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Domain growth in the wake of a rapid quench from high to low temperatures is studied via 
Monte Carlo simulations of a ten-state Potts model on a triangular lattice. Quenches in which the 
temperature is lowered in one step and in two steps are studied. The exponent which characterizes 
the late-stage growth of domains is found to have different values for one-step and two-step 
quenches, if standard methods are used to obtain this exponent numerically. However, this differ- 
ence becomes insignificant if the origin of time for two-step quenches is shifted relative to the origin 
for one-step quenches to compensate for the larger initial domain sizes in the two-step case. The in- 
terpretation of recent experiments on two-step quenches is shown to suffer from a similar ambigui- 
ty. 

I. INTRODUCTION 

Consider a system which goes from a disordered state 
to an ordered one as the temperature T is lowered below 
the ordering temperature To. In addition, let all thermo- 
dynamic parameters be such that q ordered phases ( q  2 2) 
coexist for 0s T < To. If such a system is quenched rap- 
idly from a high temperature ( T,, >> To) to a low tempera- 
ture ( TI << To), domains of the ordered phases start grow- 
ing. The kinetics of such domain growth has been studied 
for many years.’ Both the early stages (nucleation and 
spinodal decomposition) and the late stages of growth 
have been investigated. We restrict ourselves to the latter. 

Over the past few years the study of domain-growth ki- 
netics has been revitalized by extensive numerical simula- 
tions of model systems, such as the q-state Potts model 
(q  2 2 )  in two and three dimensions.2-’8 One of the prin- 
cipal results obtained from such simulations is that the 
mean linear domain size 

(1) 

where the time t is measured from the moment the tem- 
perature reaches TI and n ( q )  is a non-negative exponent 
that characterizes the late stages of domain growth. If 
n ( q ) = O ,  domains might grow logarithmically with in- 
creasing t ( ~ ( t ) ~ - [ l n ( t ) ] ~ ( Q )  as f - a ,  with rn(q)>01, or 
as some other complicated sub-power-law function of t .  

For the case q =2 &e., the Ising model) with noncon- 
served order parameter, the phenomenological theories of 

This rediction has been confirmed by extensive analyt- 
ic516*2P-25 and numerical293t16 studies. When the order pa- 
rameter is conserved, the heuristic arguments of Lifshitz 
and Slyozov26 suggest the value n ( q  = 2)  = 7 ,  whereas re- 
cent renormalization-group calculations by Mazenko 
et al.25327 predict a logarithmic growth of the average 
domain size at long times. Lifshitz” and Safran” have 
argued that, if the order parameter is not conserved and if 

Lifshitz” and Allen and Cahn2’ predict n ( q  =2)= 7. 1 
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q 2 ( d  + 1 ), where d is the dimension, then the Lifshitz- 
Allen-Cahn’9i20 mechanism, which yields n ( q  =2)=  r ,  
becomes inoperative. However, even for q 2 ( d  + 11, nu- 
merical simulations7 yield the power law (l) ,  but with 
n ( q )  < t. There have been some  attempt^^^'^' to develop 
phenomenological theories to account for the power law 
(1) when q 2 (d  + 1 ), but these have not been as successful 
as their counterparts for q =2. 

The growth of domains according to the power law (1) 
has been observed in  experiment^.^'^^'^'^^^ For large 
q ( = 14) the recent experiments of Homma and Clarke33 
have provided the most direct confirmation of the power 
law (1). These results agree qualitatively with numerical 
sim~lations.~ 

The exponents that characterize the singularities of 
thermodynamic functions at critical points are universal, 
i.e., they do not depend on the details of the microscopic 
properties of a system, but only on certain relevant pa- 
rameters. This universality is a result of the divergence of 
a correlation length. In the late stages ( t -  CO)  of domain 
growth the length x ( t )  diverges [Eq. (111, so, by analogy 
with static critical phenomena, it is not unreasonable to 
expect that the domain growth exponent n ( q )  is universal. 
There is, indeed, some evidenceI2’ 15, 34 which indicates 
that such a universality does exist. However, domain- 
growth universality classes seem to be far less universal 
than their static-critical-phenomena counterparts: A large 
number of relevant parameters have to be controlled to 
obtain a given growth exponent. Numerical simulations 
and phenomenological theories of late-stage growth show 
that domain-growth universality classes depend on the 
following: (a) the number of phases q that coexist at low 
tempera t~res ;~”~ (b) whether the order parameter is con- 
served or not c ~ n s e r v e d ; ’ ~ ~ ~ ~ , ’ ~ - ~ ’  (c) the type of lattice;35 
(d) the depth of the quench,36 i.e., To - T,; (e) whether the 
domain walls between coexisting phases are sh or dif- 
fuse;”.’2 (0 the presence or absence of impuri t iT8 (g) the 
presence or absence of vorticity that gets quenched in;14 
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(h) the dimension d;37  and (i) the number of components 
of the order parameter.38 

The main purpose of this paper is to show that, if we 
use standard methods for obtaining the domain-growth 
exponent n ( q )  from numerical simulations, then this ex- 
ponent depends on the mode of quenching: In particular, 
n ( q )  depends on whether the system is quenched in one 
step, Th +Tl, or two, Th --+ T, --+ TI. This dependence of 
n ( q )  on the mode of quenching has been found experi- 
mentally by Homma and Clarke.33 It is tempting to con- 
clude, therefore, that the mode of quenching should be 
added to the list of relevant factors given above. Howev- 
er, we show below that it is possible to argue that the 
dependence of n ( q )  on the mode of quenching is not real 
but arises because of a numerical artifact. The functions 
R l ( t )  and X z ( t )  (the subscripts 1 and 2 refer to one-step 
and two-step quenches, respectively) become indistin- 
guishable (given the errors) if the origin of time for two- 
step quenches is shifted relative to the origin for one-step 
quenches. This shift compensates for the larger initial 
domain size in the case of two-step quenches (see below). 
Experiments in which domain growth can be monitored 
for long times and long simulations for large systems (far 
larger than the 200 x 200 lattices we have used) should 
show whether the mode of quenching is truly relevant or 
irrelevant. 

The remainder of this paper is organized as follows. In 
Sec. I1 we describe our model, simulations, and results. In 
Sec. I11 we reanalyze the experimental data of Homma 
and Clarke.33 We end with some concluding remarks in 
Sec. IV. 

11. MODEL, SIMULATION, AND RESULTS 

The q-state, ferromagnetic Potts model that we study is 
defined by the Hamiltonian 

(2) 

where J > 0, the variables Si can assume any one of the 
values 1,2, ..4 for all sites i on a two-dimensional, tri- 
angular lattice, and ( ij ) are distinct, nearest-neighbor 
pairs of sites. We use periodic boundary conditions. The 
model (2) undergoes a first-order phase transition3’ for 
q > 4  at a temperature To(q) (-1.095 in units of J /kB 
for q = 10). For T > To the system is disordered: The or- 
der parameters 

are zero for all p ( 1 Sp Sq, the angular brackets denote a 
thermal average, and N is the total number of sites). For 
T < To there are q coexisting, ordered phases, each one 
characterized by a positive value of one of the Mp’s. 

The domain growth kinetics for this model following a 
one-step quench from infinite temperature has been exten- 
sively studied in Ref. 7. Here, we investigate the 
relevance of two-step quenches by using the standard 
Metropolis Monte Carlo algorithmm which does not con- 
serve the order parameter. We update the variables Si by 
stepping sequentially through the lattice. We choose a 

new, trial value for Si at random. The transition proba- 
bility for going from the original value of Si to this new 
trial value is 

exp(-AE/kBT), hE > O  

1, use, 
w =  { (3) 

where A E  is the change in energy caused by this transi- 
tion. We measure time in units of Monte Carlo steps per 
spin (MCS/s). We begin with a state at infinite tempera- 
ture Th in which the variables [Si] assume any one of the 
values 1,2,...,4 with equal probability. We then quench 
the system to a low temperature T1(=To/10) in one of 
two ways: (1) In the first way we quench directly to T I ;  
(2) in the second way we first quench to a temperature 
slightly below To ( T o  =To-0.01, in units of J / k B ) ,  an- 
neal the system in this supercooled disordered state for 
200 MCS/s;l and then quench a second time to TI. We 
monitor domain growth by calculating the mean size of 
clusters and the distribution of cluster sizes as a function 
of time. The origin of time is chosen to be the moment 
the system is brought to the temperature TI.  The results 
we report have been obtained for q=lO and for a 
200x200 lattice. We have taken averages over three in- 
dependent simulations. We have obtained similar results 
for smaller lattices. 

We find that for both one- and two-step quenches 
N c ( t ) ,  the total number of clusters at time t is well ap- 
proximated by the form 

N , ( t ) = A , C / ( D  +t)” (4) 

where A T  is the total area and C, D, and s are constants. 
This is one of the standard forms used in analyzing nu- 
merical data on domain growth (see Ref. 7, for example). 
At long times ( t  >>IN, the form (4) describes a power-law 
behavior, and the constant D in the denominator allows 
for a finite value of Nc at t =O. By fitting our data for 
20Sf S4o00, we find 

31 =0.91F0.01 (5a) 

and 

sz =O.SO-tO.Ol (5b) 

where the subscripts 1 and 2 refer to one-step and two- 
step quenches, respectively. These results were obtained 
by using a nonlinear least-squares-fitting procedure in 
which all three parameters, C, D and s, were treated as 
variables to be fitted. The fits are shown in Fig. 1. A fit 
over the range 100SfS.4000 yields similar results: 
s1=0.92+0.01 and s2 =0.82+0.02. Visual inspections of 
the configurations generated in the simulations indicate 
that the domains are compact (see Fig. 1 of Ref. 7, for ex- 
ample; quantitative evidence indicating compactness is 
presented below). For compact clusters, N , ( t )  a [ W ( t ) ] - Z ,  
and n =s/2 [cf. Eqs. (1) and (4)]. Our value for n 1 agrees 
with the one obtained in Ref. 7. 

In the simulation, we also monitor the time dependence 
of the total excess energy, A E ( t ) ,  over the ground-state 
value of -35 per spin. It is clear from Eq. (2) that M(t) 
is approximately proportional to the total boundary length 
of the domains at time t. For compact domains, the total 
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FIG. 1, Variation of the total number of clusters, A',( t ) ,  with 
time t (in units of MCS/s) for one-step (dots) and two-step 
(crosses) quenches. The solid lines show best fits to the form of 
Eq. (4). The values of the parameters used in the fits are 
C=3.73,  D=9.8, and sl=0.91 for the one-step quench, and 
C = 1.59, D =9.5,  and s2 =0.805 for the two-step quench. The 
total area AT of the 200x200 triangular lattice used in the 
simulations is 14 x 104 units. 

boundary length should be proportional to the square root 
of the total number of  domain^.^*'^ Thus, at long times, 
hE(t)  is expected to decrease with time as a power law, 
with an exponent equal to s /2. We find that the variation 
of U ( t )  with time can be fitted quite well by the form 
(4). The best fits yield the values 0.45k0.01 and 
0.4010.01 for the exponent associated with A E ( t )  for 
one- and two-step quenches, respectively. The fact that 
these numbers are almost exactly equal to s /2  [cf. Eqs. 
(5a) and (5b)] indicates that the domains are indeed com- 
pact, and also provides a consistency check of the calcula- 
tion. 

For both one- and two-step quenches we find that the 
scaled-cluster-size distribution (see below) assumes a 
time-invariant form4' after t ~ 2 0 0  MCS/s. This time- 
invariant form is practically the same for both quenches. 
Figure 2 shows the distribution, P ( x ) ,  of x r log lo(A/z) ,  
where A is the area of a cluster and I (  = A T / N c )  is the 
mean area of clusters for one-step (dashed line) and two- 
step (solid line) quenches. We have averaged our data 
over the range 500Stt4000, which corresponds to an 
average over 95 different configurations. For the one-step 
quench, the mean of this scaled-cluster-size distribution is 
-0.23 and its standard deviation is 0.52. These values 
are close to the ones quoted for model (2) with q = 12 in 
Ref. 7. For the two-step quench the mean of the distribu- 
tion is -0.245 and the standard deviation is 0.53. Given 
the errors of our simulations, the differences between the 
scaled-cluster-size distributions for one- and two-step 
quenches are not significant. It is tempting to argue that 
both the one-step and the two-step scaled-cluster-size dis- 
tributions are being driven to the same fixed-point distri- 
bution, and hence both quenches lie in the same universal- 
ity class. However, it is not clear to us that two quenches 
having the same scaled-cluster-size distribution must lie in 
the same universality class. Other factors such as the 
shape distribution of the domains and the density of kinks 
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FIG. 2. Scaled-cluster-size distributions, P (x) versus 
xr log l&A/l ) ,  where A is the area of a cluster and 2 the 
mean area of clusters. Dashed and solid lines indicate distribu- 
tions for one-step and two-step quenches. The data have been 
averaged over the time range 500s t &.4ooo MCS/s. Given the 
errors of our simulations, the difference between the two distri- 
butions are not significant. 

on the domain walls may be important in determining the 
universality class. In particular, it is known7 that for 
q 2 ( d  + 1) the growth of domains proceeds via the move- 
ment of kinks on the domain boundaries. Thus, if the an- 
nealing at T f  reduces the average number of kinks per 
cluster, then the domain-growth exponent n may decrease 
as a result of this annealing. There is, indeed, some nu- 
merical evidence suggesting that such a dependence of the 
density of kinks on the mode of quenching may be 
present. We find that the value of the excess energy, AE, 
for every configuration generated after a two-step quench 
is slightly smaller (by N 2%) than that for a configura- 
tion with the same number of clusters generated after a 
one-step quench. Since AE is a measure of the total boun- 
dary length of the domains, this observation suggests that 
the annealing at T o  reduces the average length of the per- 
imeter of a domain. If we consider this result as evidence 
for a reduction in the average number of kinks per cluster 
by the annealing process, then we would have a possible 
explanation of why the observed value of n 2  is less than 
that of n l .  However, the observed differences in the 
values of AE are within the error bars of our simulation. 
For this reason, any conclusion based on this observation 
should be considered tentative, at best. A different, but 
equally plausible explanation of the observed dependence 
of n on the mode of quenching is given below. 

The annealing of the system at T ,  yields larger clus- 
ters for two-step quenches than for one-step quenches; i.e., 
at any time t, N c 2 ( t ) < N c l ( t )  and z 2 ( t ) > R , ( t ) .  However, 
we find that plots of Ncl(t) and Nc2( t  -At) versus t (Fig. 
3) for 1000Its:4000 and At = 140 are indistinguishable 
given our error bars (CZ 5%) .  A shift of the origin of 
time43 compensates for the larger clusters in the case of 
two-step quenches. It is possible, therefore, that the 
dependence of the exponent s on the mode of quenching 
[Eq. (511 is not real but a mere numerical artifact. If s is 
determined by fitting N , ( t )  to the form (4) for t >>At, 
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FIG. 3.  The total number of clusters N , ( t )  versus the time t 
for one-step (dots) and two-step (crosses) quenches. The origin 
of time for two-step quenches has been shifted by 140 MCS/s 
with respect to the origin for one-step quenches (see text). The 
two plots are indistinguishable (given our errors) over the range 
1000St S=_4ooo MCS/s shown. 

then any dependence of s on the mode of quenching must 
be real. We have tried such fits over the range 
1000StSW. Unfortunately, our results are not con- 
clusive. By varying the constants C and D in Eq. (41, it is 
possible to obtain nearly perfect fits to our data for N , ( t )  
(1000StSW) with any value of s between 0.78 and 
0.92. If we fit straight lines to plots of ln[N,(t)] versus 
In( t )  in the range lo00 5 t 5 4OOO, we obtain s NO. 89 and 
S T N O .  83. 

For t > 4OOO, the mean area of clusters is a fair fraction 
(-f) of the 200x200 lattices we have used and N , ( t )  
has significant finite-size corrections. Reliable data for 
t > 4OOO can be obtained only by simulations of model (2) 
on much larger lattices than the one we have used. Until 
such calculations are done, it is impossible to decide 
unambiguously whether s does or does not depend on the 
mode of quenching. 

111. EXPERIMENTS 

Homma and Clarke33 have studied domain-growth ki- 
netics in the wake of rapid quenches from high to low 
temperatures in graphite intercalated with SbC15. The in- 
tercalant molecules form quasi-two-dimensional superlat- 

tices which are ordered; 14 ordered phases coexist at room 
temperature. Homma and Clarke find n =O. 52k0.05 
for a one-step quench and n 2  =O. 15 -0.25 for a two-step 
quench.33 This dependence of n ( =s /2) on the mode of 
quenching is in qualitative agreement ( n 2  < n 1 with our 
results [Eq. (31  and, like them, is obtained in the standard 
way [see text after Eq. (4)]. However, we can explain 
away this dependence of n on the mode of quenching just 
as we did for our numerical simulations. Homma and 
Clarke estimate the mean size of ordered clusters by mon- 
itoring the intensity I of the superlattice peak. A 
straight-line fit to a plot of In(n versus In(t) yields the ex- 
ponent 2n. Unfortunately, they cannot monitor the 
growth for very long times because once the clusters are 
large enough, they get pinned by impurities and the rate 
of growth decreases dramatically.'8i33 This pinning 
occurs after = 8 rnin in the case of a one-step quench, but 
after only E 5 min for a two-step quench. This suggests 
that the cluster configuration that obtains after 8 rnin for 
a one-step quench is similar to the cluster configuration 
that obtains after 5 rnin for a two-step quench, i.e., we 
should choose At = 3  rnin (see Fig. 3 and Sec. 11). By re- 
plotting the one-step-quench data of Homma and Clarke, 
we find that a shift of the origin of time by 3 rnin lowers 
the value of the effective exponent to 0.2, which falls right 
in the middle of Homma and Clarke's estimate of 
n 2 = 0 .  15-0.25. Thus the apparent discrepancy between 
n l  and n 2  can be explained away by such a shift of the 
origin of time. 

IV. CONCLUDING REMARKS 

We have shown that domain growth needs to be moni- 
tored for very long times before we can unambiguously 
decide whether the domain-growth exponent n does or 
does not depend on the mode of quenching. Such long- 
time data are not yet available, neither from numerical 
simulations (Sec. 11) nor from experiments (Sec. 111). Nu- 
merical simulations of model ( 2 )  on large lattices 
(~-400x400) and experiments on samples with a low con- 
centration of impurities must be carried out to obtain reli- 
able long-time data. 

Real-space renormalization and Monte Car- 
lo renormalization groupsu have been used recently to 
study late-stage domain growth in the two-dimensional Is- 
ing model. If such renormalization groups can be 
developed for the study of domain growth in model ( 2 )  for 
q > 2, then they can be used to examine the relevance of 
the mode of q~enching.~'  

We close with a word of caution. The size of the lattice 
and the length of the MC runs used in the present work 
are comparable to those used in nearly all of the existing 
numerical studies2-'* of domain-growth kinetics. The 
method of analysis used by us is also very similar to that 
employed in previous studies. These facts suggest that 
some of the existing numerical results about the kinetics 
of domain growth may also involve ambiguities similar to 
those encountered in the present work. In particular, our 



experience with this simulation leads us to believe that 
values of the exponent n obtained by fitting MC data for 
a few thousand times steps to a form like Eq. (4) or to a 
power-law form like Eq. (1) may not be accurate. Thus, 
any conclusion about the universality classes of late-stage 
domain growth based solely on small differences in nu- 
merically determined values of the growth exponent n 
may not be reliable. 
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