Kinetics of domain growth: The relevance of two-step quenches
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Domain growth in the wake of a rapid quench from high to low temperatures is studied via
Monte Carlo simulations of a ten-state Potts model on a triangular lattice. Quenches in which the
temperature is lowered in one step and in two steps are studied. The exponent which characterizes
the late-stage growth of domains is found to have different values for one-step and two-step
quenches, if standard methods are used to obtain this exponent numerically. However, this differ-
ence becares insignificant if the origin of time for two-step quenches is shifted relative to the origin
for one-step quenches to compensate for the larger initial domain sizes in the two-step case. The in-
terpretation of recent experiments on two-step quenches is shown to suffer from a similar ambigui-

ty.

1. INTRODUCTION

Consider a system which goes from a disordered state
to an ordered one as the temperature T is lowered below
the ordering temperature T,. In addition, let all thermo-
dynamic parameters be such that q ordered phases (g 22)
coexist for 02 T < T. If such a system is quenched rap-
idly from a high temperature (T} >>T) to a low tempera-
ture (I3 <<T), domains of the ordered phases start grow-
ing. The kinetics of such domain growth has been studied
for many years.” Both the early stages (nucleation and
spinodal decomposition) and the late stages of growth
have been investigated. We restrict ourselves to the latter.

Over the past few years the study of domain-growth ki-
netics has been revitalized by extensive numerical simula-
tions of model systems, such as the g-state Potts model
(g 22) in two and three dimensions.2~'® One of the prin-
cipal results obtained from such simulations is that the
mean linear domain size

Rt)=t"9, t o, 1

where the time t is measured from the moment the tem-
perature reaches T; and #(q) is a non-negative exponent
that characterizes the late stages of domain growth. If
n(g)=0, domains might %row logarithmically with in-
creasing t (R(1)=[In($)1"? as t— <, with m(g)>0), or
as some other complicated sub-power-law function of t.
For the case q =2 (i.e,, the Ising model) with noncon-
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Thls ?red|ct|on has been confirmed by extensive analyt.
c>%21-25 and numerical®>**¢ studies. When the order pa-
rameter is conserved, the heuristic arguments of Lifshitz
and Slyozov*® suggest the value n (g =2) =+, whereas re-
cent renormallzatlon -group calculations by Mazenko
et al.®>?" predict a logarithmic growth of the average
domain size at long times. Lifshitz'® and Safran?® have
argued that, if the order parameter is not conserved and if

q2(d 1), where d is the dimension, then the Llfshltz-
Allen-Cahn'®? mechanism, which yields n(g=2)=

becomes moperatlve However, even for g2 (d +1), nu-
merical S|mulat|ons yield the power law (1), but with

n(g) < 3. There have been some attempts®3 to develop
phenomenological theories to account for the power law
(1)when q2(d +1), but these have not been as successful
as their counterparts for q =2.

The growth of domains according to the power law (1)
has been observed in experiments.”?*332 For large
q(=14) the recent experiments of Homma and Clarke®*
have provided the most direct confirmation of the power
law (1). These results agree qualitatively with numerical
simulations.’

The exponents that characterize the singularities of
thermodynamic functions at critical points are universal,
i.e., they do not depend on the details of the microscopic
properties of a system, but only on certain relevant pa-
rameters. This universality is a result of the divergence of
a correlation length. In the late stages (¢— o) of domain
growth the length R(¢) diverges [Eq. (1)], so, by analogy
with static critical phenomena, it is not unreasonable to
expect that the domain growth exponent » (g} is universal.
There is, indeed, some evidence'>!%!"3* which indicates
that such a universality does exist. However, domain-
growth universality classes seem to be far less universal
than their static-critical-phenomena counterparts: A large
number of relevant parameters have to be controlled to
obtain a given growth exponent. Numerical simulations
and phenomenological theories of late-stage growth show
that domain -growth universality classes depend on the
following: (a) the number of phases q that coexist at low
temperatures,7 12 (b) whether the order parameter is con-
served or not conserved;'®'%!9~27 (¢) the type of lattice;*
(d) the depth of the quench,® i.e., T, — T}; (¢) whether the
domain walls between coexisting phases are sharp or dif-
fuse;!:12 (f) the presence or absence of impurities;'® (g) the
presence or absence of vorticity that gets quenched in;'*



(h) the dimension d;*" and (i) the number of components
of the order parameter.

The main purpose of this paper is to show that, if we
use standard methods for obtaining the domain-growth
exponent n(g) from numerical simulations, then this ex-
ponent depends on the mode of quenching: In particular,
n(g) depends on whether the system is quenched in one
step, T, — T, or two, T, -+ Ty — T;. This dependence of
n(g) on the mode of quenching has been found experi-
mentally by Homma and Clarke.*® It is tempting to con-
clude, therefore, that the mode of quenching should be
added to the list of relevant factors given above. Howev-
er, we show below that it is possible to argue that the
dependence of 7 (g) on the mode of quenching is not real
but arises because of a numerical artifact. The functions
R(2) and R,(t) (the subscripts 1 and 2 refer to one-step
and two-step quenches, respectively) become indistin-
guishable (given the errors) if the origin of time for two-
step quenches is shifted relative to the origin for one-step
qguenches. This shift compensates for the larger initial
domain size in the case of two-step quenches (see below).
Experiments in which domain growth can be monitored
for long times and long simulations for large systems (far
larger than the 200X 200 lattices we have used) should
show whether the mode of quenching is truly relevant or
irrelevant.

The remainder of this paper is organized as follows. In
Sec. IT we describe our model, simulations, and results. In
Sec. III we reanalyze the experimental data of Homma
and Clarke.® We end with some concluding remarks in
Sec. 1V.

II. MODEL, SIMULATION, AND RESULTS

The g-state, ferromagnetic Potts model that we study is
defined by the Hamiltonian

H - '—Jzas_s, s (2)
G 7

where J> 0, the variables .S; can assume any one of the
values 1,2,...,¢ for all sites i on a two-dimensional, tri-
angular lattice, and (i) are distinct, nearest-neighbor
pairs of sites. We use periodic boundary conditions. The
model (2) undergoes a first-order phase transition®® for
g >4 at a temperature To(g) (=<1.095 in units of J/kp
for g =10). For T > T, the system is disordered: The or-

der parameters
1
q<ﬁgasi,p>—1 Ja-n

are zero for all p (1=p £q, the angular brackets denote a
thermal average, and A is the total number of sites). For
T < T, there are g coexisting, ordered phases, each one
characterized by a positive value of one of the M, ’s.

The domain growth kinetics for this model following a
one-step quench from infinite temperature has been exten-
sively studied in Ref. 7. Here, we investigate the
relevance of two-step quenches b% using the standard
Metropolis Monte Carlo algorithm™® which does not con-
serve the order parameter. We update the variables S; by
stepping sequentially through the lattice. We choose a

M,=

new, trial value for S; at random. The transition proba-
bility for going from the original value of S; to this new
trial value is

expl—AE/kpT), AE >0
W= (3)
1, AEZ0,

where AE is the change in energy caused by this transi-
tion. We measure time in units of Monte Carlo steps per
spin (MCS/s). We begin with a state at infinite tempera-
ture 7, in which the variables [S;] assume any one of the
values 1,2,...,¢ with equal probability. We then quench
the system to a low temperature T;(=T,/10) in one of
two ways: (1) In the first way we quench directly to T73;
{2) in the second way we first quench to a temperature
slightly below Ty (Tg =To—0.01, in units of J/kg), an-
neal the system in this supercooled disordered state for
200 MCS/s,*! and then quench a second time to 7;. We
monitor domain growth by calculating the mean size of
clusters and the distribution of cluster sizes as a function
of time. The origin of time is chosen to be the moment
the system is brought to the temperature T;. The results
we report have been obtained for ¢ =10 and for a
200x200 lattice. We have taken averages over three in-
dependent simulations. We have obtained similar results
for smaller lattices.

We find that for both one- and two-step quenches
N, (1), the total number of clusters at time ¢ is well ap-
proximated by the form

N, (t)=A7C/(D +1t), (4)

where A7 is the total area and C, D,and s are constants.
This is one of the standard forms used in analyzing nu-
merical data on domain growth (see Ref. 7, for example).
At long times (¢ >>D), the form (4) describes a power-law
behavior, and the constant D in the denominator allows
for a finite value of N, at #=0. By fitting our data for
20 2t £4000, we find

§1=0.9140.01 (5a)
and

5,=0.80+0.01 (5b)

where the subscripts 1 and 2 refer to one-step and two-
step quenches, respectively. These results were obtained
by using a nonlinear least-squares-fitting procedure in
which all three parameters, C, D and s, were treated as
variables to be fitted. The fits are shown in Fig. 1. A fit
over the range 100574000 vyields similar results:
$;=0.921+0.01 and s, =0.82£0.02. Visual inspections of
the configurations generated in the simulations indicate
that the domains are compact (seeFig. 1 of Ref. 7, for ex-
ample; quantitative evidence indicating compactness is
presented below). For compact clusters, N,(z) « [R(2)]2,
and n =s/2 [cf. Egs. (1) and (4)]. Our value for ny agrees
with the one obtained in Ref. 7.

In the simulation, we also monitor the time dependence
of the total excess energy, AE (1), over the ground-state
value of —3J per spin. It is clear from Eq. (2) that AE (¢)
is approximately proportional to the total boundary length
of the domains at time t. For compact domains, the total
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FIG. 1. Variation of the total number of clusters, N.(¢), with
time ¢ (in units of MCS/s) for one-step (dots) and two-step
(crosses)quenches. The solid lines show best fits to the form of
EQ- (4). The values of the parameters used in the fits are
C=3.73, D=9.8, and s;=0.91 for the one-step quench, and
C =159, D=9.5, and s,=0.805 for the two-step quench. The
total area A4; of the 200x200 triangular lattice used in the
simulationsis v3x 10* units.

boundary length should be proportional to the square root
of the total number of domains.”!® Thus, at long times,
AE () is expected to decrease with time as a power law,
with an exponent equal to s/2. We find that the variation
of AE (¢r) with time can be fitted quite well by the form
(4). The best fits yield the values 0.45+0.01 and
0.40£0.01 for the exponent associated with AE(¢) for
one- and two-step quenches, respectively. The fact that
these numbers are almost exactly equal to s/2 [cf. Egs.
(5a) and (5b)] indicates that the domains are indeed com-
pact, and also provides a consistency check of the calcula-
tion.

For both one- and two-step quenches we find that the
scaled-cluster-size distribution (see below) assumes a
time-invariant form*? after r~200 MCS/s, This time-
invariant form is practically the same for both quenches.
Figure 2 shows the distribution, P(x), of x =logo(4/4),
where A is the area of a cluster and 4( =47/N,) is the
mean area of clusters for one-step (dashed line) and two-
step (solid line) quenches. We have averaged our data
over the range S00=t¢ <4000, which corresponds to an
average over 95 different configurations. For the one-step
quench, the mean of this scaled-cluster-size distribution is
—0.23 and its standard deviation is 0.52. These values
are close to the ones quoted for model (2} with ¢ =12 in
Ref. 7. For the two-step quench the mean of the distribu-
tion is —0.245 and the standard deviation is 0.53. Given
the errors of our simulations, the differences between the
scaled-cluster-size distributions for one- and two-step
quenches are not significant. It is tempting to argue that
both the one-step and the two-step scaled-cluster-size dis-
tributions are being driven to the same fixed-point distri-
bution, and hence both quenches lie in the same universal-
ity class. However, it is not clear to us that two quenches
having the same scaled-cluster-size distribution must lie in
the same universality class. Other factors such as the
shape distribution of the domains and the density of kinks
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FIG. 2. Scaled-cluster-size distributions, P(x) versus

x=log(4/4), where A is the area of a cluster and 4 the
mean area of clusters. Dashed and solid lines indicate distribu-
tions for one-step and two-step quenches. The data have been
averaged over the time range 500 <r <4000 MCS/s. Given the
errors of our simulations, the difference between the two distri-
butions are not significant.

on the domain walls may be important in determining the
universality class. In particular, it is known’ that for
q2(d *+1) the growth of domains proceeds via the move-
ment of kinks on the domain boundaries. Thus, if the an-
nealing at T reduces the average number of kinks per
cluster, then the domain-growth exponent n may decrease
as a result of this annealing. There is, indeed, some nu-
merical evidence suggesting that such a dependence of the
density of kinks on the mode of quenching may be
present. We find that the value of the excess energy, AE,
for every configuration generated after a two-step quench
is slightly smaller (by =~ 2%b) than that for a configura-
tion with the same number of clusters generated after a
one-step quench. Since AE is a measure of the total boun-
dary length of the domains, this observation suggests that
the annealing at T reduces the average length of the per-
imeter of a domain. If we consider this result as evidence
for a reduction in the average number of kinks per cluster
by the annealing process, then we would have a possible
explanation of why the observed value of #, is less than
that of »;. However, the observed differences in the
values of AE are within the error bars of our simulation.
For this reason, any conclusion based on this observation
should be considered tentative, at best. A different, but
equally plausible explanation of the observed dependence
of n on the mode of quenching is given below.

The annealing of the system at 75 yields larger clus-
ters for two-step quenches than for one-step quenches;i.e.,
at any time t, Ne,(t) <N, (1) and R,(#)>R,(z). However,
we find that plots of N () and N, (z —Az) versus ¢ (Fig.

3) for 1000=+ <4000 and At =140 are indistinguishable
given our error bars (=~ 5%). A shift of the origin of
time** compensates for the larger clusters in the case of
two-step quenches. It is possible, therefore, that the
dependence of the exponent s on the mode of quenching
[Eq. (8] is not real but a mere numerical artifact. If s is
determined by fitting N.(¢) to the form (4) for r>> A,
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FIG. 3. The total number of clusters N,(¢) versus the time ¢
for one-step (dots)and two-step (crosses)quenches. The origin
of time for two-step quenches has been shifted by 140 MCS/s
with respect to the origin for one-step quenches (see text). The
two plots are indistinguishable (given our errors)over the range
1000 <t £4000 MCS/s shown.

then any dependence of s on the mode of quenching must
be real. We have tried such fits over the range
1000=1£4000. Unfortunately, our results are not con-
clusive. By varying the constants C and D in Eq. (4), it is
possible to obtain nearly perfect fits to our data for N (¢)
{1000 <t £4000) with any value of s between 0.78 and
0.92. If we fit straight lines to plots of In[ N (¢)] versus
In(¢) in the range 1000 £t £4000, we obtain s;=0.89 and
5220.83.

For ¢ > 4000, the mean area of clusters is a fair fraction
(~+5) of the 200x200 lattices we have used and N.(1)
has significant finite-size corrections. Reliable data for
¢ > 4000 can be obtained only by simulations of model (2)
on much larger lattices than the one we have used. Until
such calculations are done, it is impossible to decide
unambiguously whether s does or does not depend on the
mode of quenching.

III. EXPERIMENTS

Homma and Clarke** have studied domain-growth ki-
netics in the wake of rapid quenches from high to low
temperatures in graphite intercalated with SbCls. The in-
tercalant molecules form quasi-two-dimensional superlat-

tices which are ordered; 14 ordered phases coexist at room
temperature. Homma and Clarke find n,=0. 52+0.05
for a one-step quench and n,=0. 15— 0.25for a two-step
quench.** This dependence of n(=s/2) on the mode of
quenching is in qualitative agreement (n; <n;) with our
results [Eq. (5)] and, like them, is obtained in the standard
way [see text after Eqg. (4)]. However, we can explain
away this dependence of n on the mode of quenching just
as we did for our numerical simulations. Homma and
Clarke estimate the mean size of ordered clusters by mon-
itoring the intensity 1 of the superlattice peak. A
straight-line fit to a plot of In() versus In(#) yields the ex-
ponent 2n. Unfortunately, they cannot monitor the
growth for very long times because once the clusters are
large enough, they get pinned by impurities and the rate
of growth decreases dramatically.!’®** This pinning
occurs after ~ 8 rnin in the case of a one-step quench, but
after only ~ 5 min for a two-step quench. This suggests
that the cluster configuration that obtains after 8 rnin for
a one-step quench is similar to the cluster configuration
that obtains after 5 rnin for a two-step quench, i.e., we
should choose At =3 rnin (see Fig. 3 and Sec. II). By re-
plotting the one-step-quench data of Homma and Clarke,
we find that a shift of the origin of time by 3 rnin lowers
the value of the effective exponent to 0.2, which falls right
in the middle of Homma and Clarke's estimate of
n,=0.15—0.25. Thus the apparent discrepancy between
n, and n, can be explained away by such a shift of the
origin of time.

IV. CONCLUDING REMARKS

We have shown that domain growth needs to be moni-
tored for very long times before we can unambiguously
decide whether the domain-growth exponent n does or
does not depend on the mode of quenching. Such long-
time data are not yet available, neither from numerical
simulations (Sec, IT) nor from experiments (Sec. 11I), Nu-
merical simulations of model (2) on large lattices
(=400 400) and experiments on samples with a low con-
centration of impurities must be carried out to obtain reli-
able long-time data.

Real-space renormalization groups®**” and Monte Car-
lo renormalization groups* have been used recently to
study late-stage domain growth in the two-dimensional Is-
ing model. If such renormalization groups can be
developed for the study of domain growth in model (2) for
g > 2, then they can be used to examine the relevance of
the mode of quenching.*’

We close with a word of caution. The size of the lattice
and the length of the MC runs used in the present work
are comparable to those used in nearly all of the existing
numerical studies’~'® of domain-growth Kinetics. The
method of analysis used by us is also very similar to that
employed in previous studies. These facts suggest that
some of the existing numerical results about the Kinetics
of domain growth may also involve ambiguities similar to
those encountered in the present work. In particular, our



experience with this simulation leads us to believe that
values of the exponent n obtained by fitting MC data for
a few thousand times steps to a form like Eq. (4) or to a
power-law form like Eq. (1) may not be accurate. Thus,
any conclusion about the universality classes of late-stage
domain growth based solely on small differences in nu-
merically determined values of the growth exponent n
may not be reliable.
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