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Structure and magnetization of a two-dimensional vortex liquid in the presence of strong pinning
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The structure of a two-dimensional vortex liquid in the presence of strong pinning centers is investigated
using the density-functional formalism. Short-range positional and angular correlations in the liquid result in an
effective interaction between pinned vortices, mediated by the unpinned ones. This effective interaction is short
range and it oscillates with the intervortex distance. Matching of this oscillation with a periodic array of strong
pinning centers leads to anomalies in the reversible magnetizationM (H) at the ‘‘matching field’’Bf and some
of its harmonics.@S0163-1829~98!02714-3#
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I. INTRODUCTION

The existence of a vortex liquid phase is one of the k
features of high-temperature superconductors in the m
state. Thermal fluctuations are responsible for melting
Abrikosov vortex lattice atBm(T), well below the~mean-
field! critical field Bc2(T).1 This gives rise to a phase lackin
long-range order, but where fluctuations are believed to
structured into thermally wandering vortex lines forming
line liquid. Depending on the magnetic field and the te
perature, the vortex lines may break up into weakly coup
stacks of two-dimensional ‘‘pancake’’ vortices lying on th
superconducting layers. In the presence of quenched diso
produced by randomly placed pinning defects, the vortex
tice lacks long-range translational order, but remains pin
at low currents, with an irreversible magnetization. In t
case of weak disorder, this is essentially due to a nonvan
ing shear stiffness. On the other hand, since the vortex liq
cannot sustain shear and therefore cannot be pinned by w
disorder, it displays reversible properties. Thus, the prese
of quenched disorder leads to an irreversibility line which,
general, is different from the melting line of the pure syste
Fluctuations induced in the lattice by weak impurity disord
add to the thermal fluctuations and lower the melting fie
thus extending the liquid phase domain.2 In contrast, strong
and correlated quenched disorder such as that produce
irradiation-induced columnar defects have a confining eff
on the thermal wandering of vortex lines and can push
melting ~or irreversibility! line upwards, thus reducing th
liquid phase domain. This occurs for defect densities lar
than the vortex density, i.e., forB smaller than the ‘‘match-
ing field’’ Bf , defined asBf[F0nd whereF05hc/2e is
the flux quantum, andnd is the number of columnar defec
per unit area. However, a liquid phase is expected3 to be
present at sufficiently high temperatures ifB.Bf . The basic
thermodynamic properties of such a liquid are expected to
strongly modified due to the presence of the strong pins. T
has been demonstrated by the experimental evidence4–6 of
anomalies in the reversible magnetization curveM (H) near
Bf in irradiated Tl- and Bi-based cuprate crystals. For hig
570163-1829/98/57~18!/11730~8!/$15.00
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fields, no anomalies have been detected so far, probably
to the random character of the pin array. On the other ha
for artificial periodic pin arrays, anomalies have been foun7

in the irreversible~vortex solid! regime at harmonics of the
matching field. Also, Lorentz microscopy imaging8 of vorti-
ces in the presence of periodic pin arrays have revealed
teresting commensurate structures.

In this paper, we show that long-range correlations in
positions of the vortices are not essential for such phen
ena, and that similar effects also occur in the liquid pha
due to short-range correlations present in the liquid. For
problem, due to the specific properties of the liquid sta
such as short-range translational correlations and enha
thermal fluctuations, it is clear that one cannot rely on
usual vortex-lattice free energy. This work reports the fi
direct calculation of the properties of a vortex liquid in th
presence of strong disorder. For this purpose we use
density-functional~DF! formalism,9 which allows us to take
into account the competition between entropic10 and interac-
tion effects in the liquid state. For the sake of simplicity, w
consider a purely two-dimensional~2D! vortex liquid. This is
a reasonable approximation in a large part of the (B,T)
phase diagram of extremely anisotropic layered superc
ductors such as Bi2Sr2CaCu2O81d ~BSCCO! in a magnetic
field perpendicular to the layers, especially in high fiel
where the two-dimensional layers of ‘‘pancake’’ vortices a
decoupled.11 More generally, our calculation may apply t
the case of a thin film for which the ‘‘confinement length
by columnar defects exceeds the film thickness. As discus
later, it would be quite straightforward to extend our calc
lations to a layered superconductor in which both the ex
nal magnetic field and the straight columnar defects are
pendicular to the layers. The formalism developed in t
paper would also be applicable to other 2D systems~such as
magnetic bubble arrays12 and charge-density-wav
systems13! in the presence of strong pinning disorder.

Let us summarize the main results of this work. Fir
given a single defect that pins a vortex, we calculate
azimuthally symmetric liquid density in the vicinity of th
defect, showing that it is inhomogeneous and oscillating,
11 730 © 1998 The American Physical Society
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57 11 731STRUCTURE AND MAGNETIZATION OF A TWO- . . .
liquid density being depleted in the vicinity of the pinne
vortex. This effect disappears with increasing temperatur
the vortex becomes thermally depinned. Then, given
pinned vortices, we obtain an oscillatory effective interact
as a function of their separation. Due to the breaking
rotational symmetry in this case, angular correlations a
appear but never happen to be large. We qualitatively c
pare the found behavior with decoration experiments,14–16 in
which the field-cooled liquid is believed to freeze close
the irreversibility line, thereby representing in some sens
snapshot of the liquid close to freezing. As another appli
tion, we calculate the magnetization in the presence o
square pin array and find anomalies in the reversible mag
tization at the matching field and at some of its harmon
This points towards another motivation of this work: if pe
odic pin arrays can be fabricated in high-Tc materials, then
measurements of the magnetization in the liquid state
give, through the present work, access to fundamental liq
state quantities such as correlation functions of the den
This is important because extraction of such information
other means~e.g., from neutron-scattering measuremen!
appears to be very difficult.

We describe the model and the formalism in Sec. II. S
tion III is concerned with our single and two-pin calcul
tions. Section IV describes the calculations for a perio
array of pins. We end with conclusions and discussions.

II. MODEL AND FORMALISM

The DF formalism is one of the major tools in studies
classical liquids.17 It has also been recently applied to vort
matter, to determine the freezing~melting! line in a clean
layered superconductor18,19 and also in the presence of wea
pinning disorder.2 In this paper, we extend the DF approa
to strong disorder, considering for simplicity a purely 2
vortex liquid and examining its spatial density fluctuations
the presence of strong attractive pinning centers. We s
hereafter consider~unless otherwise stated! the caseB.Bf
and temperatures well below the thermal depinning temp
ture, so that nearly all defects pin a vortex.

In the London approximation, point vortices in a sing
superconducting layer have logarithmic interactions,bV(r )
52G ln(r/j), whereG5bF0

2d/(8p2l2). Hereb51/(kBT),
d the effective layer thickness~typically one unit cell for
layered superconductors!, j the Ginzburg-Landau coherenc
length andl the London screening length in the layers. D
fining a lengtha0, related to the homogeneous vortex liqu
densityr l[B/F0 by pa0

2r l51, the nearest and next-neare
neighbor distances in the triangular lattice are 1.9a0 and
3.3a0, respectively. For parameter values appropriate
BSCCO @l(T50)51500 Å,d515 Å,Tc(H50)590 K#,
the dimensionless coupling constantG is approximatelyG
'2.43103/(T in kelvin! at low temperatures where the d
pendence ofl on the temperature can be neglected.

A defect~pinning center! at the origin is assumed to pro
duce a potential of the formVp(r )52V0(12r 2/a2) if r
<a, and Vp(r )50 if r .a. The potential strength isbV0
'G/4$0.51 ln@11(a2/j2)#%.1 We hereafter choosebV0
5G/4 and a50.1a0 when unspecified. For columnar pin
with a'5 nm, this amounts toB'0.25 T. One should note
that contributions to the pinning of a given vortex also co
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from defects that do not contain its core. This is due to
perturbation of the screening currents by the insulating
gions associated with such defects. However, in high fie
these contributions are screened20 and only add some wea
pinning. Such contributions are neglected here. We also
sume that a pinning center does not pin more than one
tex.

In the absence of pins, the homogeneous vortex liquid
characterized by its direct~Ornstein-Zernike! pair-correlation
function17 c(r ,r 8)5c(ur2r 8u), which represents the cou
pling between density fluctuations at pointsr and r 8. The
values ofc(r ) used here are taken from a calculation19 based
on an approximation proposed by Rogers and Young.21 From
comparisons with simulation data, it is known19 that this ap-
proximation is fairly accurate, but it slightly underestimat
the correlations in the liquid at temperatures close to its eq
librium crystallization temperature. We do not attempt to d
rive a self-consistent form forc(r ) in the presence of the
random pinning potential. This is surely reasonable in
case of a dilute defect array. Moreover, even close to
matching field, where vortex fluctuations are sever
quenched by pinning, this hypothesis is comparable t
similar assumption that is commonly made in DF calcu
tions of crystallization transitions9 where one uses the corre
lation function of the homogeneous liquid to calculate t
free energy of the ordered solid.

The DF formalism involves the use of an expression
the free energyF of an inhomogeneous state, characteriz
by the density distributionr(r ), as a functional ofr(r ). In
this work, we use a density functional of the form propos
by Ramakrishnan and Yussouff:9

b~F2Fl !5E dr S r~r !ln
r~r !

r l
2dr~r ! D1bE drv~r !dr~r !

2
1

2E drE dr 8c~ ur2r 8u!dr~r !dr~r 8!, ~1!

wheredr(r )[r(r )2r l , Fl is the free energy of the uni
form liquid of densityr l andv(r ) is the external one-body
potential~here the pinning potential!.

The vortex liquid is homogeneous@i.e.,r(r )5r l for all r #
in the absence of pinning. The presence of pinning cen
causes the time-averaged local density to be inhomogen
even in the liquid state. Our strategy is to characterize
inhomogeneity by appropriate variational forms involving
few variational parameters, and to determine the values
these variational parameters by minimizing the free ene
given by the expression of Eq.~1!. The details of the calcu-
lations and the results are described in the next two secti

III. SINGLE AND TWO-PIN CALCULATIONS

Let us first consider a 2D vortex liquid in the presence
a single strong pinning center at the origin that traps o
vortex. This obviously breaks translational symmet
thereby making the average densityr(r ) in the neighbor-
hood of the pinning centerinhomogeneous, with azimuthal
symmetry. The pinned vortex gives rise to a sharp peak
r(r ), which is centered at the origin and whose width
expected to be approximately equal to the rangea of the
pinning potential. The integrated weight under this peak
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11 732 57CHANDAN DASGUPTA AND DENIS FEINBERG
expected to be close to unity if one vortex is trapped at
pinning center. For a perfect pin (d-function potential!, the
functionr(r ) for rÞ0 is, according to the Percus theorem17

identical to the pair distribution functiong(r ) of the homo-
geneous liquid that describes the short-range positional
relations present. In particular, the liquid density is expec
to be depleted in the immediate vicinity of the pinned vorte
Beyond this ‘‘correlation hole,’’ a damped density wave wi
a period close to the nearest-neighbor spacing ('1.9a0) of a
triangular lattice of densityr l should appear. The case of
strong pin with a finite pinning potential that has a short b
nonzero range should be qualitatively similar. We theref
choose a simple variational ansatz for the average den
near the pinning center:

r~r !5r l1r8~r !; r8~r ![a1e2b1r 2
1 f ~r !,

f ~r !5a2J0~Grm! for r<r m ,

f ~r !5a2e2b2~r 2r m!J0~Gr ! for r .r m . ~2!

Here, the first term inr8(r ) represents the part of the tot
density that arises from the vortex pinned at the defec
displays a Gaussian broadening due to the finite strength
nonzero range of the pinning potential. The second te
f (r ), describes the correlation hole and the oscillatory d
sity modulation in the vicinity of the pinning center. It in
volves an integration of a lattice density waveeiG–r over the
polar angle,G being one of the shortest reciprocal latti
vectors of a triangular lattice of densityr l . The cutoff r m
denotes the first minimum of the Bessel functionJ0(Gr).
This form is by construction close to the homogeneous liq
pair distribution functiong(r ). It is, therefore, physically
sound and we have found that it yields the lowest free ene
among other similar choices. The variational parametersa1
andb1 describe, respectively, thestrengthand therangeof
the pinning at the origin, whilea2 andb2 describe, respec
tively, theamplitudeand therangeof the density modulation
near the pinned vortex.

Using Eqs.~1! and ~2!, we have carried out a numerica
minimization of the excess free energy induced by a sin
pin as a function of the four parametersa1 , b1 , a2 , andb2.
The minimization is done under the following constraints:~i!
the density at every point must remain non-negative;~ii ! the
integral of r8, the deviation of the local density from th
average value, must be equal to zero~conservation of the
number of vortices!. Since both the functions appearing
the expression forr8 are short-range, nonzero contributio
to the integrals of Eq.~1! come only from regions close t
the origin, and it is not difficult to evaluate these integra
numerically@the double integral appearing in the third ter
of Eq. ~1! is evaluated by converting it into a single integr
in Fourier space#. We have carried out this calculation for
number of values ofG in the range 50<G<120, which cor-
responds to temperatures in the range between 45 and
for BSCCO. We note that these temperatures are higher
the equilibrium crystallization temperature of the vortex s
tem without disorder, which is estimated from molecula
dynamics simulations22 to correspond toG.140. If we keep
the value ofbV0 fixed atG/4 ~see Sec. II!, then we find that
the optimal values of the variational parametersa1 and b1
e
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are such that the integrated weight of the Gaussian term
pearing in the expression forr8(r ) @Eq. ~2!# remains very
close to unity for all values ofG, indicating that the pinning
center traps one vortex at all temperatures lying in the ra
considered. These temperatures are, therefore, lower tha
so-called thermal depinning temperatureTdp. The optimal
value ofb1 is found to be quite close to the expected valu
bV0 /a2, wherea is the range of the parabolic pinning po
tential. Figure 1 shows a plot of the radial density profi
f (r ) outside the range of the pinning potential as a funct
of the distancer at a temperature corresponding toG550.
We also show on the same plot the pair distribution funct
g(r ) of the homogeneous liquid, calculated from the data
c(r ) used in the evaluation of the free energy. As expect
f (r )/r l is very similar tog(r ), with slightly less-pronounced
oscillations due to imperfect localization of the vortex at t
origin. These results indicate that the variational ansatz
Eq. ~2!, together with the Ramakrishnan-Yussouff fre
energy functional of Eq.~1!, provide a good description o
the density inhomogeneity produced in the vortex liquid b
single strong pinning center.

To study the process of thermal depinning of vortic
from the defects, we repeated the calculation descri
above for a number of different values ofbV0 andG, treat-
ing them as independent parameters. The optimal value
the variational parametersa1 , b1 , c1, and d1 were deter-
mined for each pair of values ofbV0 andG. The probability
of the pinning defect being occupied by a vortex was th
obtained as the integral of the Gaussian term in the exp
sion for the density@Eq. ~2!#. The results for this occupation
probability as a function ofbV0 for three different values of
G are shown in Fig. 2. It is clear from the data that t
occupation probability is very close to unity~i.e., the vortex

FIG. 1. The optimal density profilef (r ) near a pinning center
@see Eq.~2!#, normalized by the average densityr l , and the pair
distribution functiong(r ) for G550. The distancer is measured in
units of a0 defined bypa0

2r l51. The curve forf (r )/r l has been
shifted upward by one unit in order to bring out its similarity wi
g(r ).
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57 11 733STRUCTURE AND MAGNETIZATION OF A TWO- . . .
is fully pinned at the defect! for bV0.8, and that it begins to
decrease below unity~i.e., the vortex begins to get thermal
depinned! asbV0 is decreased belowbVc.8. The decrease
of the occupation probability asbV0 is decreased belowbVc
becomes sharper as the value ofG is increased~i.e., as the
temperature is decreased!. However, the value ofbVc ap-
pears to be nearly independent of the value ofG in the range
considered. Using parameter values appropriate for BSC
and the two-fluid form for the temperature dependence ol,
we find thatbV0'8 corresponds to a temperature of abo
60 K. Since the occupation probability decreases smoothl
zero asbV0 is decreased belowbVc , it is difficult to iden-
tify a particular temperature as the depinning tempera
Tdp. Our results, however, predict that nearly all vortic
will be thermally depinned at temperatures corresponding
bV0<4.

Let us now consider two defects with spacingd, each of
them pinning a vortex, thus generating an oscillating den
wave in its vicinity. The matching of these density wav
leads to commensurability effects between the interde
distanced and the lengtha0. These effects come from two
body correlations which, in two dimensions, introduce n
only radial but also angular short-range correlations, refle
ing a tendency of vortices surrounding a pinned one to or
nize into predominantly hexagonal arrangements withou
fixed orientation. When two pinned vortices are nearby, o
expects an interaction that tries to lock together the lo
orientations around the two pinned vortices. The range
this interaction is expected to be roughly that ofg(r ) but its
detailed form is unknown. In order to evaluate it, we wr
the density distribution in the neighborhood of two pinni
centers located atR1 and R2 as a simple superposition o
individual density waves:

r~r !5r l1a1e2b1r 1
2
1a1e2b1r 2

2
1 f 8~r1!1 f 8~r2!, ~3!

FIG. 2. The probability of occupation of a pinning center as
function ofbV0 whereV0 is the depth of the pinning potential an
b is the inverse temperature. The data for three values of the
mensionless coupling constantG ~see text! are shown.
O
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wherer i[r2Ri , i 51,2, and the new functionf 8 includes
the possibility of a sixfold angular modulation of the densi

f 8~r i !5a2J0~Grm! for r i<r m ,

f 8~r i !5a2e2b2~r i2r m!F ~12a!J0~Gri !

1a
1

6(
k51

6

eiGk
i
–r iG for r i.r m . ~4!

Here the quantitya, 0<a<1, describes the amount o
rotational symmetry breaking in the density wave near e
pinned vortex, which is introduced by means of the seco
term in the bracket in Eq.~4!. The vectors $Gk

i %, k
51,2, . . . ,6represent the six shortest reciprocal lattice ve
tors of a triangular lattice of densityr l . The two sets of
vectors $Gk

1% and $Gk
2% at the two pinning centers mak

anglesu1 and u2 ~modulo 60°) with the line joining the
pinning centers.

We first describe the results of a calculation in which t
parametera is set equal to zero, i.e., the possibility of ang
lar modulation of the density near the pinning centers is
taken into account. For each value of the separationd[uR1
2R2u, the free energy obtained by using the expression
Eq. ~3! for the density in Eq.~1! is numerically minimized
with respect to the four variational parametersa1 , b1 , c1
andd1. This minimization is carried out under the two co
straints mentioned above and an additional one that ens
the existence of a ‘‘correlation hole’’ outside each of the tw
pinning centers. Operationally, the third constraint amou
to ensuring that the density vanishes immediately outside
range of the pinning potential of each pinning center. Fod
>a0, we find that the optimal values ofa1 and b1 corre-
spond to full occupation of the two pinning centers. Typic
results for the dependence of the free energy of a pai
pinned vortices on the separationd are shown in Fig. 3. As
expected, commensurability oscillations occur as a funct
of the intervortex separationd: the free energy exhibits loca
minima at values ofd corresponding to the first two maxim
of f (r ) ~see Fig. 1!, and the minima off (r ) correspond to
local maxima of the free energy as a function ofd. However,
the energy scale associated with these oscillations is ra
small compared to the pinning energy. It is, therefore,
surprising that the ‘‘frustration’’ caused by incommensur
bility is not sufficient to prevent simultaneous occupation
two pinning sites separated by a distanced>a0. This is con-
sistent with decoration experiments,14 which show that al-
most every pinning site is occupied by a vortex when
number of pinning sites is smaller than the number of vo
ces. The occupation probability of the pinning centers beg
to decrease below unity as the value ofd is decreased below
a0, indicating that two pinning centers separated by distan
much smaller thana0 are not likely to be occupied simulta
neously. It would be interesting to look for this effect b
examining closely the images obtained from decoratio
experiments14 in which the positions of both the pinning de
fects and the vortices are determined simultaneously.

We now consider the possibility of a nonzero angu
modulation (aÞ0). In the first calculation we carried out t
examine this possibility, the values of the variational para

i-
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11 734 57CHANDAN DASGUPTA AND DENIS FEINBERG
etersa1 , b1 , a2 and b2 were kept fixed at their optima
values obtained from the calculation witha50. The free
energy was then minimized as a function of the ‘‘mixing
parametera and the two angles,u1 andu2. We found that at
low temperatures, the free energy is minimized for a sm
but nonzero value ofa, indicating that some degree of an
gular order is indeed preferred. The optimal value ofa is
relatively large if the spacingd between the defects is clos
to 1.9a0 or 3.3a0, the distances corresponding to the neare
neighbor and next-nearest-neighbor spacings of a triang
lattice. The minimum of the free energy is obtained foru1
5u2 for all values ofd, and asd is increased from one
lattice spacing, the optimal value of these angles switc
between 0° and 30°, corresponding to the two possible
entations of one of the shortest reciprocal lattice vectors w
respect to the line joining two neighboring sites in a triang
lar lattice. An angle of 30° corresponds to the two pinn
vortices being nearest neighbors, andu15u250° to next-
nearest neighbors on a triangular lattice.

We then carried out a more accurate variational calcu
tion for d51.9a0 ~the nearest-neighbor distance in a triang
lar lattice! in which the values ofu1 andu2 were fixed at 30°
and the free energy was minimized with respect to the
rametersa1 , b1 , a2, andb2 for each value of the mixing
parametera. The results of this calculation for two values
G are shown in Fig. 4. It is clear that a small but nonze
value of a is preferred and that this value increases as
temperature is reduced. Similar results were obtained fod
53.5a0 andu15u250°. The optimal values ofa for other
‘‘incommensurate’’ values ofd were found to be substan
tially smaller.

The results described above show that the unpinned
tices mediate a short-range effective interaction between
pinned vortices. This effective interaction clearly originat
from the density modulations induced around a given pin

FIG. 3. The pinning contribution to the free energy of a pair
vortices trapped at two defects separated by distanced. The dotted
line represents the value ofbF asd→`, obtained as two times the
free energy of a single pinned vortex.
ll
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vortex. An oscillating coupling results, the period of which
determined bya0, the intrinsic length scale in the homoge
neous liquid. This effective interaction involves both rad
~translational! and angular~orientational! degrees of free-
dom. The fact that the effective interaction is short ran
while the bare intervortex interaction is long range~logarith-
mic! is a consequence of the screening produced by the
pinned vortices, which can adjust their positions in respo
to the forces produced by the pinned vortices. It is interest
to note the analogy of this effective interaction with th
Ruderman-Kittel-Kasuya-Yosida~RKKY ! interaction be-
tween localized electron spins on dilute magnetic impurit
in metals, which arises from matching the induced polari
tions of the Fermi liquid of conduction electrons with a
intrinsic length scale equal to the Fermi length. However,
the case considered here, the effective interaction betw
the angular~orientational! degrees of freedom is more com
plicated than in the RKKY case since certain specific orie
tations defined with respect to the axis joining the tw
pinned vortices are preferred. In a periodic pin array, this
effectively lead to a crystalline orientation, but for a rando
array frustration will occur.

The results of our calculation~Fig. 4! show that, if B
.Bf , pinned vortices do not induce a substantial amoun
sixfold angular order in their vicinity, even at the lowe
temperature considered here. This result is consistent
decoration experiments14–16 showing that the correlation
length associated with sixfold bond-orientational order
very small ~about one lattice spacing! when the number of
pinning sites is small compared to the number of vortic
However, the interaction described above may play an
portant role in the freezing transition. IfB.Bf , crystalliza-
tion of small domains around pinned vortices should d
matically enhance angular correlations and increase the

f
FIG. 4. The free energy differencebDF5b@F(a)2F(a50)#

of a pair of pinned vortices separated by distanced51.9a0 ~which
corresponds to the nearest-neighbor distance in a triangular lat!
as a function of the amplitudea of angular modulations@see Eq.
~4!# for two values ofG.
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57 11 735STRUCTURE AND MAGNETIZATION OF A TWO- . . .
of the interaction, which in turn would control the quenchi
of local orientations into a glassy state. A detailed desc
tion of this process is, however, beyond the scope of
present study.

IV. PERIODIC PIN ARRAY

Let us now turn to the interesting case of a periodic ar
of strong pinning centers, such as the ones recently fa
cated in thin films.7,8 In these experiments, the defects sit
the points$Ri%, which form a square lattice. We first con
sider the caseB.Bf and calculate thereversiblevortex liq-
uid magnetization, given as usual byM5B/(4p)2]F/]B.
The free energy is the sum of the uniform liquid contributi
Fl and that due to the density fluctuations induced by p
@Eq. ~2!#. In this calculation, we neglect, for simplicity, th
possibility of any angular modulation of the density inhom
geneity produced by a single pinned vortex@i.e., we set the
parametera of Eq. ~4! equal to zero#. Such angular modula
tions are expected to slightly enhance the magnetiza
anomalies described below. We simply superpose expo
tially damped density waves at each pin, i.e., we setr(r )
5r l1( ir8(ur2Ri u) with r8 given by Eq. ~2!. Since one
expects the contribution ofFl to M (H) to be quite smooth
and any anomaly in theM versusH curve to arise fromF
2Fl , we replaceFl by the usual London expression, n
glecting the smoothly varying contribution of thermal flu
tuations. For a givenB ~or r l), the free-energy difference i
calculated from Eq.~1! and minimized with respect to
a1 , b1 , a2, andb2 under the constraints mentioned abov
ThenM (H) is determined by numerically differentiating th
free energy with respect toB. The results obtained forG
5120 are shown in Fig. 5 in which the pinning contributio
to the free energy per unit cell of the pinning array is plott
as a function ofB/Bf , and in Fig. 6 which shows the mag
netizationM as a function ofB/Bf .

FIG. 5. The pinning part of the free energy per unit cell of
square array of pinning centers as a function ofB/Bf whereB is
the magnetic induction andBf is the ‘‘matching field.’’
-
e

y
ri-
t

s

-

n
n-

.

d

The data shown in these two figures contain a few po
for B,Bf . The free energy for such values ofB were ob-
tained in the following way. Since the number of vortices
smaller than the number of pinning centers and the temp
ture is substantially lower than the thermal depinning te
perature, all the vortices are expected to be pinned for s
values ofB. The vortex system then looks very much like
crystal with a few vacancies ifB is only slightly lower than
Bf . We assume that these vacancies are mobile, so tha
average density is obtained by averaging over all poss
locations of these vacancies. The density distribution in t
situation is then given by a set of Gaussian peaks of eq
height and width located at the pinning centers. The width
each Gaussian peak is determined, as before, by the ran
the pinning potential. The height of the peak is determin
from the requirement that the integrated weight under e
peak should be equal toB/Bf , the average occupation prob
ability of each pinning center. The free energy of this state
then calculated using Eq.~1!.

It is clear from the data shown in Fig. 5 that the pinnin
contribution to the free energy has well-defined local minim
at B/Bf 5 1, 2, and 4. These minima obviously arise due
the commensurability effects discussed above. In particu
each minimum corresponds to a situation in which the len
of one of the shortest lattice vectors of the square pinn
array coincides with the value ofd corresponding to one o
the minima of the free energy shown in Fig. 3. The minimu
at B5Bf corresponds to the nearest-neighbor distance of
pin array being equal to 1.9a0, the value ofd at which the
first minimum of the free energy of Fig. 3 occurs. Th
minima atB/Bf 5 2 and 4 correspond, respectively, to th
next-nearest-neighbor and nearest-neighbor distances o
pinning array coinciding with the value ofd at the second
minimum of the free energy of Fig. 3. We can define
effective pairwise interaction between pinned vortices fro

FIG. 6. The magnetizationM as a function of the magnetic
inductionB for a square pin array~dotted line! and for no pinning
~solid line! at G5120.
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11 736 57CHANDAN DASGUPTA AND DENIS FEINBERG
the data of Fig. 3 by subtracting from the free energy
asymptotic value ford→`. A sum of this effective interac-
tion over all pairs of sites of the pinning array yields resu
which are qualitatively similar to the ones shown in Fig. 5.
contrast, a sum of the effective interaction over the pairs
sites of arandom array of pins shows a smooth variatio
with B/Bf without the local minima atB/Bf52 and 4, in-
dicating that the broad distribution of the pair separation i
random array washes out the commensurability effects fo
for a periodic array of pins. This is in agreement with t
experimental observation4–6 of no anomaly in theM versus
H curve forB.Bf in samples with a random distribution o
the pinning centers. The free energy shown in Fig. 5 exhi
a deep local minimum atB54Bf . This is probably due to
the fact that the ground state of the vortex system for
value of B is, as found in recent Lorentz microscop
experiments,8 very close to a triangular lattice, which is th
preferred structure of the vortex system in the absence
pinning. We have verified that our ansatz for the dens
distribution in an unit cell of the pinning array is consiste
with the results reported in Ref. 8. In particular, the positio
of the peaks of the optimal density distribution found in o
calculation are in rough correspondence with the location
the vortices found in Ref. 8 for the same value ofB/Bf .

It is clear from Fig. 6 that in addition to the usual~Lon-
don! logarithmic behavior, theM (B) curve displays oscilla-
tions. These oscillations are clearly correlated with the str
ture of the free energy shown in Fig. 5. In particular, ea
anomaly in theM (B) curve is correlated with a local mini
mum of the free energy. A strong anomaly with a large ne
tive slope occurs near the matching fieldBf . At higher
fields, weaker but still noticeable anomalies occur near
second and fourth harmonics of the matching field. T
anomaly at the second harmonic still displays a nega
slope, while around the fourth harmonic the magnetizat
curve simply flattens. A similar feature has been obser
above the irreversibility field but close toBf in randomly
irradiated Tl- and Bi-based cupratesBf ,4–6 and also in irre-
versible magnetization measurements for a periodic
array.7 All these features have the same origin, namely,
commensurability of the vortex system with the periodic p
array. This leads to a tendency to pin the vortex den
~equivalently, the value ofB) at values corresponding to th
local minima of the free energy occuring atB5nBf , n
51, 2, and 4. The strongest possible anomaly happens w
the differenceH2nBf is perfectly screened, leading to
plateauin B, and a local slope of21/4p for the theM (H)
curve. Figure 6 shows that the anomalies are weaker in
liquid due to the thermal motion of the unpinned vortic
which tend to screen out the commensurability interacti
Nevertheless, the motion of the unpinned vortices rema
correlated with the positions of the pinned ones. This is
lustrated in Fig. 7 which shows the variation of the dens
along the diagonal of a square unit cell of the pin lattice
B/Bf52.0 and 1.5. Besides the correlation holes of pinn
vortices, the additional feature in the middle reveals a w
pinning potential trapping vortices at theinterstitial site.
Weak pinning of vortices at interstitial sites forB52Bf has
been observed7 in experiments on superconducting film
with a square array of submicron holes. Also, recent Lore
microscopy experiments8 have clearly shown the localizatio
s
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of a vortex at the center of each unit cell of the pinni
lattice for B52Bf in a superconducting film with a squar
array of pinning centers. One notices that this correspond
the formation of a square vortex lattice with two sublattice
one of vortices strongly pinned at the pinning centers, a
the other of vortices weakly pinned at the interstitial sites
would be interesting to study whether the interstitial vortic
exhibit any freezing transition as the temperature is lower

V. SUMMARY AND DISCUSSIONS

In summary, we have applied the density-function
theory to vortex liquids with strong disorder. The main res
is the short-range and oscillatory coupling between stron
pinned vortices mediated by the moving ones. Weak but p
sibly relevant orientational effects have been found, an
calculation of magnetization anomalies in a vortex liquid
the presence of a periodic pin array is presented here for
first time. We predict the occurrence of magnetizati
anomalies at some of the harmonics of the matching field
would be interesting to look for these anomalies in expe
ments on samples with a periodic array of pinning cente
We have also studied the structure and the thermodynam
of the vortex liquid at fields close to the matching field. T
strong magnetization anomaly found nearB5Bf may be
understood as a precursor of the so-called ‘‘Mott Insulato
state in the vortex solid.24

In this work, we have concentrated on the behavior
B>Bf because it is difficult to explore the regimeB,Bf
with the present method. Indeed, due to the absence of m
ing vortices, screening typical of the liquid state would d
appear in this case, and the effective interaction betw
pinned vortices would be close to the bare logarithmic o
Also, since all pins would not be occupied, one must face

FIG. 7. The vortex densityr, normalized by the average densi
r l , along the diagonal of a unit cell of a square pin array for tw
values of the ratioB/Bf . The distanced is measured from one
corner of the unit cell, andR is the lattice constant of the pin array
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57 11 737STRUCTURE AND MAGNETIZATION OF A TWO- . . .
difficult task of locating and averaging over many metasta
configurations.23

While the calculations described here were carried out
a 2D system, it would not be difficult to extend the method
deal with a layered system with straight columnar defe
perpendicular to the layers in an external magnetic field
is also perpendicular to the layers. In this case, theaverage
density as a function of the 2D coordinater that describes
the position on a superconducting layer is expected to
samefor all layers. The variational forms of Eqs.~2! and~4!
would then apply to this situation also. The free ener
would be given by a form that is identical to Eq.~1! with the
2D direct pair-correlation functionc(ur2r 8)u) replaced by
(nc(nd,ur2r 8), wheren is an integer that denotes the sep
ration between two layers. Since the direct correlation fu
tion falls off rapidly with increasingn19 in strongly aniso-
tropic materials such as BSCCO, the results obtained f
such a calculation would be similar to the ones reported h
The interlayer correlations are, in fact, expected to enha
the effects found in the present work.

A remark should be added in this context. Previo
calculations18,19 of the melting of the flux lattice in clean
layered superconductors using the same density function
the one used here reproduce the correct location and slop
the melting line in theB-T plane, but predict the wrong sig
for the density discontinuity at the first-order melting tran
tion. This discrepancy is numerically small in magnitude
the calculations predict a small decrease of the density of
vortex solid at melting, whereas experiments25 show a very
small increase. However, this discrepancy is significan
that it amounts to a violation of the Clausius-Clapeyr
equation of thermodynamics. The reason for this discrepa
is not completely clear. The peculiar ‘‘icelike’’ volum
B.
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change at the flux lattice melting transition is believed26 to be
due to the line character of vortices, together with their lon
range interactions. This suggests that the most prob
cause of the discrepancy in the calculations of Refs. 18
19 is the approximation made there in the treatment of in
layer density correlations. Problems arising from an appro
mate treatment of interlayer correlations are, of course,
present in the two-dimensional~one layer! calculations de-
scribed in the present paper. They should not be too ser
in the 3D generalization either since we only address pr
erties inside the liquid phase, not the flux lattice melti
transition.

An approximate analytic calculation of the thermod
namic properties of a strongly pinned vortex liquid was c
ried out recently by Bulaevskii, Vinokur, and Maley.10 We
believe that our work improves upon the treatment of t
paper by taking into account the correlations present in
vortex liquid through the term in the density functional th
involves the direct correlation functionc(r ) $the entropic
effects considered in Ref. 10 are described by the first te
of the density functional@Eq. ~1!# used in our study%. In
particular, the commensurability effects we have foun
originating from the short-range correlations present in
vortex liquid, would not be accessible in the calculation d
scribed in Ref. 10. Our results agree qualitatively with tho
of Ref. 10 where they overlap.
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