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Abstract

We conduct a muﬁerica.l' study of the dynamic behavior of a dense hard sphere
fluid by deriving and integrating a set of Langeﬁn equations. The statics. of the system
is described by a free energy functional of the Ra.ma.krishnan—Yﬁssouf form. We vﬁnd that

‘the system exhibits glassy behavior as evidenced through stretched exponential decay and
two-stage relaxation‘ of the density correlation function. The characteristic times grow
with increasing density according to the Vogel-Fulcher law. The wavenumber dependence
of the kixietics is extensively explored. The connection of our results with expe‘ri'ment,v

mode coupling theory, and molecular dynamics results is d.iscussé@.

1992 PACS numbers: 64.70Pf, 61.20Ja, 61.20Lc




I. INTRODUCTION

Despite extensive experimental, numerical and theoretical investigations ! * 2 over

several decades, the present understanding of the slow nop-exponential dynamics of dense
liquids near the glass transition remains incomplete. When a liquid is cooled rapidly enough
to temperatures below the equilibrium freezing temperature, crystallization is bypassed
and the system undergoes a transition into an amorphous solid state called a glass. The
characteristic relaxation time t* , as reﬂected in a large number of experimentally measured
quantities such as viscosity and dielectric relaxation, grows rapidly in the supercooled state
as the temperature is decreased or the density increased. The glass transition temperature
~ (or alternatively, density) T, (py) is conventionally defined as the temperature »(density)
where the viscosity reaches a valt;e‘ of 102 poise.

In recent years, considerable progress in the development of a theoretical and ex-
perimental understanding of the phenomena associated with glass formation and the glass
transition has been achieved. In particular, the so-called mode coupiing (MC) theories
of the glass transition 3~" have led to a framework for understanding and interpreting
many experimental results. In MC theories, the slowing down of the dynamics near the
glass transition is attributed to a nonlinear feedback mechanism arising from correlations

of density fluctuations in the liquid. In the most well-known version of these theories *°,

thg characteristic time scales of the liquid are predicted to exhibit a power law divergence 2
at a ‘dynamic glass transition’ or crossover temperature T, higher than T,;. However, this
divergence ié not found experimentally: the power law form breaks down, and relaxation
times at T, are typically of order 108s. More recent calculations 6’7j have uncovered a

cutoff mechanism which is supposed to round off the predicted divergence and to restore

ergodicity over a much longer time scale. MC theories *'® and experimental information
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can be combined in a consistent description|

of the decay of S(q,t), the spatial Fourier

transform of the dynamic density correlation function, at sufficiently low temperatures or

high densities, when the decay times have grown very large. The decay according to this

scheme takes place in a succession of several regimes: after a fast decay in times of order of

the inverse phonon frequency, a first slow decay occurs which MC theories predict to be an

inverse power law in time. This is called the B-relaxation regime. Evidence for power-law

decay of correlations in the 8 regime is provided by light ® and neutron scattering exper-

4

iments 1° .This decay is to a nonzero value (

an apparent nonergodic phase) from which

the system eventually moves away leading to the primary or a-relaxation regime. The

relaxation in the a regime is found to follow the so-called Kohlrausch - Williams - Watts

‘stretched exponential’ form!! . Both the duration of the 3 relaxation and the time scale of

the stretched exponential decay in the a regime are found to increase sharply as the ‘glass

transition’ is approached. In some cases, the

and the a regimes are separated by a region

of so-called von Schweidler relaxation which has a power law form. The stretched expo-

nential behavior in the a regime and the von
measurements 2 and in light !* and neutron
which describe the decay of S(q, t) are knowr
dependence has not been studied in detail. 7T
understanding of a number of experimentally
ever, some of the detailed MC predictions are
the MC description clearly fails to account for

to and lower than T.. It is generally believed

Schweidler relaxation are seen in dielectric
scattering !* experiments. The parameters
n to be ¢g-dependent, but the nature of this
‘hus, the MC theories provide a qualitative
pbserved features of glassy relaxation. How-
not in agreement with experiments 1° and
the behavior observed at temperatures close

3 that this failure arises from the fact that

MC theories do not take into account activated processes involving transitions between

different local minima of the free energy which
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are supposed to develop as the temperature




is lowered below the equxhbnum freezing temperature

In contrast to MC theories which portray the glass transition as being purely dy-
namic in nature, there have been a number of attempts 1¢ = 19 to develop a ‘thermody-
namic’ theory in which some of the interesting behaﬁor observed near the glass transition
is attributed to an underlying continuous phase traﬁsition. These attempts have been
motivated by the fact that the observed growth of the relaxation time in so-called ‘fragile’

liquids 2 is well-described by the Vogel-Fulcher law 2°

| t* = r,e’gﬁ:' | . (1.1)
where 7, is a characteristic microscopic time, va is a dimensionless constant and To is a
characteristic temperature which is found to be well below the conventional glass transition
temperature Ty,. This law suggests the possibility of a so-called ‘ideal glass transition’
that would take place at the temperature T, if thermodynamic equilibrium 2! could be
maintained down to this temperature. Such a transition is also suggested by the fact 2 that
the Kauzmann temperature 22 at which the entropy difference between the supercooled
liquid and the crystalline solid extrapolates to zero is close to Tp. Since in practice the
system falls out of equilibrium at temperatures close to Ty, a direct experimental test. of
the existence of such a transition is not possible. Also, any calculation that explicitly
demonstrates the existence of such a transition in a physically realistic system is not yet
available. Thus, the ‘ideal glass transition’ scenario remains essentially speculative. In this
. approach, the growth of the relaxation time is attributed to a growing correlation length
which would diverge at the ideal glass transition. Two recent numerical studies?® * 24 which
looked for‘such a growing correlation length did not find any evidence for its existence.
A recent experiment 2° , on the other hand, has presented evidence for the existence of a

length scale that grows as the temperature is lowered below the crossover temperature T..
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The static and dynamic properties

sively by molecular dynamics (MD) simulatiln

method restricts such studies to simple mode

short (of the order of 10~? sec). In spite of

o: dense liquids have also been studied exten-

26 = 30 The very nature of the simulation

1 systems and to time scales which are rather

these limitations, MD simulations have pro-

duced a number of interesting results which ku'e in qualitative agreement with predictions

of MC theories and results of experiments (su

nique 3! ) which have time scales comparable

leads to the interesting and useful concluSioxE

be sufficient for understanding the basic phy

ch as those using the neutron spin-echo tech-

to those of the simulations. This observation

that a study of simple model systems may

ics of the glass transition.

It is evident from this brief survey of the current status of the glass transition

problem that an obvious need exists for the
methods which may address some of the outst
paper, we describe the results obtained from t
a study pf the dynamic behavior of a dense har

method we use consists of direct numerical int

development of new analytic and numerical

anding issues related to this problem. In this

he application of a new numerical method to

d-sphere liquid near the glass transition. The

egration of a set of Langevin equations which

describe the nonlinear fluctuating hydrodyngm.ics (NFH) 32 of the system. Information

- about the static structure of the liquid is incor
free-energy functional which has a form sugge
Recently, it has been shown 34 that the R
mean-field description of the statics of the gl

a numerical procedure was used to locate I

porated in the Langevin equations through a

sted by Ramakrishnan and Yussouff (RY).33
Y free energy functional provides a correct
ass transition in this system. In that work,

bcal minima of a discretized version of the

RY free energy appropriate for the hard sphere system. A large number of glassy local

minima with inhomogeneous but aperiodic density distribution were found to appear as

the average density was increased above the
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takes place. At higher densities, the free energies of these minima were found to drop
below that of the minimum representing the uniform liquid signaling a mean-field glass
‘transition. The success of the RY free energy functional in providing a correct description
of the statics of the glass transition of the hard sphere system suggests that a good starting
- point for a study of the dynamics of this system would'be. obtained by incorporating this
free energy in the appfopriate NFH equations.

A number of important issﬁes are addressed in our study,of the dynamics. By
comparing the results of our calculations with exiétirig MD results 26 on the same system,
we are able to test the validity of the NFH description which is cast in terms of coarse-
grained number and current density variables instead of the coordinates and momenta
of individual particles. The correctness of the NFH equations we use, although usually
taken for granted, is #ot obvious in view of the fact that the ﬁydrodyna;nic terms in these
equations describe the physics é,t relatively long length scales, whereas the terms arising
from the free energy functional involve length scales of the order of (or smaller than) the
interpartiéle spacing. In the RY free energy functional, information about the microscopic
interactions is incorporated in the form of the Ornstein-Zernike direct pair correlation
function 3° of the liquid. This appears to be adequate for a correct description of the statics
of the freezing of the liquid into both crystalline 33 and glassy 34 states. One of the questions
we address in the presént study is whether this is also sufficient for a correct description of
the dynamic behavior. Two numerical studies of NFH equations describing the dynamics
of dense liquids have been reported recently 3¢ * 3° . The main difference between these
studies and the present one is thaf the equilibrium structure of the liquid was treated
only in an approximate way in the earlier calculations. Consequently the results of these

calculations could not be compared directly with MD data. The results of these calculations
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did not exhibit some of the features (such as'two-regime decay of correlations) generally
associated with glassy dynamics, although non-exponential decay of correlations often
associated with its onset was found. In Ref. (37), it was suggested that this failure arises
from the approximations made in the treatment of liquid structure. The present study
pfovides the opportunity to check whether this explanation is correct and to investigate

in general the role of static structure in the dynamics of a dense liquid. Further, the MC

equations describing the dynamics of dense liquids can be derived 67 from a perturbative
treatment of the NFH equations we consider in the présent study. Apart from numerical
errors arising from spatial discretization and the integration procedure, our treatment
of these equations is exact. In particular, o numerical solution of these equations is
obviously nonperturbative, therefore, a comparison of the results of our calculation with
MC predictions provides a way to test the validity of some of the approximations made
in the MC approach. Finally, by monitoring which minima of the free energy are visited
during the time evolution of the system we are able to determine whether the observed
dynamic behavior arises from nonlinearities of density fluctuations in the liquid or from
transitions among different glassy minima of the free energy. It is not possible to distinguish
between the effects of these two kinds of processes in conventional MD simulations.

We have studied the time-decay of S(g,t), the spherically averaged spatial Fourier
transform of the time-dependent density correlation function of the hard-sphere liquid,
for different values of wavevéctor ¢ and for a number of values of the reduced density n*
(n* = poo, where p, is the average number density and o is the hard sphere diameter)
in.the range 0.75 — 0.93. It was found in Ref. (34) that a hard sphere system described
by a discretized version of the RY free energy exhibits a crystallization transition near

n* = 0.83. Since the present calculation uses|the same discretized free energy as that of
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Ref.(34), the system may be considered to be in the ‘supercooled’ regime for a large part
of the density range considered by u;. The numerical efficiency of the Langevin dynamics
arising from the use of coarse grained variables enables us to verify that the statics of the
system remain stationary throughout the long time intervals that we consider. The ob-
served dynamic behavior described later in detail exhibits a number of characteristic gléssy
features. These include stretched exponential decay of correlations, two-stage relaxation,
and Vogel-Fulcher growth of relaxation times. Our resqlts are in agreement with existing
MD data?® on the dynamics of the hard-sphere liquid and in qualitativé agreement with
other MD results obtained for similar but different systems. This observation establishes
the correctness of the NFH description used in this work and also demonstrates that the
RY free energy contains thé essential physics of the dynamics of this system. Our calcu-
lations also reproduce qualitatively a number of predictions of MC theories, however, we
find significant deviations from some of t'he quantitative MC predictions 38 for the glassy
kinetics of the hard-sphefe system. Our study indicates that the onset of glassy features in
the decay of S(g,t) occurs at relatively lower densities for wavevectors close to the first and
second peaks in the static structure factor. This result clearly illustrates the important role
played by the equilibrium structure in the long-time dynamics of the liquid. The observed
| g-dependence of the decay of S(q,t) also suggests that the glassy behavior sets in earlier
(at lower densities) at shorter length scales. Finally, the system is found to fluctuate about
the liquid-state minimum of the mean field free energy in all our simulations.

The rest of the paper is organized as follows. Sectior II contains a description of
the model considered by us. We first define the model, discuss its statics and derive the
appropriate NFH equations. By defining appropriate units of length, time and mass, these

equations are then written in dimensionless form. The method used by us to integrate

9




these equations forward in time is described in Section III. We also discuss in this Section

1
the physical quantities measured, the data col

other related matters. The results obtained

detail in Section IV. We also compare and con

MD simulations of the hard-sphere and similq
II. THE ]

We have explained in the Introduction
of a set of Langevin equations appropriate to
discussing the statics of the model. These ar
functional of the two fields in the problem: t

g(r,t). This free energy has two terms:
Frot[p, g] = (mo/2

where F[p] is of the RY form 33:
Flp] = kBT ( / dr(plog(p/po) — 6p

In (2.1) and (2.2) p is the number density i

field from its average value py. T is the ten

2
) / dri—o + F[p]

lection procedure, tests of equilibration and
from the numerical work are described in
trast our results with those obtained from

systems and the predictions of MC theories.

VIODEL

that we will analyze the numerical solution

a dense hard sphere fluid. We begin here by
e given in terms of a free energy which is a

he density field p(r,t) and the current field

(2.1)

)—(1/2) / drdr'C(r — r')5p6p') (2.2)

ield and ép = p — po the deviation of that

1perature and kp the Boltzmann constant.

In the first equation mo denotes the mass of a hard sphere. Finally, C(r — r') is the

direct correlation function. The inclusion of t

upon linearization of the logarithm in the firs

obtains the usual expression for the static stry

For hard spheres a simple expression for C (r
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his function in the free energy ensures that -
t term on the right hand side of (2.2) one
icture factor of a simple fluid in terms of C.

— r') can be obtained in the Percus-Yevick




approximation 35; . _ !

C(E) = =M = bnphaf — (1/Dmsh€% £<1 (2.30)

C(E)=0; ¢£€>1 | (2.3b)

where § = |r —r'|/0, n; is the packing fraction:

s = (7/6)poo® = (x/6) n* (24)
and:
A= (142902 /(1—np)t (2.5)

A2 = =(1+75/2)%/(1 = ny)* (2.6)

'We have written Po in the denominatqr of the g2 term in Eq.(2.1), rather than p as in
Ref. (37). This is necessary to avoid double counting of the kinetic energy: as pointed out
in Ref. (39), if we used p we would obtain upon functional integration with respect to the
gaussian variable g2 a log(p) contribution already included in Eq. (2.2).

It is convenient to choose units at this point, which will sirhplify subsequent expres-
sions. We take mo as the unit of mass. We choose also a unit of length, &, which we shall
later identify with the lattice constant of the computational lattice. For the unit of time
we choose 3 such tfxat:

to = h/c | - (27)

where c is the speed of sound. This choice of the unit of time is motivated as follows: the
~ characteristic phonon time for the system is tp = 1/(cq) wheré g is a wavevector. Hénce
tp/to = 1/(gh). We shall choose below the ratio o/h so that gh is of order unity in the
wavevector range of.interest. Hence the choice (2.7) corresponds to a characteristic time

of order ¢;. The same choice was taken in Ref. (37).




We then define the dimensionless quantities:

n = |ph? (2.9)
j=gh’/c | (2.10)

and introduce also the dimensionless free energy F[n,j] in terms of the above quantities:

Fln,j] =(1/2) )

F,[n]=K (/ dx(nlog(n/ng) - én) <

where

K = ;

[ ax2= + Foin)
o

(2.11)
(1/2) / dxdx'C(z — x')6n5n') (2.12)
ksT

m‘:cz (2.13)

The quantity K is for hard spheres a function of the density only. This follows from:

62=

n

1
nopok

(2.14)

where the compressibility « is related to the structure factor S(q) by kT pox = S(q = 0).

The latter quantity can straightforwardly be
K =(1+(47/3)n" (A +(

which indeed depends on the density only. T
above.
The static properties of a system desc

to glassy behavior have been discussed in the

1

calculated from (2.3) and one obtains:
9/2)1s22 + (ns/4)M1)) ™ (2.15)
he quantities A;, A2,7y, and n* were defined

ribed by the RY free energy, and its relation

literature 34-3% and in the Introduction. We
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turn now to the dynamics. The hydrodynamic variables are of course the fields n and

kY

j. We denote, following the ususal notation, this set of Langevin variables as {,} =

{n(x,t),j(x,t)}. Formally, the Langevin equations can be written as ¢ 40 :
6¢'a oF : \
= Va[¥] - Z Tapgss +Oa (2.16)

where I' is the matrix of transport coefficients, © are the gaussian noise fields, and the V,
are the si:reaming velocities, which incorporate the nondissipative part of the equations of

motion. Proceeding as in Refs. (6) and (40) one oi)féins:

§F
Vo =-— XJ: vj[n(x)a—jj(T)] (2.17)
Vii = —n(x)V—2 5 ( ) Zv J'(")’:(") 3 j_,-(x)vii’;‘(—;‘l (2.18)

J
where F' and F;, are defined in Eqgns. (2.11) and (2.12). Following then on precisely as in

Ref. (37) we obtain, after straightforward algebra the equations of motion:

200 4 (1/m0)V(ni) = 0 (2.19)

and:
aji 5Fn

5= "G T (l/nO)z,-: Viliigs) = (1/no) ;jjvijj +(1/no)nV%i+©;  (2.20)

where 7 is the bare shear viscosity in our units 4! . The noise fields ©;(x,t) satisfy the

second fluctuation-dissipation theorem in the form:

< 0i(x%,8)0;(x', ') >= ~2K Mynob; j VZ6(r — r')6(t — t'). (2.21)
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We recall that in these equations, and in the remainder of the paper, the time is

measured in units as given in (27) In (2.21) the angular brackets denote the thermody-

namic average. The quantity ) is a dimensionless measure of the equilibrium fluctuations.

The average value ny is related to n* = no® through ng = n*(h/o)3. For hard spheres, 42

one can write 7 in terms of K and the density in the form:

n = (k/o)*VEK[5/(16v/m)][g(c)"" +0.8

where g(o) is the pair correlation function
formally slightly different from the correspor
chiefly in that there is an additional convec

differing factors of n/ny. These differences cas

ng rather than n in the denominator of the fir

(27n*/3) + 0.761(27n*/3)?g(o)]

(2.22)

at contact®® . Egns (2.19) and (2.20) are

1ding equations for the model in Ref. (37),
tion term in the latter equation and some

n be directly traced down to the presence of

t term in (2.11), in other words, as discussed

above, to the fact that we now include explicitly a logp term in the kinetic energy part

of F,. While conceptually important, these differences are not numerically significant in

the present problem, where we are dealing with a cold, dense fluid and the fluctuations in

n/ng are not large for the parameter values o
A salient feature of Eq.(2.20) of conside
which involves the direct correlation functiorn

Thus, we have to solve in this case not merel

interest.
rable importance is that the term in 6 F,, /én
1 C is an integral over space with range o.

v a set of partial differential equations with

. stochastic terms but as far as the spatial dependence is concerned an integrodifferential

equation. This complication makes this a d

methods used will be explained below.

ITI. MET
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ifficult pi'oblem to solve numerically. The
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In this Section we discuss the methods we use to solve our equations of motion,
the physical quantities we focus on, the collection methods and statistics, the range of
parameter values we have studied, and related matters.

Our objective is to study the dynamic correlations of our system as deﬁngd below.
In order to do so we solve numerically Eqns. (2.19) and (2.20) on a three dimensional
cubic lattice of size N3. The main complication we must consider is the spatial integral
involving the direct correlation function C(r). For each integration step this integral must
be done N3 times since it is computed over a sphere with its origin at each one of the
lattice sites. To avoid repeated calculations we create, in thé initialization of our program,
a table listing for each lattice site the location of all neighboring sites to be integrated over
and their corresponding values of C(r). Additionally, since the sphere is imbedded on a
coarse discrete lattice we use a finer mesh than defined on the original lattice to improve
the accuracy of the integration. The procedures employed to integrate the remaining set
of differential equations over time and generate the gaussian noise are identical to those
used in Ref. (37) and references cited there.

We will focus our analysis on the time dependence of the dynamic structure factor

S(a,):

S(q,t) = / Preit=x) < sn(x,0)6n(x', ) > 3.1)

Specifically, we will consider the angular average of S(q,t). On a cubic lattice, it is

appropriate to define the effective length of q, g, as:
¢> = 2(3 — cos gz — cos gy — cos g ), (3.2)

and we perform angular averages of g-dependent quantities by averaging over values of q

in the first Brillouin zone, in a spherical shell of mean radius (as given by ¢) corresponding
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to that of the vector (#Q/N,0,0) and thickness #/N. The value of Q ranges from 1 to
appfoximately 31/2N, although only a smaller range is free of finite size effects. We will,
for simplicity of notation, denote quantities|averaged in this way by simply dropping the
vector symbol from the wavevector argument: S(g,t), and often we will indicate the values
of ¢ by the ‘shell number’ Q. |

Next we turn to our choices for parameter values. The correlation functions that we
are interested in are spatially short ranged. [t is therefore not necessary to use extremely
large lattice sizes. The results presented were obtained using N = 15. As in Ref. (37),
this proved to be adequate. We checked that finite size effects do not affect the dynamics |
in the wavevector region for which results are presented here, (5 < @ < 15, see Section
IV) by performing a portion of the calculations (with reduced statistics) at N = 25. Our
“choice of the ratio o/h which fixes the length scale for the problem, is dictated by two
concerns. The first is that we wish to be able to study the dependence of the dynamics
~ on wavevector in the main region of interest from the point of view of the static structure
factor S(g) = S(g,t = 0). Thus, we wish to choose our ﬁnit of length so that the main
peak in S(g) falls in the middle part of the range of wavevectors within the first Brillouin
zone of the computational lattice. Secondly, to avoid crystallization at the higher densities
studied, we have found that we need N and|c to be incommensurate. Selecting o = 4.6
leaves gmoz well away from the zone edge for all densities, near the Q = 8 shell, and is
clearly incommensurate with N. The density ranée we have investigated includes n* = 0.5,
6.75 < n* <0.90 at 0.05 intervals, and n* = 0.93. The first of these is well within the
dilute liquid region, and was used only to check that limit. As explained in Ref. (37), it is
necessary to include the parameter )\ in order to represent the actual fluctuations through

gaussian noise. Its precise value is not crucial, since it essentially amounts to a choice of
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the normalization of the static fluctuations S(q), but it clearly must be small since the
density must always be positive. We have taken hefe A = 0.001. The remaining parameters
K and 7 are functions of n* and may be calculated as discussed in the previous Section.

We turn now to the very important question of data collection. We are particula.rly
concerned with ensuring that within statistical error the averages collected be equilibrated,
that is, stationary in the time scales studied. We find that, with the data collection
procedure as outlined below, the initial conditibns that we use to begin the integration of
the equations of the motion are unimportant (except in that they determine to some extent
the duration of transient behavior) and we usually take them to be a flat distribution of n
equal to its average value, ng, and vanishing currents. We then monitor the current-current
correlations as a function of running time to. After a felatively short time ¢ of order 10 the
current correlations reach their equilibrium value as given by the equipartition theorem. It
might be tempting to assume that the density correlations have also equilibrated by that
time and such an assumption is sometimes made in MD work, but we find that for our
system at least this assumption does not hold.

To study the density correlations, we store, for running times to > tx, where ¢ is
the time measured from the initiation of the computation, at a large number of periodic
time bins, the products of the form én(x,t)én(x',to + t) for all x x’. We then monitor

the spherically averaged spatial Fourier transform, S(g,t,%o) of the quantity:

S(x, x’,t,to) =< 5n(x, to)&‘n(x’,to + t) > (3.3)

where the average is understood to be over a number n, of time bins separated by an

interval At. The time range covered by the averaging process is tp = npAt. In order

for S(g,t,to) to be an adequate approximation to the thermodynamic average S(g,t) it is
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required that it be not only independent of tg, but also independent of tg within statistical

error. Dependence on the ¢y indicates the presence of a transient. Dependence on tg

indicates that the averaging time is too short for ergodicity to hold. A very important

point is that we find that the minimum valu

is not tx, but it is of the order of the slowest

of the transient time for density fluctuations

characteristic decay time ¢* in the system. As

discussed in the next Section, t* is a strongly increasing function of density, and is much

longer that the equilibration time for the kinetic energy. Similarly, it is necessary for the

average to include a range tg of order of seve

densities has considerable oscillations over ¢

the density an estimate for t* can be found bj

the behavior of ¢* with density turns out to

Working within these constraints, obta

averaging over a large number of time bins

In addition, in order to eliminate any possibi

transient, we have repeated the whole proce
results presented here correspond to a com
depending on the density at all densities we
a total of 600 was taken. These very large n

numbers in Ref. (37), should be considered

standard simulation for a nonequilibrium p1
lead to very good quality data. The cost of ol
a total of 200 hours of Cray2 and Cray X/MI

We have also verified that the quantit

procedure and over the time ranges just de

1

ral times t;. We find that S(g,t,%0) at higher
lime ranges smaller than t*. As one increases
r extrapolation from the lower densities, since
obey the Vogel-Fulcher law 20, |

ining statistically reliable results still requires
Lvhich means very large total running times.
iity of spurious correlations due to a peculiar
Jure three to five times at each density. The
pined total of between 1000 and 3900 bins,
present reasults for except n* = 0.75 where
umbers, much largef than the corresponding
as comparable to the ‘number of runs; in a
roblem such as spinodal decomposition and
btaining the data rises accordingly., of course:
P time were required.

y S(g,t = 0) calculated following the above
scribed ié consistent with the purely static

3




result. To do this, first we calculate the stafic result: we evaluate numerically, using fast
Fourier transforms, the discrete Fourier transform C(g) of (2.3) for a system of the size
considered, and we obtain from that result the static result S,(g) & 1/(1 — n*C(q)) . To
obtain this equation one must expand the first term in (2.12) to second order in én. The
comparison between S(g) and S,(g) is shown in Fig. 1. We can see that the two results
are in very good agreement at the densities plotted. At higher densities, the computed
result represents a higher degree of order than that calculated from the statics. This is
due to the fact that the expansion of the free energy just alluded to is not as well justified
.a.t those densities. When averaged over time scales of less than several times t*, S(g,0)
oscillates broadly about its stationary value. Our results for S(g,0) at all densities studied
show that we are dealing with a liquid-like state here. If we'use a commensurate value of
o, or if we increase n* to 0.95, we find indications .tha.t crystallization begins. We plan to
study this crystallization question in future work.

To analyze our results, it is convenient to introduce the normalized quantity C(q,t)

defined as:

S(q,t)

C(g,t) = Sq,t=0)

(3.4)

where, we recall, we are dealing with angularly averaged quantitiés as explained above
with ¢ defined in (3.2). We will then, in the next Section, characterize the decay for this
quantity for all values of vq. By averaging C(g,t) over a large effective number of runs we
are able to obtain results sufficiently smooth to confidently fit functional forms to the data

as the next Section demonstrates.

IV. RESULTS AND DISCUSSION
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We now turn to the discussion of tllhe normalized dynamic structure factor (see

Eq. (3.4)), C(g,t). We have first verified th

at at low densities (n* = 0.5), this quantity

decays exponentially at all wavevectors studi{ed. We will consider in what follows only the

more interesting range 0.75 < n* < 0.93. We
up to either the maximum time for which we

under consideration or up to the time where

include in all of our fitting attempts all data
have data at the particular values of n* and ¢

C(g,t) is so small that it fades into the noise.

This occurs when C(g,t) < 0.025 except in éome very few cases where the data becomes

noisy at the 0.05 level. As in Ref. (37) the
component which causes the relative errors t

begin by attempting a fit to a stretched expo

C(g,t) =

where the parameters 79 and 3 are functio

€

statistical noise seems to have an additive

b increase when C(g,t) becomes smaller. We

nential form:

~(t/70)? (4.1)

of n* and ¢q. This step is motivated in part

nI
by the expectation from preliminary inspection of the data that there is a wide region of ¢

and n* values for which this form is adequate
of the data particularly in the lower density 1
Even in the cases where the data is not well
7o(g.n*) still gives a uéeful figure of merit or o
of this fit are in Tébles I and II. We have indi
to the above form is a good fit to the data ancd
by enciosing the latter cases in parentheses. I

and by the x2 values that we obtain.

The salient points of the results in Tak

at constant density a very strong function of

shells close to where the static structure facto

20

Indeed we find that for a considerable part

region this turns out to be a satisfactory fit.

fitted by the form of Eq. (4.1), the number

verall estimate of the decay time. The results

cated in these Tables the cases where the fit
1 those in which it is actually not the best fit

‘he quality of the fits can be judged visually

le I are apparent: the characteristic time is
g, and it has a maximum at the wavevector

r S(g) has its maximum. A less well defined




secondary maximum at wavevectors close to the second maximum of S(gq) can also be
discerned. The characteristic time is not however of the simple form 79(g,n*) x 15(q)
as one might guess naively: it is neither proportional to S(g) at constant density (recall
n depends on the density only) nor proportional to n at constant g. This indicates a
strongly q-dependent renormalization of the transport characteristic times. The stretching
parameter § (Table II) remains relatively close to unity, although stretching is evident as
one increases the density particularly at shorter wavelengths. We note that the entries in
the Table corres;;onding to the smaller values of 3 are in most cases not good fits to the
data, as we shall discuss below.

It is apparent from our tabulated results that the slowest overall decay is found, in
our spherically averaged results, at the shell number @ = 8, near the main peak in S(q).
We consider then the main ‘decay time 7o at that wavevector, as representing the slowest
transport time at that density t*. We plot in Fig. (2) this quantity as extracted from Table
I as a function of density. We have fitted this quantity to the Vogel-Fulcher 2° law (1.1)
which when the density, rather than the temperature, is the externally controlled variable,

takes the form:

t*(n*) = ae?/ (v (4.2)

where v = 1/n*. As shown in the Figure, we find an excellent fit with v, = 0.8097
corfesponding to n; = 1.23. This is in excellent agreement with the analysis of MD data
of Ref.(26) where the result n} = 1.21 was obtained.
We now turn to the decay modes for which the stretched exponential is not a
satisfactory fit. We have examined the data very carefully and attempted a large number
of fits to different proposed decay forms. We find that the reason for the failure of (4.1)

is usually that the decay is a two step process, or in some cases that the data appear to
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decay to a finite constant in the time range st

best form that fits this portion of the data is :

C(g,t)=(1-fe

where it is understood that the time scales are

tudied. Accordingly, we have found that the

-t/ 4 gt/ (43)

well separated, 7' > 7. One can also include

a stretching exponent in the second decay, but we have found it usually unnecessary and

we were leery of multiplying the number of

(4.1) is a particular case of (4.3) with f =0

fitting parameters. We note that the form

oT, qltematively, T =~ 7'. It also represents a

decay to a constant (quasinonergodic behavior) whenever 7’ = oo, which of course should

be understood as meaning that the second de
with f finite, (4.3) yields a region of apparent

T € t € 7' and the time scales are widely

cay time is beyond the region fitted. Finally,
power law decay of the von Schweidler when

separated. We find that this very general

form fits well (again, as measured by the appropriate reduced x? values and visually) all

cases where as indicated by the parentheses i
satisfactory. The parameters 7, 7/, and f areg
to be very close to unity in all of these cases. I

of our results and the corresponding best fits

n Tables I and II the single decay fit was not
iven in Table III. The parameter 3 turned out
0 Figures (3) and (4) we show a wide selection

according to the parameters in Tables I-1II.

For every density we have two Figures, which display the decay of C(g,t) at that density

for a sampling of wavevector values. The val
include all @ values where the decay is not ¢

omitted to avoid excessive clutter. Keeping i

ues shown are Q = 6,8,10,12,13,14. These
of the form (4.1). Values skipped have been

n mind the Figures and the three Tables, we

see very clear trends. First, as one increases the density, nonexponential behavior crops

out first at relatively larger wavevectors, th
sensible and was observed also in Ref. (37).

values beyond the main peakﬂin' the structu

2

2

at is, shorter distances, which is physically
Specifically, this behavior appears first at

re factor, in the region of the second peak.




As the density increases further the beginning of the same phenomenon is observed at
smaller wavevectors at or near the main peak in S(q). This 1;henomenon appears to be
related to the ¢ dependence of B found in mode coﬁpling calculations* . The characteristic
times increase strongly with density, and so does their relative separation. They are also
strongly ¢ dependent. On the other hand, f appears to depend rather weakly on n* but
more strongly on g, and its ¢ dependence appears also to correlate with that of the statics.
From the point of view of (4.3) it appears that the lower density stretched exponential
form (4.1) should be viewed as arising from a confluence of the time scales, rather than
from the vanishing of f.

We monitor also the value of the mean field free energy during the computation.
We find that the system fluctuates around a liquid like state minimum. We can therefore
attribute the observed nontrivial kinetics to the effects of nonlinearities in the density
fluctuations of the liquid.

It is very instructive to discuss our results in connection with MD work, with mode
coupling theoretical work on glassy systems, and with experiment. Some caution is re-
quired, however, since it must be kept in mind that we are dealing here with relatively low
densities: the degree of ‘supercooling’ that our choices of N and o achieve is limited in
comparison with what can be don¢ experimentally. We have not used other procedures,
such as mixing spheres of two different sizes, which might allow further increases in the
density. There are a variety of decay regimes and forms reported in the literature for glassy
systems. A scenario in favor of which some consensus has gathered ° is described in the
Introduction. We believe that our results at higher densities and shorter distances, in the
region where the full form (4.3) is obeyed might be interpreted within the above scheme

as representing a first decay which combines phonon and J -relaxation, leading eventually




to the second decay which might then be identified with a -relaxation. In some cases only

T

the quasinonergodic regime is reached in our computations. The von Schweidler regime

can arise, as explained above, as a precursoﬁ of the second decay. The phonon assisted

decay does not appear as a separate regime in

our data, which is possibly due to the coarse

graining nature of Langevin dynamics with respect to microscopic times. We have verified

that an inverse power law does not fit the ear

exponential form.

lier portion of our data as well as a stretched

Comparison with MD work is made more difficult by the fact that MD results are

for different systems, such as binary soft sphere mixtures (see e.g. Refs. (28) and (30)) or

Coulombic systems (29) . However, as resul
consistent with each other, a qualitative com]
comparison of MD and Langevin time scales is
here it might be adequate to simply assign tc
0.1 ps. We then find that the results of Ref.
our higher density results, while those of ]
Ref.(30) which covers higher densities than o
to zero or to a small value, as we do, and {
equilibrium when the kinetic energy equilibr;
found, for our dynamics, erroneus. Despite
- mind, our results are consistent with those
first a glitch at very early times, which they
modes separated by a slow region, which tl
do not z;.ttempt to quantitatively character;

exponential, but they do obtain an expone

ts for different MD systems are qualitatively
parison with our results is possible. Although
; in general a vexing problem, for our purposes
> our phonon-based time unit a value of order
(28) correspond to a shorter time range than
Refs.(30) and (29) are comparable. Neither
urs, nor Ref.(29) follow C(g,t) until it decays
they assume that their systems have reached
ates, an assumption which we checked and we
all of these caveats, which should be kept in
of both Refs. (30) and (29). They observe
attribute to phonons, and then two relaxation
ey identify with 8 and o- relaxations. They
ize the f regime by either a power law or an

ential form (stretched at higher densities) for
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the second decay. As stated above, our data does not show any early time glitch, which
could. be due either to Langevin coarse graining, or to the glitch being an artifact of poor
system equilibration. Except for this, our results are consistent with MD in that a naive
| extrapolation &f our results to higher densities wouid predict that the time sce.les rand 7'
in (4.3) become more separated, and possibly la.rger values of f appear. We have verified
that the MD data of Ref.(29) can in fact be fit to the form (4.3) with appropriate parameter

values. Thus we conclude that our results are consistent with MC as well as MD.
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FIGURE CAPTIONS
Fig. 1. The static S,(Q) 'calculated as expla.inéd in the text, compared with the ﬂumerica.l _
results for S$(Q) = S(Q,0). Both quantities are spherical averages plotted vs. wavew;ector
a.sv given by the shell number @ aeﬁned in ﬁhe text. The curves shown are for n* = 0.75
(55(Q) solid line, S(Q,0) medium dashes) and for n* = 0.80 (static results short da.shés,»
dynamic results shown as dots).
Fig. 2. The characteristic decay time, t* plotted as a function of density n*. Data is fitted
to a Volger-Fulcher form as explained in the text. . ST |
Fig. 3. The nbrmalized correlation function C(g, ) plottéd vs. t for Q=14 (fop curve),12,
and 6 (bottom curve). The data and the best functional fits (smooth curves) as explained
_in the text are shown for (a) n* = 0.75, (b) n* = 0.80 , (c) n* = 0.85, (d) n* = 0.90, and
(e) n* =0.93. | |
_Fig. 4. Aé_ in the previous figure but for Q= 8 (top curve) ,13, and 10 (bottom curve) at
t = 100.




- TABLE CAPTIONS
Table I.- The parameter 7 of Eq.(4.1) as a function of density as given b3; n* and wavevec-
tor as given by shell number Q. The p#renthe$es indicate data sets for which the fit is not
satisfactory. These cases are fitted by Eq. (4.3) and Table IIL
Table II.- The parameter 8 of Eq.(4.1) as |a function of density as given by n* and

wavevector as given by shell number Q.

Table III.- Thé parameters 7,7', and f of Equation (4.3), for the appropriate range of n*
and Q vaiues, (see text and Tables I and II). The va.luééof #' indicated by infinity must
be interpreted as being beyond the time window fitted. Tﬁe three daggered values of 7'
indicate cases where an exponent A’ diﬁ'erel;t from unity was réquired. In fhese cases f3

was set to unity, so the number of parameters (was the same.
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Table I

Q\n* | 075 | 0.80 | 0.85 0.90 0.93
6 32 37 38 39 40
7 81 102 133 159 156 |
8 | 130 183 424 | (1140) | (227) .
9 | 103 131 208 344 501 |
10 71 87 112 149 192
11 93 108 | 125 173 186
. 12 68 | (105) | (118) | (157) | (186)
| 13 | (128) | (197) | (245) | (347) | (430)
14 | (134) | (150) | (247) | (221) | (301)
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Table II

Q\n* | 075 | 0.80 0.85 0.90 0.93
6 | 087 0.84 0.82 0.89 0.84

7 | 095 1.00 0.82 0.93 0.90

8 | o098 0.99 084 | (0.78) | (0.94)

9 | 096 1.00 1.01 0.94 0.89

10 | 1.00 0.95 1.04 1.03 0.99

11 | o0.84 0.91 0.94 0.90 0.93
12 | 083 | (0.66) | (0.78) | (0.72) | (0.56)
13 | (0.74) | (0.69) | (0.67) | (0.66) | (0.60)
14 | (0.69) | (0.77) | (047) | (0.54) | (0.32)
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~ Table III

0.80

Q\n* | para. | 0.75 0.8 | 090 | 093
8 r . . - 561 942
' . - . 3115f | 4231%

f - - - 0.34 0.45

12 T - 83 98 131 149

' 7! - 00 00 00 1%
f - 008 | 0.07 | 007 0.09

13 T 51 64 104 107 171

| | 239 397 | 615 761 | 1210
f | o055 056 | 044 | 0.53 0.42

14 r 94 112 135 | 159 219
T 7021 - 00 00 00

f 0.13 014 | 0.18 0.16 0.14
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