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Extended self-similarity in kinetic surface roughening
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We show from simulations that a limited mobility solid-on-solid model of kinetically rough surface growth
exhibits extended self-similarity analogous to that found in fluid turbulence. The range over which scale-
independent power-law behavior is observed is significantly enhanced if two correlation functions of different
order, such as those representing two different moments of the difference in height between two points, are
plotted against each other. This behavior, found in both one and two dimensions, suggests that the ‘‘relative’’
exponents may be more fundamental than the ‘‘absolute’’ ones.@S1063-651X~98!50604-6#

PACS number~s!: 47.27.Gs, 05.40.1j, 83.20.Jp
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Scale-invariant spatiotemporal behavior is observed i
wide variety of far-from-equilibrium systems. In analog
with the ‘‘universality’’ found in the equilibrium scaling be
havior of systems near a second-order phase transition,
interesting to inquire about the similarities between differ
nonequilibrium systems exhibiting scale-invariant behav
In this paper, we point out a remarkable similarity betwe
the scaling behavior of two well-known and extensive
studied nonequilibrium systems: turbulent fluids and gro
ing interfaces. Krug@1# discovered a similarity between th
intermittent multiscaling behavior of structure functions
strongly developed turbulence@2,3# and the scaling proper
ties of correlation functions of height fluctuations in simp
solid-on-solid models of kinetically rough epitaxial grow
@4# with limited surface mobility. The multiscaling propertie
of these growth models have been subsequently investig
in detail @5# and a mechanism for this behavior has be
proposed@6#. In this paper, we demonstrate that theextended
self-similarity ~ESS! @7# exhibited by the structure function
in fluid turbulence is also present in the behavior of corre
tion functions of height fluctuations in these growth mode
and thereby establish that the analogy betweendeterministic
turbulence in fluids andstochastically driven interface
growth is remarkably deep. We emphasize that the ESS
nomenology in our discrete stochastic growth model is f
mally identical to that found in the intermittent fluid turbu
lence problem, establishing a precise one to o
correspondence between these two seemingly comple
different physical processes. While the exact reasons for
precise analogy between these two distinct problems rem
unclear at this stage, we speculate that the existence o
infinite number of relevant~marginal! operators in both case
may be the underlying mathematical cause for this anal
@6#.

We begin by pointing out the analogy@1# between fluid
turbulence and surface growth. In fully developed turb
lence, scaling behavior is observed in theinertial range h
!r !L, wherer is the length scale of interest,L is the outer
integral scaleat which energy is injected into the system
andh is the innerdissipation scale. A measure of the sepa
ration between the inner and outer scales is provided by
571063-651X/98/57~4!/3703~4!/$15.00
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Reynolds numberRe}(L/h)4/3. The qth order longitudinal
structure functionsare defined as

Dq~r !5^@u~x1r ,t !2u~x,t !#q&, ~1!

whereu(x,t) is the component of the velocity at the positio
x at timet in the direction of the relative displacementr , and
the bracketŝ¯& represent a spatiotemporal average. Th
structure functions are believed to exhibit power-law scal
in the inertial range,

Dq~r !'r zq, h!r !L. ~2!

The value ofz3 is known @3# to be exactly unity. The mea
sured values ofzq , qÞ3 differ appreciably from the Kol-
mogorov result@3#, zq5q/3, the deviationdzq[zq2q/3 be-
ing positive for q,3 and negative forq.3. This is the
phenomenon ofmultiscaling that is believed@2,3# to arise
from the stronglyintermittent~violently fluctuating! charac-
ter of the local energy dissipation ratee(x,t) whose spa-
tiotemporal fluctuations may be characterized by the qua
ties ^eq(x,t)&/^e(x,t)&q. These quantities are expected
exhibit a power-law dependence on the Reynolds numbe

^eq&/^e&q'~L/h!mq, ~3!

wheremq.0 for q.1.
In models@1,4–6# of growing interfaces, the role of the

velocity field u(x,t) is played by the variableh(x,t) that
represents the height of ad-dimensional interface at pointx
at timet. In these models, the inner length scale is the latt
spacinga0 , which is usually set to unity. The outer scale
set by acorrelation lengthj that initially grows in time~j
}t1/z, wherez is the dynamic exponent! and eventually satu-
rates~for t@Lz, whereL is the system size! to a value of the
order ofL. Scale-independent behavior of correlation fun
tions is observed for length scales 1!r !j. The correlation
length j, therefore, plays the role of the Reynolds numb
The height-difference correlation functions

Gq~r ,t !5^uh~x1r ,t !2h~x,t !uq&1/q, ~4!
R3703 © 1998 The American Physical Society
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where^¯& now represents a spatial average, are analog
@8# to the structure functions defined in Eq.~1!. These cor-
relation functions exhibit the following scaling behavior:

Gq~r ,t !'r zq8, 1!r !j~ t !. ~5!

The observation@1,5,6# that zq8 is a decreasing function ofq
indicates that these correlation functions exhibit multiscal
similar to that found in turbulence. The quantity that
analogous to the energy dissipation ratee;(]u/]x)2 is the
nearest-neighbor height differences(x,t)[uh(x8,t)
2h(x,t)u, wherex8 is a nearest neighbor of the lattice poi
x. In analogy with Eq.~3!, different moments ofs scale with
different powers of the correlation lengthj,

sq~ t ![^@s~x,t !#q&1/q'j~ t !aq, ~6!

whereaq are found@1,5,6# to increase with increasingq.
In experimental and numerical studies of turbulence

relatively low Reynolds numbers, the range of values ofr for
which the power-law scaling of Eq.~2! is observed is often
very small and sometimes non-existent. ESS in turbule
refers to the fact@7# that the size of the scaling region
significantly enhanced if loguDq(r)u, qÞ3 is plotted against
loguD3(r)u. Since the resultuD3(r )u}r in the inertial range is
exact for the Navier-Stokes equation underlying fluid turb
lence and log-log plots ofuDq(r )u againstuD3(r )u show lin-
ear behavior over a substantially larger range than log
plots of uDq(r )u againstr , ESS plots provide a convenien
way of determining the values of the multiscaling expone
zq . ESS has been used extensively@9# during the last few
years@10–12# to analyze the data obtained from a variety
experiments and simulations. Substantial enhancement o
scaling region has also been observed in log-log plots
uGp(r )u vs uGq(r )u, where p and q are any two unequa
positive integers. The observation of ESS implies that
self-similarity of the velocity field extends beyond the co
ventionally defined inertial range.

We have found that the correlation functions of heig
fluctuations in the Das Sarma–Tamborenea~DT! model @4#
of epitaxial growth in one and two dimensions exhibit pro
erties that are very similar to the ESS described abo
Krug’s original work@1# on intermittent multiscaling in epi-
taxial growth was based on the one-dimensional~1D! DT
model. In this model, atoms are deposited randomly on a
substrate under solid-on-solid condition. If a deposited at
has at least one lateral neighbor, it stays at that site. Ot
wise, the atom moves to a nearest-neighbor lateral site
can increase the number of lateral neighbors by doing so
more than one such sites are available, then the atom m
to any one of them with equal probability. If no such neare
neighbor site is available, the atom stays at the deposi
site. These rules are illustrated in the inset of Fig. 1. The
model has been studied extensively@1,4,5# by simulations.

We first consider the scaling properties of the correlat
functionsGq(r ) defined in Eq.~4!. Figure 1 shows the re
sults forGq(r ), q51 – 4 at timet5105 ~in units of number
of layers deposited! for the 1D DT model with sizeL
51000. The log-log plots ofGq(r ) againstr clearly show
linear behavior for smallr , in agreement with the power-law
form of Eq. ~5!. The values of the exponentszq8 obtained by
us
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fitting straight lines to the initial linear parts of the plots ar
z1850.8860.02, z2850.6760.02, z3850.5460.02, and z48
50.4560.02. The size of the scaling region is, howev
rather small~less than one decade inr !. This is not surprising
because the value of the correlation lengthj}t1/z, z.4
@1,4#, is the order of 15 att5105. The surprising result we
find is that the data exhibit nearly perfect power-law scal
over the entire range 1<r<100 if Gq(r ), qÞ1 is plotted
againstG1(r ) ~see Fig. 2!. Since there is no ‘‘special’’ value
of q in the growth model~in the sense thatq53 is special in
turbulence!, we have chosen to plot the correlation functio
for qÞ1 againstG1 ~other choices lead to equally good sca
ing!. It is clear from Fig. 2 that the range over which scali
behavior is observed is increased by more than an orde
magnitude if one of the correlation functions is plotte
against the other, rather than plotting them as functions or .

FIG. 1. The height-difference correlation functionsGq(r ), q
51 – 4 at timet5105 as functions of the separationr for the 1D DT
model. The straight lines are best power-law fits of the data for
<10. Inset: Rules of the DT growth model. Random deposition
the substrate is followed by nearest-neighbor diffusion if it is
lowed by the local coordination, as indicated by the arrows.

FIG. 2. Log-log plots ofGq(r ), q52 – 4 of Fig. 1 against
G1(r ). The straight lines are best fits to power laws. Upper ins
The local sloped log@G4(r)#/d log@G1(r)# of the q54 plot in the
main figure as a function ofr ~crosses!, and same quantity forL
5100 in the saturation regime~squares!. Lower inset: The scaling
functionsgq(r ), q51 – 4 ~see text!.
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This model, therefore, exhibits ESS that is formally identi
to that found in turbulence by Benziet al. @7#. The extension
of the scaling range is mostly towardslarge scales, which is
similar to the behavior found@13# in turbulence.

The quality of the power-law scaling in theGq , qÞ1
versusG1 plots is illustrated in the upper inset of Fig. 2 fo
q54, where we have shown the variation of the local deri
tive d log@G4(r)#/d log@G1(r)# with r . The observed variation
is less than 10%, indicating that the power-law relatio
Gq(r ,t)}@G1(r ,t)#uq, qÞ1, provides a very good descrip
tion of the data over the full range ofr . The values of the
‘‘relative’’ exponentsuq , obtained from straight-line fits to
the plots of Fig. 2, areu250.7960.02, u350.6460.02, and
u450.5360.02. These values are consistent with the
pected result,uq5zq8/z18 . The upper inset of Fig. 2 als
shows the local slope of a log-log plot ofG4(r ) versus
G1(r ) obtained in the saturation state of samples withL
5100. The two sets of results are nearly indistinguisha
showing that the values of the exponentsuq obtained from
ESS plots are not sensitive to details such as sample size
the length of the simulation. Similar ‘‘universality’’~i.e., in-
sensitivity of the values of the relative exponents to det
such as the value of the Reynolds number and the flow
ometry! has been observed in turbulence@11,12#.

The observation of ESS implies a specific relation amo
the scaling functions@1# that describe the behavior of th
correlation functionsGq(r ,t). The dependence ofGq(r ,t)
on r and t in the regimej't1/z!L is expected to be de
scribed by the scaling form@1#

Gq~r ,t !5taq /zr zq8 f q~r /t1/z!. ~7!

The occurrence of ESS is possible only if the scaling fu
tions f q are related to one another byf q(r /t1/z)

5Cq(t)@ f (r /t1/z)#zq8. This relation, when combined with Eq
~7!, leads to the prediction that plots of the quantitygq(r ,t)

[@Gq(r ,t)/Gq(r 51,t)#1/zq8 againstr should coincide for all
values ofq. The lower inset of Fig. 2 shows plots ofgq(r )
~obtained from the data shown in Fig. 1, using the valu
0.870, 0.673, 0.540 and 0.452 forzq8 , q51 – 4, respectively!
against r for q51 – 4. The data for differentq collapse
nicely to the same curve, confirming the occurrence of E
in this system. A similar description of ESS in turbulence
terms of aq-independent scaling function is provided in Re
@10#.

The behavior described above is also found in the 2D
model, as shown in Fig. 3, where we have plottedGq(r ),
q51 – 4 againstr ~inset!, andGq(r ), q52 – 4 againstG1(r )
~main part! on log-log scales. The data shown correspond
@5# t5103 for 5003500 samples. We again find an extensi
of the scaling region by more than one decade. The value
the exponents obtained from fits to the data are:u250.77
60.02, u350.6060.02, u450.4860.02. As before, the re
lation uq5zq8/z18 is satisfied within the error bars.

We have also found ESS in the dependence of the qu
tities sq defined in Eq.~6! on time t ~in the growth regime!
or the sample sizeL ~in the saturationregime!. The inset of
Fig. 4 shows our data for the dependence ofsq , q51 – 4 at
saturation onL in the 2D DT model. The log-log plots
clearly show a downward curvature~similar curvature is ob-
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served@5# in log-log plots ofsq versust in the growth re-
gime! that becomes more pronounced asL is increased. In
contrast, the ESS plots ofsq , q52 – 4 againsts1 , shown in
Fig. 4, do not exhibit any such curvature. The values of
‘‘relative’’ exponentscq , defined bysq}(s1)cq, obtained
from straight-line fits to the ESS plots arec2.1.2, c3
.1.5, c4.1.9.

The results shown in Fig. 4 and qualitatively similar b
havior found in the 1D DT model@1,5# clearly indicate that
the DT modeldoes notexhibit true asymptotic multiscaling
This conclusion is corroborated by recent studies@6# which
suggest that the approximate multiscaling observed in th
models is a nonuniversal and extremely slow transient
crossover arising from a nonlinear instability in the d
cretized version of the underlying continuum growth equ
tion. The ESS found in this paper shows that the slow cro
over responsible for the approximate multiscaling behav
affects correlation functions of different order in exactly t
same way. In this picture, the multiscaling exponentszq8 and
aq are, at best,effectiveones describing the behavior over

FIG. 3. Log-log plots ofGq(r ), q52 – 4 againstG1(r ) for the
2D DT model at timet5103. The straight lines are best fits t
power laws. Inset: Log-log plots ofGq(r ), q51 – 4 as functions of
the separationr for the same data.

FIG. 4. Log-log plots ofsq(L), q52 – 4 againsts1(L) for the
2D DT model at saturation. The straight lines are best fits to po
laws. Inset: Log-log plots ofsq , q51 – 4 as functions of the sys
tem sizeL for the 2D DT model at saturation.
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limited range of length and time scales. The occurrence
ESS implies that ‘‘relative’’ exponents such asuq and cq
are, in some sense, more fundamental than the ‘‘absolu
ones,zq8 andaq . While it would be premature to suggest th
a similar transient description applies also to multiscaling
turbulence, we note that the possibility that the intermitten
correctionsdzq are finite Reynolds number effects whic
would vanish in the Re→` asymptotic limit has received
considerable attention@14# in the recent literature. Also
there is some numerical evidence@15# indicating that the
‘‘relative’’ exponents are more universal than the ‘‘abs
lute’’ ones in turbulence.

Our finding that ESS may occur in problems~i.e., in the
kinetic surface roughening of the DT model! very different
from the fully developed homogeneous turbulence prob
~where ESS was originally discovered@7#! is potentially sig-
nificant, and may eventually provide a clue to its understa
ing. Currently the ESS phenomenon~both in surface growth
and turbulence! remains an interesting empirical fact witho
v.
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any rigorous theoretical understanding. It has recently b
shown @6# that multiscaling in the DT model shares a su
stantial common phenomenology with that in fully deve
oped turbulence, and the intermittent multiscaling behav
in these very different problems may arise@6# from the ex-
istence of an infinite number of marginal operators and
associated near-singularity in both problems. We specu
that the eventual theoretical understanding of ESS will
pend on a more detailed understanding of the roles that
infinite number of relevant operators and the ne
singularities play in homogeneous turbulence and kine
surface roughening. It would obviously be very interesting
explore further the analogy between kinetically rough int
faces and fluid turbulence.

We are grateful to Professor Rahul Pandit for educat
us on ESS in turbulence. This work was supported in part
US-ONR, NSF-MRSEC, and the Supercomputer Educa
and Research Center of the Indian Institute of Science.
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