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Extended self-similarity in kinetic surface roughening
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We show from simulations that a limited mobility solid-on-solid model of kinetically rough surface growth
exhibits extended self-similarity analogous to that found in fluid turbulence. The range over which scale-
independent power-law behavior is observed is significantly enhanced if two correlation functions of different
order, such as those representing two different moments of the difference in height between two points, are
plotted against each other. This behavior, found in both one and two dimensions, suggests that the “relative”
exponents may be more fundamental than the “absolute” dig63-651X98)50604-9

PACS numbegp): 47.27.Gs, 05.46:j, 83.20.Jp

Scale-invariant spatiotemporal behavior is observed in &eynolds numbeRex(L/7)*3. The qth order longitudinal
wide variety of far-from-equilibrium systems. In analogy structure functionsre defined as
with the “universality” found in the equilibrium scaling be-
havior of systems near a second-order phase transition, it is Dg(r)=([u(x+r,t)—u(x,t)]%, (1)
interesting to inquire about the similarities between different . . .
nonequilibrium systems exhibiting scale-invariant behavior Whereu(xt) is the component of the velocity at the position
In this paper, we point out a remarkable similarity between at timet in the direction of the relative displacementand
the scaling behavior of two well-known and extensively the brackets: --) represent a spatiotemporal average. These
studied nonequ“ibrium Systems: turbulent fluids and grOW_StrUCtUre functions are believed to exhibit pOWEr-laW Scaling
ing interfaces. Krud1] discovered a similarity between the in the inertial range,
intermittent multiscaling behavior of structure functions in
strongly developed turbulend€,3] and the scaling proper- Do(r)~rfe, p<r<L. @
ties of correlation functions of height fluctuations in simple } ]
solid-on-solid models of kinetically rough epitaxial growth The value ofZ is known[3] to be exactly unity. The mea-
[4] with limited surface mobility. The multiscaling properties sured values of,, q#3 differ appreciably from the Kol-
of these growth models have been subsequently investigatégogorov resulf3], {,=a/3, the deviations{;= {,—q/3 be-
in detail [5] and a mechanism for this behavior has beering positive forq<3 and negative forg>3. This is the
proposed6]. In this paper, we demonstrate that thaended ~Phenomenon ofultiscaling that is believed2,3] to arise
self-similarity (ESS [7] exhibited by the structure functions from the stronglyintermittent(violently fluctuating charac-
in fluid turbulence is also present in the behavior of correlaier of the local energy dissipation rat€x,t) whose spa-
tion functions of height fluctuations in these growth models tiotemporal fluctuations may be characterized by the quanti-
and thereby establish that the analogy betweeterministic  ties (e(x,t))/(e(x,t))?. These quantities are expected to
turbulence in fluids andstochastically driveninterface  exhibit a power-law dependence on the Reynolds number,
growth is remarkably deep. We emphasize that the ESS phe-
nomenology in our discrete stochastic growth model is for- (eN(€)d~(LIn)*, 3)
mally identical to that found in the intermittent fluid turbu-
lence problem, establishing a precise one to onavhereu >0 forg>1.
correspondence between these two seemingly completely In models[1,4—-6 of growing interfaces, the role of the
different physical processes. While the exact reasons for thigelocity field u(x,t) is played by the variablé(x,t) that
precise analogy between these two distinct problems remaii¢presents the height ofdzdimensional interface at point
unclear at this stage, we speculate that the existence of &t timet. In these models, the inner length scale is the lattice
infinite number of relevanimargina) operators in both cases Sspacinga,, which is usually set to unity. The outer scale is
may be the underlying mathematical cause for this analogget by acorrelation lengthé that initially grows in time(&

[6]. «t12 wherez is the dynamic exponenand eventually satu-
We begin by pointing out the analody] between fluid rates(for t>L? whereL is the system si2eo a value of the
turbulence and surface growth. In fully developed turbu-order ofL. Scale-independent behavior of correlation func-

lence, scaling behavior is observed in tinertial range »  tions is observed for length scale<xt<¢. The correlation
<r<L, wherer is the length scale of interedt,is the outer length ¢, therefore, plays the role of the Reynolds number.
integral scaleat which energy is injected into the system, The height-difference correlation functions

and 7 is the innerdissipation scaleA measure of the sepa-

ration between the inner and outer scales is provided by the Gq(r,t)=<|h(x+r,t)—h(x,t)|q)1’q, (4)
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where(:--) now represents a spatial average, are analogou: 1000¢ T T T
[8] to the structure functions defined in Ed). These cor- i
relation functions exhibit the following scaling behavior:

X O B ©
o a0 o0 o0
[ T |
AN =

Gq(r,t)=rfa, 1<r<é(t). (5)

10°ML)

The observationl,5,6] that g[q is a decreasing function af -
indicates that these correlation functions exhibit multiscaling £
similar to that found in turbulence. The quantity that is ©
analogous to the energy dissipation rate(Ju/dx)? is the
nearest-neighbor  height  difference s(x,t)=|h(x’,t)
—h(x,t)|, wherex’ is a nearest neighbor of the lattice point

X. In analogy with Eq(3), different moments o$ scale with
different powers of the correlation length ] T T

o) =([s(x,1) %Y~ (1), (6)

FIG. 1. The height-difference correlation functiof@(r), ¢
=1-4 at timet= 10 as functions of the separatiorfor the 1D DT

. . . model. The straight lines are best power-law fits of the data for
In experimental and numerical studies of turbulence ats 10. Inset: Rules of the DT growth model. Random deposition on

relatlvely low Reynolds nqmbers, the range of valu_esfm‘r the substrate is followed by nearest-neighbor diffusion if it is al-
which the power-law scaling of Eq2) is observed is often |qyed by the local coordination, as indicated by the arrows.

very small and sometimes non-existent. ESS in turbulence

refers to the fac{7] that the size of the scaling region is fiting straight lines to the initial linear parts of the plots are:
significantly enhanced if 1dB4(r)|, q#3 is plotted against {1=0.88+0.02, {,=0.67+0.02, {,=054-0.02, and{,
log|D(r)|. Since the resultD(r)|«r in the inertial range is  2*4 451002 The size of the,scgling region < however
exact for the Navier-Stokes equation underlying fluid turbu-ra,[h'er sm.al(l'ess than one decaderiy This is not SI,errising '
lence and log-log plots dDq(r)| againstDs(r)| show lin- because the value of the correlation lengtt'? z=4
ear behavior over a substantially larger range than Iog-lo%lA]' is the order of 15 at=1C°. The surprising r'esult we

plots oleq(r)_| ggalnstr, ESS plots prov!de a convenient find is that the data exhibit nearly perfect power-law scaling
way of determining the values of the multiscaling exponents

{y- ESS has been used extensivE®y during the last few over the entire range<ir=100 if Gq(r), q#1 is plotted
q-

X . againstG4(r) (see Fig. 2 Since there is no “special” value
years[10—17 to analyze the data obtained from a variety of of q in the growth modeiin the sense thay=3 is special in

expgriment; and simulations. Substantial _enhancement of ty}ﬁrbulencé& we have chosen to plot the correlation functions
scaling region has also been observed in log-log plots oorqqﬁl againsG, (other choices lead to equally good scal-

|Gp(r)| vs [G4(r)|, wherep and q are any two unequal : : . :
e X U ing). It is clear from Fig. 2 that the range over which scaling
positive integers. The observation of ESS implies that th ehavior is observed is increased by more than an order of

self-similarity of the velocity field extends beyond the Con'magnitude if one of the correlation functions is plotted

ventionally defined inertial range. : . ,
We have found that the correlation functions of heightagamst the other, rather than plotting them as functions of

fluctuations in the Das Sarma—Tambore®da) model[4]

of epitaxial growth in one and two dimensions exhibit prop-
erties that are very similar to the ESS described above
Krug’s original work[1] on intermittent multiscaling in epi-
taxial growth was based on the one-dimensiofidd) DT ok
model. In this model, atoms are deposited randomly on a fla 0.0
substrate under solid-on-solid condition. If a deposited atoms i ! 10 100
has at least one lateral neighbor, it stays at that site. Other
wise, the atom moves to a nearest-neighbor lateral site if iig;
can increase the number of lateral neighbors by doing so. I 10}

whereag are found[1,5,6] to increase with increasing.
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more than one such sites are available, then the atom move : E o - 31

to any one of them with equal probability. If no such nearest- [ 2 q=2 . o qj

neighbor site is available, the atom stays at the depositior L o q=3 1 i

site. These rules are illustrated in the inset of Fig. 1. The DT 1 < oq=4 T

model has been studied extensivgly4,5] by simulations. 1 10 100
We first consider the scaling properties of the correlation Gi(rt=10°ML)

functionsG4(r) defined in Eq.(4). Figure 1 shows the re- FIG. 2. Log-log plots ofGy(r), q=2-4 of Fig. 1 against

sults forGg4(r), g=1-4 at timet=10" (in units of number o NN -
g\t /s M4 - k G(r). The straight lines are best fits to power laws. Upper inset:

of layers depositedfor the 1D DT n_10de| with sizelL The local sloped log[G,(r)J/d log[G,(r)] of the =4 plot in the

= 1000. The_ log-log pIOtS_ 06G(r) againstr clearly show  main figure as a function af (crossel and same quantity fok

linear behavior for smalf, in agreement with the power-law =100 in the saturation regim@quares Lower inset: The scaling

form of Eq.(5). The values of the exponer@é obtained by  functionsg,(r), g=1-4 (see text
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This model, therefore, exhibits ESS that is formally identical or
to that found in turbulence by Benet al.[7]. The extension

of the scaling range is mostly towarligge scales, which is
similar to the behavior founffl3] in turbulence.

The quality of the power-law scaling in th@,, q+1
versusG; plots is illustrated in the upper inset of Fig. 2 for
g=4, where we have shown the variation of the local deriva-
tive d log[G4(r)])/d log[G,(r)] with r. The observed variation
is less than 10%, indicating that the power-law relation,
Gq(r,t)oc[Gl(r,t)]”q, g+ 1, provides a very good descrip-
tion of the data over the full range of The values of the
“relative” exponentsé,, obtained from straight-line fits to 1
the plots of Fig. 2, ar@,=0.79+0.02, #3=0.64+0.02, and 1 ‘ o
0,=0.53+0.02. These values are consistent with the ex- 1 10
pected result,f,={¢/{;. The upper inset of Fig. 2 also Gy(rt=10"ML)

shows the local slope of a log-log plot &,(r) versus FIG. 3. Log-log plots ofGq(r), q=2—4 againsG,(r) for the

Gy(r) obtained in the saturation state Of_sa_mP'eS _V‘mh 2D DT model at timet=10°. The straight lines are best fits to
=100. The two sets of results are nearly |nd|st|ngwshableIDOWer laws. Inset: Log-log plots @,(r), q=1—4 as functions of

showing that the values of the expone#tsobtained from  he separatiom for the same data.
ESS plots are not sensitive to details such as sample size and

the length of the simulation. Similar “universality(i.e., in- served[5] in log-log plots ofa, versust in the growth re-
sensitivity of the values of the relative exponents to detailgjime that becomes more pronouncedlass increased. In
such as the value of the Reynolds number and the flow g&gntrast, the ESS plots of,, q=2-4 against;, shown in
ometry has been observed in turbuleride, 12. Fig. 4, do not exhibit any such curvature. The values of the

The observation of ESS implies a specific relation among:g|ative” exponentsy,, defined byo,= (o), obtained
the scaling functiongl] that describe the behavior of the from straight-line fits th the ESS p?ots ang,=1.2, s

o
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correlation functionsGy(r,t). The dependence dB(r,t) ~15, §,~1.9
. . g 1/, > . _ dy g . . . . . .
onr andt in the rgglme§~t ‘<L is expected to be de The results shown in Fig. 4 and qualitatively similar be-
scribed by the scaling forrit] havior found in the 1D DT moddll,5] clearly indicate that
g y the DT modeldoes notexhibit true asymptotic multiscaling.
Gy(r,t)=ta’?réaf (r/t'). (7)  This conclusion is corroborated by recent studi@swhich

suggest that the approximate multiscaling observed in these
The occurrence of ESS is possible only if the scaling funcmodels is a nonuniversal and extremely slow transient or
tions f, are related to one another by(r/t"”)  crossover arising from a nonlinear instability in the dis-
:Cq(t)[f(r/tﬂZ)]{g. This relation, when combined with Eq. cretized version of the underlying continuum growth equa-
(7), leads to the prediction that plots of the quantgyr,t) tion. The ESS found in this paper shows that the slow cross-

— t = 1.t)1%4 instr shoul incide for all  OVer responsibile for th(_a approx!mate multiscaling behavior
va[ll?gs(rc;f()q/G'lgrg:a Ith)e]r ir:sggi:‘nlii; 32 ZL;]SVSS Iggiegg(rr? affects correlation functions of different order in exactly the

(obtained from the data shown in Fig. 1, using the valueS@me way. In this picture, the multiscaling exponefitand
0.870, 0.673, 0.540 and 0.452 fof, q=1—4, respectively % are, at besteffectiveones describing the behavior over a

againstr for q=1-4. The data for differeny collapse
nicely to the same curve, confirming the occurrence of ESS
in this system. A similar description of ESS in turbulence in
terms of ag-independent scaling function is provided in Ref. o
[10]. 1
The behavior described above is also found in the 2D DT
model, as shown in Fig. 3, where we have plott@&g(r),
q=1-4 against (insey, andG,(r), g=2-4 againsG,(r)
(main parj on log-log scales. The data shown correspond to <
[5] t=10° for 500x 500 samples. We again find an extension

0.8 — 7T — T

\

09100q(|—)
o
S
I
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L o =1

of the scaling region by more than one decade. The values of 4, - 2=2 s _
the exponents obtained from fits to the data ag=0.77 = q=3 1 aroe oot
+0.02, 63=0.60+0.02, 6,=0.48=0.02. As before, the re- A 10 100
lation 6,= ¢4/{; is satisfied within the error bars. ool . , -

We have also found ESS in the dependence of the quan- 0.15 0.20 0.25 0.30
tities o, defined in Eq(6) on timet (in the growth regime '09107:(1)
or the sample size (in the saturationregime. The inset of FIG. 4. Log-log plots ofoq(L), q=2-4 against(L) for the

Fig. 4 shows our data for the dependencegf q=1-4 at 2D DT model at saturation. The straight lines are best fits to power
saturation onL in the 2D DT model. The log-log plots laws. Inset: Log-log plots obry, q=1-4 as functions of the sys-
clearly show a downward curvatu¢similar curvature is ob- tem sizeL for the 2D DT model at saturation.
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limited range of length and time scales. The occurrence o&ny rigorous theoretical understanding. It has recently been
ESS implies that “relative” exponents such &g and ¢ shown([6] that multiscaling in the DT model shares a sub-
are, in some sense, more fundamental than the “absolute$tantial common phenomenology with that in fully devel-
ones,g(q andag . While it would be premature to suggest that oped turbulence, and the intermittent multiscaling behavior
a similar transient description applies also to multiscaling inin these very different problems may arig from the ex-
turbulence, we note that the possibility that the intermittencyistence of an infinite number of marginal operators and an
corrections ¢, are finite Reynolds number effects which associated near-singularity in both problems. We speculate
would vanish in the Res« asymptotic limit has received that the eventual theoretical understanding of ESS will de-
considerable attentiof14] in the recent literature. Also, pend on a more detailed understanding of the roles that the
there is some numerical eviden¢®5] indicating that the nfinite number of relevant operators and the near-
“relative” exponents are more universal than the “abso-gjngularities play in homogeneous turbulence and kinetic

lute” ones in turbulence. surface roughening. It would obviously be very interesting to

~ Our finding that ESS may occur in probleri., in the  explore further the analogy between kinetically rough inter-
kinetic surface roughening of the DT mogekry different  {5ces and fluid turbulence.

from the fully developed homogeneous turbulence problem

(where ESS was originally discovergd)) is potentially sig- We are grateful to Professor Rahul Pandit for educating
nificant, and may eventually provide a clue to its understandus on ESS in turbulence. This work was supported in part by
ing. Currently the ESS phenomengoth in surface growth US-ONR, NSF-MRSEC, and the Supercomputer Education
and turbulenceremains an interesting empirical fact without and Research Center of the Indian Institute of Science.
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