After having located a ground state, we then pro-
ceeded to study the properties of the energy surface
in its vicinity. We started with the system in a
ground state, and then let it evolve in time according
to the Monte Carlo flipping routine described above.
As mentioned before, this procedure generated a
subset of all states with total energy less than
Ey+ AE, where E, is the total energy of the ground
state and AF is an appropriately chosen energy incre-
ment. At regular intervals along the time evolution
of the system, we applied the descent procedure to
search for new local minima. After each descent,
time evolution was resumed from the configuration
from which the descent was started. We repeated
this procedure for several runs, using different ran-
dom numbers for generating the sequence of at-
tempted spin flips. The number of new local minima
discovered in this way gave us an indication of the to-
tal number of local minima which are separated from
the initial one by energy barriers with height less than
AE. We started with AE =2 and increased AF in
steps. For AE =2, a new local minimum was being
discovered in about 20 attempts. All these new mini-
ma were found to differ from the initial one by flips
of one or two small clusters of spins. As we in-
creased AE, the number of new local minima en-
countered in a given number of attempts also in-
creased in a roughly linear fashion until, for
AE — 20, a new local minimum was being found in
almost every attempt. The typical phase-space
separation between a new local minimum and the ori-
ginal one (measured by the number of spins which
have to be turned over in order go to from one to
the other) also increased with AE. A closer inspec-
tion of the distant local minima showed that most of
these differed from the initial one by the reversal of
several disconnected small clusters of spins. Most of
these clusters were found to consist of two and three
spins. We also kept track of the number of times a
particular spin got flipped during the time evolution
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of the system. For small values of AE, we found
that the spins that got flipped formed small isolated
groups. These groups grew larger as AE was in-
creased, and finally, at AF ~ 20, almost every spin in
the sample was getting flipped. These observations
suggest the following description for the low-lying en-
ergy states of our spin-glass system.

The energy surface of the system in phase space
has a very large number of local minima (metastable
states). A local minimum differs from its neighbor-
ing one typically by the reversal of a small (two or
three-spin) cluster. The local minima are separated
from one another by single-spin-flip activation bar-
riers. The barrier separating two neighboring local
minima is, in general, not very high, so that thermal-
ly activated transition from one of them to the other
can take place. (Since our system is classical, we do
not consider quantum-mechanical tunneling between
the two metastable states.) However, if the tempera-
ture is very low and the observation time is not very
long, the transition from a local minimum to another
one that differs from the first one by the reversal of
a large cluster is extremely unlikely. This is quite
plausible because the reversal of a large cluster of
spins will either require high energy, or have low en-
tropy (because it would involve a coordinated motion
of many spins), and, therefore, will be a very rare
event, especially at low temperatures. Thus, the
finite-time behavior of the system at low tempera-
tures can be obtained from the properties of these
small clusters which, by flipping, take the system
from one metastable state to another.

Such a cluster corresponds to what is known in the
literature as a two-level system (TLS). The reason
for calling it a two-level system should be clear from
Fig. 2 in which we have schematically shown a sec-
tion of the energy surface along a generalized coordi-

Etos

X

FIG. 2. Energy surface along a generalized coordinate x,
that describes the flipping of a two-level cluster.

nate, x, that describes the flipping of the cluster. The
two minima of Fig. 2 correspond to the two meta-
stable states which are connected by the reversal of
the cluster. These two states are separated from each
other by a single-spin-flip energy barrier. The ex-
istence of such two-level systems in disordered ma-
terials was postulated by Anderson et al.® and by
Phillips!® some time ago. Theories based on this pos-
tulate have been quite successful in explaining many
of the low-temperature properties of ordinary and
metallic glasses. However, a precise microscopic
understanding of the nature of these two-level sys-
tems in glasses is not yet available. By contrast, the
two-level systems in our spin-glass model are quite
precisely defined, and this makes a direct microscopic
study of their properties possible. In general, the two
states of a two-level system have different energies,
€; and €;,. We characterize a two-level system by the
energy difference |e|(=|€; — €;|) between the two
levels, and the barrier height, r, measured from the
higher of the two levels. The barrier height, v,
measured from the lower of the two levels is the sum
of || and r. We should mention here that this char-
acterization is far from complete. For a more com-
plete description, one has to take into account such
things as the number of alternative paths which con-
nect the two levels, the barrier heights associated
with these paths, the phase-space separation between
the two levels, etc. However, we will not go into
these complications here. Both |e| and r are random
quantities whose distributions are expected to be
correlated. Let P,(|€|,r)A|e|Ar be the probability
that a n-spin cluster is a two-level system with energy
difference between |e| and |e| + Ale|, and barrier
height between r and r + Ar. This joint probability
distribution is related to the number,
N,(|€|,r)Ale|Ar, of such two-level clusters in the
following way:

N,(el,r) =C,L*P,(|€|,r) , 2.3)

where L? is the total number of spins in the system,
and C, is the number per spin of distinct n-spin clus-
ters. If these joint probability distributions,
P,,(|e|,r), are known, then the low-temperature prop-
erties of the system can be calculated from the two-
level system picture. .

We have numerically calculated the probability dis-
tributions, P,(|€|,r), for two- and three-spin two-
level clusters. This is, to our knowledge, the first
direct calculation of these distribution functions. We
started with the system in one of its ground states.
We then looked at every possible two- and three-spin
cluster and checked whether the new state obtained
by flipping the cluster was also a metastable state or
not. If the new state was metastable, then the cluster
corresponded to a two-level system. The energy
difference between the two states gave |e|. In more
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FIG. 3. Distributions of barrier height r, measured from
the higher of the two levels, for two- and three-spin two-
level clusters.

than 95% of the cases, we found that the new state
had higher energy than the original one. This con-
firmed that the local ground state was indeed a very
low-lying energy state. In order to determine the
barrier heights r and v, we generated all possible se-
quences in which the spins in the cluster could be
flipped, and calculated the energies associated with
these flips. We then took r and v to be the barrier
heights for the sequence that corresponded to the
lowest-energy path between the two metastable
states. This procedure was carried out for all 50
ground states. The number of both two- and three-
spin two-level systems was found to vary between 25
and 35 as we went from one ground state to another.
We also looked at some four-spin two-level clusters.
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FIG. 4. Distributions of barrier height v, measured from
the lower of the two levels, for two- and three-spin two-
level clusters.
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FIG. S. Distributions of the energy difference |¢| for dif-
ferent values of the barrier height v.

For most of these clusters, we found that the
lowest-energy path between the two levels passed
through an intermediate metastable state which
corresponded to a reversal of two of the four spins.
This observation lends further support to our conten-
tion that it is sufficient to consider only two- and
three-spin clusters if the observation time is not very
long.

Our numerical results for the various distribution
functions are shown in Figs. 3—6. Figure 3 shows
the distributions of the barrier height r for two- and
three-spin clusters. Here, N,(r) Ar represents the

Npllel/L?
0.04f-.
: — 2 Spin
0.031 o ---- 3 Spin
------- 2 Spin+ 3 Spin

FIG. 6. Distributions of the energy difference |e| for two-
and three-spin clusters.
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number of n-spin two-level clusters with barrier
height between r and r +Ar. N,(r) is related to the
joint number distribution, N,(|€|,r), defined above
in the following way:

Nu() = [ Ny(lel.dlel Q.4)

For both » =2 and n =3, the distribution functions
are peaked near r =0, and they fall off rather steeply
as r is increased. The fall-off for n =2 is faster than
that for n =3. In Fig. 4, we have shown the proba-
bility distributions of the barrier height v measured
from the lower of the two levels. For both » =2 and
n =3, N,(v) increases sharply as v is increased from
zero, then reaches a plateau, and finally falls off for
large v. The value of v at which the plateau of the
distribution is reached is higher for » =3 than for

n =2, The fact that the distributions for r and v are
quite different indicates that the barrier height v and
the energy difference |e| are strongly correlated. It is
obvious from the form of N,(r) that most of the
two-level systems have |e| rather close to v. This
tendency can be clearly seen in Fig. 5 where we have
shown the distributions of |e| for different values of
v. Figure 6 shows the distributions of the energy
difference | €| for n =2 and n =3. It can be seen that
the sum of N,(|€]) and N;(|€|) is roughtly constant
for small values of |e|. This confirms the hypothesis
of Anderson et al.® that the distribution of |e| is
more-or-less flat for small |e].

It is clear from Figs. 3, 4, and 6 that the three-spin
clusters have, on the average, higher values of |€/, r,
and v than the two-spin clusters. This indicates that
both the barrier height and the energy difference in-
crease with the cluster size. This trend is confirmed
by our preliminary results for four-spin clusters. This
observation provides us with further justification for
considering only two- and three-spin clusters in our
description of the low-temperature, finite-time
behavior of the system.

In order to determine the extent to which frustra-
tion effects are important in determining the prop-
erties of the two-level systems, we carried out the
above program for a model with no frustration. The
Hamiltonian of this model has the same form as Eq.
(2.1). However, the J;’s in this model are distribut-
ed according to

Jy=|Kylrit; 2.5)

where each Kj; is an independent random variable
with a Gaussian distribution of the form given in Eq.
(2.2), and the 7,’s are also independent random vari-
ables taking on the values +1. This model does not
have any frustration because the product of the four
Jy’s around a square is always positive. The system
has a unique ground state in which o;=7; for all /.
The energy per spin of this ground state is
—4/(2mw)2=—1.6. Our numerical study showed that

this sytem also has a very large number of metastable
excited states. The low-lying metastable states ob-
tained by using the procedure outlined above had
their energies between —1.45 and —1.50. The prop-
erties of these metastable states were found to be
quite similar to those in the frustrated system. In
particular, we found that the distribution functions
Pi(|n]) and P,(|€|,r) are of the same general form
as those obtained before. These results indicate that
the low-temperature, finite-time behaviors of the two
systems will be quite similar. In the infinite-time
limit, however, the two systems may behave quite
differently. The unfrustrated system has a unique
ground state, and given enough time, it will find its
way to this ground state. The geometrical properties
of the energy surface in the vicinity of this ground
state are expected to be quite different from those
near a typical ground state of the frustrated system.
However, this ground state will be extremely inacces-
sible because of the presence of a very large number
of metastable excited states. For this reason, the
finite-time behavior of the system will be determined
by the properties of the metastable excited states.
Since the relevant distribution functions for these
metastable states are of the same general form in the
two systems, we expect them to exhibit similar low-
temperature properties if the observation time is not
very long.

III. ANALYTIC STUDY
A. Dynamics at low temperatures

Based on the above results, a qualitative phenome-
nological calculation can be made for properties at
very low temperatures. At 7 =0, there will be no
thermal agitation, and the system will stay in a meta-
stable state, i.e., one of the energy minima, for good.
For nonzero but low temperatures (7 << 1), there
will be transitions to other states with excitation ener-
gy comparable to 7. These transitions will involve
climbing over barriers of heights comparable to T.
The path representing the time evolution of the sys-
tem will traverse a small region in phase space
bounded by energy barriers much higher than 7.
Beyond these high barriers there can be energy mini-
ma lying lower than the minima in the region. Of
course, if the period of observation is infinitely long,
there would be a finite probability of climbing over
barriers of any height, and the path would eventually
find its way to the lowest-energy minimum to spend
most of its time near there. This infinite-time limit is
not of our concern here. The analysis below is re-
stricted to finite times not long enough for climbing
over barriers much higher than 7.

This section is devoted to a simple analytic study,
which will illustrate qualitatively the main results and
estimate roughly numerical values of various quanti-
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ties. A more detailed numerical calculation will be
presented in Sec. IV.

For simplicity assume the following dynamics. A
spin has a flip rate 1/7 if the state after the flip has a
lower energy, and (1/7)e~“T if the flipped state has
an energy higher by e. We shall choose 7 as the unit
of time, i.e., 7=1. For the moment, the distribution
of the single-spin excitation energy N,(¢), and that of
barrier height and excitation energy of two-level clus-
ters N (e,r) defined above will be taken as known.
They will be estimated later in this section.

Consider first the effect of single spin flips. Quali- .

tatively, the number of spins involved at a low tem-
perature T is of the order TN,(0) and the energy in-
volved per spin is T. Thus the specific heat C is
~TN;(0)/L% More precisely,

C~F—5_T_f deNi(e) f(e)e
__ (=}/6)N,(0) T /
"-—'—ZTL——— , @3.1)
where
1
f(e) = e_‘ﬁ:T R (3.2)

and L? is the total number of spins. The physical
picture is a dilute gas of independently excited spins.
It coincides with that of a free Fermi gas at low tem-
peratures. N;(0) plays the role of the denisty of
states. The magnetic susceptibility likewise assumes
the form of a Pauli susceptibility

x=L J:)mbdeN,(e)Z—g-);[l ~2/(9)]

__2N,(0)
—

(3.3)

The time required for reaching the equilibrium pro-
bability f(e) for an excited spin is ~1.

Now consider the flip of a cluster of spins. The
cluster is initially in state 1, which is one of the two
energy minima of the cluster. The barrier separating
state 1 and the second minimum 2 is r and the ener-
gy difference is €; — €, = €. One easily calculates the
subsequent probability of finding the cluster in these
states by solving the kinetic equation. The average
value of any dynamic variable 4 over this probability
is

All—f(Dl+A4,f(e) +(4,—A4) f()e™™ , (3.4)

7=%e"/r ) (3.5)

Here A, A, are the values of A4 if the cluster is in
state 1, and in state 2, respectively. From Eq. (3.4)
we can obtain for example the change of total energy,
E. in time: Set 4,=0, 4,=¢, and sum over all

clusters. One obtains

AE(t) = (AEo) +E' )t F /ay (3.6)
OEq)=J, arE'G) 3.7
E) = deNensioe
=f_0mdeN(e,r)e , ' 3.8)
E=—ldE‘;£r)/E'(r)] . (3.9
re=0

In Eq. (3.6), the time tis assumed to be much larger
than 1 (e~ dropped). Terms of ‘O (T) smaller are

~ayT
not kept. The power law ¢ “E" is not accurate beyond
T Int, i.e., there are extra T?(In¢)? terms unless E'(r)

is strictly proportional to e “£'. Equations
(3.6)—(3.9) show a very slow decay of energy via
climbing over the barriers into lower minima. The
quantity (AE,,) in Egs. (3.6) and (3.7) is the total
energy (measured from the initial energy) when the
clusters have reached equilibrium at temperature 7.
For very low T, it would be the energy when all clus-
ters are in their lower states. (AE,,) as well as ag,
depend crucially on N (e,r), the initial distribution of
cluster energies and barrier heights. If initially the
clusters have an equilibrium distribution, then
AE,(t) would be simply zero. If initially the system
is in a "ground state" prepared in the manner
described in Sec. 1I, then there will be ~5% of the
clusters in their higher states. The initial distribution
can also be prepared by applying a magnetic field and
then switching it off. The details of preparation will
be elaborated further in Sec. IV.

Now let us consider an initial distribution with a
finite total magnetization. Suppose that single-spin
flips have brought the system to an energy minimum.
We concentrate on the further decay of the total
magnetization due to the flipping of clusters;

M) = Moo+ M'©0) "M [y, (3.10)
where

A?,o,=J:° dr f_:de (m) (sgne) N (e,r)

mo) = [ de2mnen (3.11)

o

/M )]

Here (m) is the spin per cluster averaged over the

N (e,r) dedr clusters. As just mentioned above, the

distribution N (e,r) depends on how the system was

prepared. So, the form of the decay of the total mag-

netizaiton is determined by the history of the system.
The susceptibility defined as

x(t) =(1/L?) 3M,(t)/9H can be deduced from Egs.
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(3.10) and (3.11). The application of a small field H
changes N (e,r) slightly, by

AN de , N Br
de 6H+ or OH "
We find

X)) =X+xM + X0 o |, (3.12)

- 1 had

=—L7f0 dr 4(m)N©,r) (3.13)
0

= [ _de2myNCe0) (3.14)

X () =—#2(m2)N(0,r) ,

dx'(r)
T/X'(r)

Since X, X' < 0, the susceptibility X(¢) increases with
time.

The exponent coefficients ag, ay, and a depend
only on N(e,r) for r very small, i.e., only clusters
with barrier heights comparable to 7 contribute.
However, if the time ¢ is very large, larger r would
play a part, and the power law would be modified.

(3.15)

r=0

B. Approximate calculation
of distributions

The distributions of spin excitation energies and
cluster barrier heights studied above can be calculated
directly from the model definitions. A quantitative
calculation would be rather involved. We shall only
make an estimate of various distributions based on
simple arguments and crude approximations.

First, we estimate the energy of metastable states.
The energy for a spin configuration (o} is

Hlol=—- 2 Jé s
(i)
Jy=aiody . (3.16)
For {o} to be an energy minimum, or a metastable
state, it must satisfy

«=23J;>0 (3.17)
J

for every site. This makes the calculation difficult.
Let us simplify it by considering only the seven

bonds joined to two nearest-neighbor spins as shown -

in Fig. 7 and calculate the probability distribution
P(J') for the bond in the middle. The two sites must
satisfy Eq. (3.17), i.e.,

J+J +J+J3 >0,
C (3.18)
J'+Jy+Js +Jg >0 .

8

J! J

7

[ ,
6
2 Jé
! J]
6

3
T (R
5

FIG. 7. Group of seven bonds joined to two nearest-
neighbor spins in a two-dimensional square lattice.

Without these conditions, P(J') would be just a

e _n . ..
Gaussian distribution e™ “2. With these conditions,
we have

P ccfo(J'-i—J{ +J2 +3)00 +Jg +Js5 +J¢)

6 ”
_"n =J. /2
x e~ e " ar

i=1

_J’2/2{ had - 2/2]2
we [T ace ) (3.19)
This distribution has a maximum at

J=0.65 . (3.20)

For our purpose of qualitative analysis, it is sufficient
to use the approximation

1 —~('=-Nin
o =D (3.21)
Since —J' is the energy in a bond, P(J') gives the lo-
cal energy distribution for a metastable state. The
mean energy per spin is —2J = —1.3, which is in rea-
sonable agreement with that found in Sec. II.

The distribution of single-spin excitation energy,
namely, N,(e), can be estimated from P(J'). The ex-
citation energy of a given spin is

P =

e=2(J; +J; +J3+J3) >0 ,
where 1, 2, 3, and 4 label the four bonds joining at

the site of that spin. The distribution for € is

N](E)
L2

= [ ate=21yi +4; +05 + LD TTL PUD @,

i=]
= (32m) V2= (M2 1 4 g~ M+2IT)

(3.22)

We have approximated the joint probability distribu-
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tion of J1, . . ., J4 by the product of the four distri-
butions of single J'. N;(e) calculated from Eq.

(3.22) shows a maximum at € =4.8. This result is in
fair agreement with that shown in Fig. 1. (Note that
the variable |k | in Fig. 1 is %e.) Of special interest
is N,(0). Equation (3.22) gives

MO =0.085 . (3.23)
L2

This corresponds to P;(0) =0.17, which is somewhat
higher than the value obtained in Sec. II.

The estimate of cluster distributions can be made
along the same lines, but is more involved. Here we
shall only discuss two-spin clusters.

Consider the two neighboring spins, 1 and 2, as
shown in Fig. 7. We begin with the joint probability
distribution for e, €,, and |J|

6
P(e.,ez,1J|)=fs(e,—2(|1|+1{ Iy + I e Q) (e, —2(|J | + T4+ +INTIPUN )} . (3.24)

If these two spins form a two-level cluster, then, by
definition, a new energy minimum is reached after
flipping both spins. This is possible only if |J] is suf-
ficiently large to dominate over interaction energies
in the other bonds connected to the two spins:

[ > +0; +051
Il > |Js +Js +J¢| . (3.25)

The joint distribution of the J"’s is again approximat-
ed by a product of P(J')’s. Then we use Eq. (3.21)
for P(J'). Now define the barrier height r and the
cluster excitation energy € as

r =minimum of (€, €, €, — €, €,—¢€) ,
€E€1+€2"4|J| . (326)

By changing variables from ¢, €;, J to r, €, and
r' = (next minimum above r), and integrating over
r', we obtain the distribution for r and e

Ple,r) =4 exp[—-,;sg 2—%r2—%|e|r

- (%r +%|e|) +%.7€] , (3.27)
where 4 =0.0028 is the normalization factor and

J =0.65 as given by Eq. (3.20). The distribution of
|€] and r, as sampled in Sec. II, is [see Eq. (2.3)]

Ny(Jel,r) =2L2[P(|e|,r) + P(—|€|,r)] . (3.28)

In obtaining Eq. (3.27), simplification was made by
fitting a complicated function with a Gaussian. By
integrating Eq. (3.27) over € and r > 0, one obtains
the probability of 3% that a pair of neighboring spins
form a two-level cluster. This number is quite close
to the result (—3.75%) obtained in Sec. II. Also, the
forms of the distributions, N,(r) and N,(|€), calcu-
lated from Eqgs. (3.27) and (3.28) are in good agree-
ment with the numerically obtained results shown in
Figs. 3 and 6.

If we use the distribution P(e,r) given by Eq.
(3.27) as N(e,r)/2L? used in Eq. (3.8) through Eq.
(3.15), we can compute the exponents ag, ay, and a
in Egs. (3.6), (3.10), and (3.13). We obtain

ap=0.82, ap=054, =027 . (3.29)

=]

-

The distribution P(e,r) given by Eq. (3.27) was
calculated not by considering how the initial state was
prepared, but via Eq. (3.24), which attempts to
obtain P(e,r) by picking energy minima at random.
The numerical results obtained thus can serve only as
order-of-magnitude estimates.

IV. NUMERICAL CALCULATION OF
DYNAMIC PROPERTIES AT
LOW TEMPERATURE

In this section, we present numerical calculations
of some of the time-dependent properties of the
spin-glass system at low temperatures. These calcula-
tions are based on the two-level system picture
described in Sec. II. We assume that the low-
temperature, finite-time behavior of the system can
be described in terms of independent flips of single
spins and small (two- or three-spin) two-level clus-
ters. These flips are assumed to be uncorrelated, i.e.,
we do not consider the interactions among the two-
level systems. This assumption is a reasonable one
because a pair of two-level clusters will interact with
each other only if they overlap, or if they are adjacent
to each other. We also assume the simple dynamics
of the kinetic Ising model, as described in Sec. III.
The numerically determined distributions P;(|4])
and P,(|e€|,r) are used as input data. )

For the study of any time-dependent property, it is
necessary to specify the initial state of the system.
We assume that the initial state is a metastable state,
characterized by the distributions P;(|#|) and
P,(|€|,r). In addition, one has to specify whether a
particular two-level system is in the higher or the
lower of the two levels. Let € be the difference in
energy between the level the system is initially in and
the other level. Thus, € =|e| corresponds to the
two-level system initially being in the lower level,
whereas € = —|e| corresponds to it being in the upper
level at ¢t =0. If the initial metastable state is
prepared by applying a magnetic field, then the po-
pulations of the two levels depend on the total spin
of the two-level cluster. Let m be the total spin of
the cluster when it is in the lower-energy state. We
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can then characterize the initial metastable state by the distribution N,(m, €,r), where N,(m, €,r) AeAr is the
number of n-spin two-level clusters with total spin m, energy difference between € and € + Ae, and barrier height
between r and r +Ar. This distribution is related to the probability distribution, P,(|e|,r), introduced in Sec. II

[see Eq. (2.3)], in the following way:

N,(m, €,r) =—217L2C,,K,,(m)P,,(is|,,r) ©Ce) f(m, |el,r) +[1 =01 - f(m, |€],r]} , 4.1)
_
where the magnetization per spin can be described to a good
degree of approximation by a logarithmic law of the
0(x)={1 ifx=0 form
0, ifx <0,

K,(m) is the number of distinct configurations of an
n-spin cluster with total spin m (here we have as-
sumed that all these configurations are equally prob-
able), and f(m, | e|,r) is the probability that the two-
level system is initially at the lower-energy state.
This probability function, f(m, |€|,r), depends on the
way the initial state is prepared, and cannot be deter-
mined in a simple way. In what follows, we will
make simple approximations for f and then calculate
the resulting time-dependent behavior.

First, let us consider the relaxation of the magneti-
zation in an external magnetic field and the conse-
quent time-dependent susceptibility. We assume
that, at 1 =0, the system is in thermal equilibrium at
a temperature 7. The ffor this initial state is given
by

Fm, |elr) =1/(1 +e-14m) . 4.2)

We then apply a small magnetic field, H. This
changes the energy difference and the barrier height
in the following way:

e—e(H) =(|e|] +2mH)sgne ,
r—r(H)=r—mH , 4.3)
v—v(H)=v+mH .

(Here, we have assumed that the energies of the in-
termediate states are not affected by the magnetic
field.) This induces transitions between the two lev-
els. Since these transitions involve climbing over en-
ergy barriers, the magnetization grows very slowly in
time. A part of the magnetization, of course, comes
from the flippings of single spins. However, this "
contribution does not show any interesting time-
dependent behavior because the single spins reach
equilibrium in a time of order unity. We have used
Eq. (3.4) and the numerically determined distribu-
tions, P,(|€|,r) and P;(Je|,r), to calculate the time
dependence of the magnetization due to the flippings
of the two-level clusters. A typical growth of the
magnetization per spin with time is shown in Fig. 8.
The form of the M (¢) vs Int curve is very similar to
that observed by Kinzel® in his Monte Carlo simula-
tion. It can be seen from Fig. 8 that the growth of

M(t)=b+alnt 4.4)

We have calculated the prefactor a for different
values of the field H. The results are shown in Fig.
9. We find that a increases very sharply from zero as
H is increased from zero, reaches a maximum at
H =1.0, and then falls off as H is increased further.
This behavior is in excellent agreement with Kinzel’s®
Monte Carlo result.

If we define the time-dependent susceptibility of
the system as

M)

x(1) —‘-1,@0 ik 4.5)

then it follows from the above discussion that the

susceptibility will also increase very slowly with time.
Such a slow increase of the susceptibility with obser-

0.06
M
0.05F

0.04
H=0.4,7=0.25
0.03-

0.02-

I TN N
I3 5 7 9 |l
Int—

FIG. 8. Growth of the magnetization with time in an
external magnetic field.
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FIG. 9. Coefficient a of the fit M — b +a Int as function
of applied magnetic field.

vation time has recently been seen by Bray and
Moore’ in their Monte Carlo simulations. In Fig. 10,
we have shown the results of our calculations of the
low-temperature susceptibility (this includes the con-
tribution of single spins) for three different observa-
tion times. The calculated values of Xx(¢) for ¢t =1000
units are in reasonable agreement with Monte Carlo
results® for ¢ =1000 Monte Carlo steps/spin.

Spin glasses exhibit several interesting remanence
properties at low temperatures. A recent Monte Car-

0.3
X

0.2

ord
oro
o » O
o» O
o » O
o » O

0.1} o t=2250
« 121000
t=5000

o

0 ] | | | ]
0 0.1 0.2 0.3 0.4 0.5

T—

FIG. 10. Susceptibility vs temperature for different obser-
vation times.

lo simulation of the two-dimensional Edwards-
Anderson model with Ising spins has shown?® that this
model also exhibits remanence properties which are
remarkably similar to those observed in experiments.
A remanence state can be prepared in several dif-
ferent ways. The field-cooled or thermoremanent mag-
netization (TRM) is obtained by cooling the system
slowly in an external magnetic field and then switch-
ing the field off. On the other hand, if one first
cools the system down to a low temperature, applies
a magnetic field for a short time A¢, and then
switches the field off, one obtains what is known as
the isothermal remanent magnetization IRM). We
have calculated various properties of these two kinds
of remanent magnetization within the framework of
our description in terms of the two-level system. In
the TRM case, one starts from thermal equilibrium
in an external field, H. We, therefore, assume that
the probability function f(m, |€|,r) for the initial me-
tastable state for TRM is given by

Sim, |e|,r) =1/ + e=Uelv2mi/T) (4.6)

In the IRM case, one starts with a system which is in
thermal equilibrium at zero field. We assume that
the probability function for this state is given by Eq.
(4.2). The application of the external field changes f.
We use the kinetic equations to calculate this change
in time At. The resulting probability function is used
to characterize the initial metastable state for IRM.
(The validity of these approximations for the
remanence states is discussed at the end of this sec-
tion.) We then use Eq. (3.4) to calculate the relaxa-
tions of the magnetization and the internal energy to
their equilibrium values. :
The results of our calculation are shown in Figs.
11—-14. In Fig. 11, we have plotted the remanent
magnetization per spin, averaged over 1000 time

0.06 .
o)
M Vel
0.04F 0/3 o/,/
o

/ T=0.25
0.02—/ /
S

4

0 o7 ! 1

0 1.0 2.0 3.0

H—

_0—0—0—0—0—0 TRM

o~ IRM
O

FIG. 11. Remanent magnetization averaged over 1000
time units for different values of the initially applied mag-
netic field H.
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units, for different values of the initially applied mag-
netic field H. The TRM increases steeply with H and
reaches a saturation value at H =2. The IRM in-
creases less steeply and is smaller than the TRM.
These qualitative features are in agreement with ex-
periments'?> and Monte Carlo results.® Both experi-
ments and Monte Carlo studies show a broad peak in
the TRM as a function of H. Our calculations do not
show such a peak. This is probably due to the crude-
ness of our approximation for the initial remanence
state. The calculated initial values of both the TRM
and the IRM are smaller than the values obtained in
Monte Carlo simulations® by a factor of about 2. The
initial values of the internal energy for TRM are in
rough agreement with the Monte Carlo results of
Kinzel.?
Both the TRM and the IRM decay very slowly in
time. We found that this decay can be well approxi-
mated by a power law of the following form:

Mrrm army ~ Mot TRM URM) 4.7
The internal energy per spin, E, in TRM was also
found to show a similar power-law decay

Etrm(t) ~Egt E (4.8)

Typical decays of M and E are shown in Fig. 12. This
behavior is in agreement with the predictions made in
Sec. III. Similar power-law decays have also been ob-
served in Monte Carlo studies.®® We have calculated
the exponents atrm, arM, and ag for different
values of Hand 7. Both atry and af were found to
increase with temperature in a roughly linear fashion.
This is shown in Fig. 13. Similar results have been
obtained in Monte Carlo simulations.®? In Fig. 14,
we have shown the variation of these exponents with
the initially applied field H. The exponent argy in-
creases with H for small values of H, and then sa-
turates at H =2. ar also increases with H initially
and then reaches a saturation value which is higher
than that of argm. The exponent, ajry, on the other

goFia\\,
\\ii:k\\
~3.00, '\i\
In M ~ o> Mreu[H=1.0,T7-0.25]
“n—i).o— ™~ Mg [H22.0,T=0.26]
™ Ergn [H:1.0,T=0.25]
| 1 1 1 1

_ ! 1
5'OI 2 3 4 5 6 7
Int—

FIG. 12. Remanent magnetization and internal energy as
a function of time on a log-log plot showing a power-law de-
cay.
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FIG. 13. Temperature dependence of the exponents
arrMm and ag.

hand, decreases as the field is increased from zero,
and then approaches a saturation value which is
roughly equal to that of argm. All these features are
in qualitative agreement with the Monte Carlo results
of Kinzel.® The calculated value of o is in fair
agreement with Kinzel’s result, and also with the
value predicted in Sec. III. The values of argy and
ajrym are higher than the values obtained in Monte
Carlo simulations® by a factor of about 2.

Thus, we see that our simple description in terms
of the two-level systems is able to reproduce, at least
qualitatively, many of the interesting time-dependent
properties of the spin-glass system at low tempera-

<
0.30r ° T:=0.25
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a °o°°
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020— 063:°°°° o 0
i °© ATRM
O'O—' ‘aE
© QRM
0 | | ]
0 [.0 2.0 3.0
H—>

FIG. 14. Field dependence of the exponents atrym, %rM»
and og.



20 DYNAMIC PROPERTIES OF A SPIN-GLASS MODEL AT LOW ... 3849

tures. The quantitative results for the remanent
magnetization are somewhat different from the
results obtained in previous Monte Carlo studies.
We believe that this discrepancy is due to the crude-
ness of our approximations about the remanence
states. When a magnetic field is applied, a substan-
tially large number of spins line up with the field.
For this reason, the metastable state that is obtained
when the magnetic field is switched off is not ade-
quately described by the excitations of a few small
clusters. A large cluster that is reversed by the appli-
cation of a magnetic field relaxes back to equilibrium
when the field is switched off by successive flips of
small clusters. This adds to the magnetization a very
slowly decaying component, which has the effect of
increasing the remanent magnetization and decreas-
ing the relaxation exponents atry and ajrym. Also,
since the remanence states have rather high magneti-
zation, the probability distributions for the two-level
systems in these states are expected to be somewhat
different from those calculated in Sec. II. Unfor-
tunately, it is not clear how these effects can be taken
into account in a quantitative way.

V. CONCLUDING REMARKS

The above calculations based on the simple
description in terms of two-level clusters have been
able to reproduce a wealth of results observed in pre-
vious Monte Carlo calculations. It seems evident
that this simple picture is at least qualitatively correct
and convenient for describing low-temperature
behaviors of a spin glass. There is no need to cast
the description in terms of the order parameter usual-
ly appearing in the literature on spin glasses, although
it is clear in the cluster picture that the spins appear
to be "frozen" (i.e., they have net time averages) at
low temperatures if the observation time is not very
long. An important theoretical question is whether
or not the time average of a spin remains nonzero in
the infinite-time limit. Our present study cannot
answer this question. This is because our analysis in

Secs. [-1V is limited not only to low temperatures,
but also to sufficiently short times, ¢ ~e!/”. For ob-
servation times much longer than exp(1/7), one
would see improbable events leading to climbing over
high-energy barriers and visiting distant regions of
phase space. If one wants to describe these events in
terms of reversals of clusters, one would have to
study very large clusters as well as smaller ones. A
more efficient description would be needed for this.

The behavior of the system over finite observation
times is expected to show some qualitative changes at
a temperature of the order of the typical barrier
height of small two-level clusters. It is tempting to
identify this temperature with the spin-glass transi-
tion temperature, 7,. Such a connection, however, is
not very apparent from our calculations. As shown
in Fig. 3, the distribution of the barrier height, r, for
two- and three-spin clusters extends up to r =4,
whereas the spin-glass transition temperature, 7., is
expected to be close to unity. Thus, it is not clear
from our simple picture why the finite-time behavior
of the system changes so dramatically at T=T,. An
explanation of this might go as follows. The distribu-
tions obtained in Sec. II are defined with respect to a
"ground state" of the system and are relevant only if
most of the two-level clusters are in their lower-
energy states. As the temperature is increased, more
clusters are excited and the effective distributions
with respect to these excited configurations are ex-
pected to be somewhat different. Our numerical
results indicate that the average barrier height de-
creases as the energy of the metastable state with
respect to which the two-level systems are defined is
increased. Thus, it may be possible to estimate T
via the self-consistently determined distribution of
the barrier height of small two-level clusters.
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