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Structure and magnetization of a two-dimensional vortex liquid in the presence of strong pinning
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The structure of a two-dimensional vortex liquid in the presence of strong pinning centers is investigated
using the density-functional formalism. Short-range positional and angular correlations in the liquid result in an
effective interaction between pinned vortices, mediated by the unpinned ones. This effective interaction is short
range and it oscillates with the intervortex distance. Matching of this oscillation with a periodic array of strong
pinning centers leads to anomalies in the reversible magnetizdt{ét) at the “matching field”B, and some
of its harmonics[S0163-18208)02714-3

[. INTRODUCTION fields, no anomalies have been detected so far, probably due
to the random character of the pin array. On the other hand,
The existence of a vortex liquid phase is one of the keyfor artificial periodic pin arrays, anomalies have been fdund
features of high-temperature superconductors in the mixeth the irreversible(vortex solig regime at harmonics of the
state. Thermal fluctuations are responsible for melting thenatching field. Also, Lorentz microscopy imagfhgf vorti-
Abrikosov vortex lattice aB,(T), well below the(mean- ces in the presence of periodic pin arrays have revealed in-
field) critical field B.,(T).! This gives rise to a phase lacking teresting commensurate structures.
long-range order, but where fluctuations are believed to be In this paper, we show that long-range correlations in the
structured into thermally wandering vortex lines forming apositions of the vortices are not essential for such phenom-
line liquid. Depending on the magnetic field and the tem-ena, and that similar effects also occur in the liquid phase,
perature, the vortex lines may break up into weakly couplediue to short-range correlations present in the liquid. For this
stacks of two-dimensional “pancake” vortices lying on the problem, due to the specific properties of the liquid state,
superconducting layers. In the presence of quenched disordsuch as short-range translational correlations and enhanced
produced by randomly placed pinning defects, the vortex latthermal fluctuations, it is clear that one cannot rely on the
tice lacks long-range translational order, but remains pinnedsual vortex-lattice free energy. This work reports the first
at low currents, with an irreversible magnetization. In thedirect calculation of the properties of a vortex liquid in the
case of weak disorder, this is essentially due to a nonvanisipresence of strong disorder. For this purpose we use the
ing shear stiffness. On the other hand, since the vortex liquidensity-functional DF) formalism? which allows us to take
cannot sustain shear and therefore cannot be pinned by weako account the competition between entropand interac-
disorder, it displays reversible properties. Thus, the presend#n effects in the liquid state. For the sake of simplicity, we
of quenched disorder leads to an irreversibility line which, inconsider a purely two-dimension@D) vortex liquid. This is
general, is different from the melting line of the pure system.a reasonable approximation in a large part of tiBeT()
Fluctuations induced in the lattice by weak impurity disorderphase diagram of extremely anisotropic layered supercon-
add to the thermal fluctuations and lower the melting field,ductors such as Bsr,CaCyOg, s (BSCCQ in a magnetic
thus extending the liquid phase domaim contrast, strong field perpendicular to the layers, especially in high fields
and correlated quenched disorder such as that produced yhere the two-dimensional layers of “pancake” vortices are
irradiation-induced columnar defects have a confining effectiecoupled! More generally, our calculation may apply to
on the thermal wandering of vortex lines and can push thehe case of a thin film for which the “confinement length”
melting (or irreversibility) line upwards, thus reducing the by columnar defects exceeds the film thickness. As discussed
liguid phase domain. This occurs for defect densities largelater, it would be quite straightforward to extend our calcu-
than the vortex density, i.e., f@ smaller than the “match- lations to a layered superconductor in which both the exter-
ing field” B,, defined asB,=®yng wheredy,=hc/2e is  nal magnetic field and the straight columnar defects are per-
the flux quantum, andy is the number of columnar defects pendicular to the layers. The formalism developed in this
per unit area. However, a liquid phase is expettedbe paper would also be applicable to other 2D systésush as
present at sufficiently high temperature8it-B,, . The basic magnetic  bubble arrays and charge-density-wave
thermodynamic properties of such a liquid are expected to beystem&®) in the presence of strong pinning disorder.
strongly modified due to the presence of the strong pins. This Let us summarize the main results of this work. First,
has been demonstrated by the experimental evidehoé  given a single defect that pins a vortex, we calculate the
anomalies in the reversible magnetization cuéH) near  azimuthally symmetric liquid density in the vicinity of the
B, in irradiated Tl- and Bi-based cuprate crystals. For highedefect, showing that it is inhomogeneous and oscillating, the

0163-1829/98/5(.8)/117308)/$15.00 57 11730 © 1998 The American Physical Society



57 STRUCTURE AND MAGNETIZATION OF A TWO- ... 11731

liquid density being depleted in the vicinity of the pinned from defects that do not contain its core. This is due to the
vortex. This effect disappears with increasing temperature ggerturbation of the screening currents by the insulating re-
the vortex becomes thermally depinned. Then, given twajions associated with such defects. However, in high fields,
pinned vortices, we obtain an oscillatory effective interactionthese contributions are screefiédnd only add some weak
as a function of their separation. Due to the breaking ofpinning. Such contributions are neglected here. We also as-
rotational symmetry in this case, angular correlations alsgsume that a pinning center does not pin more than one vor-
appear but never happen to be large. We qualitatively comtex.

pare the found behavior with decoration experiméfit&®in In the absence of pins, the homogeneous vortex liquid is
which the field-cooled liquid is believed to freeze close tocharacterized by its dire€Ornstein-Zernikgpair-correlation
the irreversibility line, thereby representing in some sense &unctiont’ c(r,r')=c(|r—r’|), which represents the cou-
snapshot of the liquid close to freezing. As another applicapling between density fluctuations at poimtsandr’. The
tion, we calculate the magnetization in the presence of &alues ofc(r) used here are taken from a calculatibbased
square pin array and find anomalies in the reversible magnen an approximation proposed by Rogers and Yothigrom
tization at the matching field and at some of its harmonicscomparisons with simulation data, it is knot®that this ap-
This points towards another motivation of this work: if peri- proximation is fairly accurate, but it slightly underestimates
odic pin arrays can be fabricated in high-materials, then the correlations in the liquid at temperatures close to its equi-
measurements of the magnetization in the liquid state calibrium crystallization temperature. We do not attempt to de-
give, through the present work, access to fundamental liquidkve a self-consistent form foc(r) in the presence of the
state quantities such as correlation functions of the densityandom pinning potential. This is surely reasonable in the
This is important because extraction of such information bycase of a dilute defect array. Moreover, even close to the
other means(e.g., from neutron-scattering measurements matching field, where vortex fluctuations are severely
appears to be very difficult. quenched by pinning, this hypothesis is comparable to a

We describe the model and the formalism in Sec. Il. Secsimilar assumption that is commonly made in DF calcula-
tion 1ll is concerned with our single and two-pin calcula- tions of crystallization transitioisvhere one uses the corre-
tions. Section IV describes the calculations for a periodidation function of the homogeneous liquid to calculate the
array of pins. We end with conclusions and discussions. free energy of the ordered solid.

The DF formalism involves the use of an expression for
Il. MODEL AND FORMALISM the free ene.rg)F.of_an .inhomogeneous s_tate, characterized
by the density distributiom(r), as a functional op(r). In

The DF formalism is one of the major tools in studies of this work, we use a density functional of the form proposed
classical liquids?’ It has also been recently applied to vortex by Ramakrishnan and Yussodff:
matter, to determine the freezirgelting line in a clean
layered superconduct8r®and also in the presence of weak B p(r)
pinning disorde? In this paper, we extend the DF approach B(F ™ F')_f dr p(r)InT— op(r)
to strong disorder, considering for simplicity a purely 2D
vortex liquid and examining its spatial density fluctuations in
the presence of strong attractive pinning centers. We shall
hereafter considefunless otherwise statgthe caseB>B,,
and temperatures well below the thermal depinning temper
ture, so that nearly all defects pin a vortex.

In the London approximation, point vortices in a single
superconducting layer have logarithmic interactio8¥,r)
=—TIn(r/&), wherel' = BdD3d/(87°\?). Here B=1/(kgT),

d the effective layer thicknesgypically one unit cell for
layered superconductgrs the Ginzburg-Landau coherence
length and\ the London screening length in the layers. De-

+BJ dru(r)Sp(r)

1
—Ef drjdr cr=r"Dép(n)dp(t’), (1)

where dp(r)=p(r)—p,;, F, is the free energy of the uni-
%orm liquid of densityp, andu(r) is the external one-body
potential (here the pinning potentigal

The vortex liquid is homogeneolise., p(r) = p, for all r]
in the absence of pinning. The presence of pinning centers
causes the time-averaged local density to be inhomogeneous
even in the liquid state. Our strategy is to characterize this
inhomogeneity by appropriate variational forms involving a
- : =~ few variational parameters, and to determine the values of
fmmg a lengthay, relatezd to the homogeneous vortex liquid these variational parameters by minimizing the free energy
densityp;=B/®, by magp; =1, the nearest and next-nearest yiyen by the expression of E(L). The details of the calcu-

neighbor distances in the triangular lattice area.@nd |ations and the results are described in the next two sections.
3.38;, respectively. For parameter values appropriate for

BSCCO [\ (T=0)=1500 Ad=15 A T,(H=0)=90K],
the dimensionless coupling constdntis approximatelyl’
~2.4x10°%(T in kelvin) at low temperatures where the de-  Let us first consider a 2D vortex liquid in the presence of
pendence ol on the temperature can be neglected. a single strong pinning center at the origin that traps one
A defect(pinning center at the origin is assumed to pro- vortex. This obviously breaks translational symmetry,
duce a potential of the fornvp(r)z—vo(l—rzlaz) if r thereby making the average denspyr) in the neighbor-
<a, andV(r)=0 if r>a. The potential strength i8V,  hood of the pinning centénhomogeneoyswith azimuthal
~T/4{0.5+In[1+(a%/£?)]}.t We hereafter choosg8V, symmetry. The pinned vortex gives rise to a sharp peak in
=I'/4 and a=0.1a, when unspecified. For columnar pins p(r), which is centered at the origin and whose width is
with a~5 nm, this amounts tB~0.25 T. One should note expected to be approximately equal to the raagef the
that contributions to the pinning of a given vortex also comepinning potential. The integrated weight under this peak is

lll. SINGLE AND TWO-PIN CALCULATIONS
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expected to be close to unity if one vortex is trapped at the 2
pinning center. For a perfect pirs{function potentig), the

function p(r) for r #0 is, according to the Percus theorém,

identical to the pair distribution functiog(r) of the homo-

geneous liquid that describes the short-range positional cor 15
relations present. In particular, the liquid density is expected
to be depleted in the immediate vicinity of the pinned vortex.

Beyond this “correlation hole,” a damped density wave with \5/7

a period close to the nearest-neighbor spaciad.fa,) of a - 1L
triangular lattice of density, should appear. The case of a Q__

strong pin with a finite pinning potential that has a short but T

nonzero range should be qualitatively similar. We therefore*—

choose a simple variational ansatz for the average densit

near the pinning center: 05 -

, —ba.r2
p(N)=pi+p'(r); p'(r)=ae”™"+f(r),
f(ry=ayJo(Gry) for rsrg, 0 L

0 2 4 §) 8 10
f(r)=aye *2'""mJy(Gr) for r>r,,. 2 riag

Here, the first term irp’(r) represents the part of the total . . , -
! . . FIG. 1. The optimal density profilé(r) near a pinning center
density that arises from the vortex pinned at the defect. IE P y P (") P g

) i . o see Eq.(2)], normalized by the average densjiy, and the pair
displays a Gaussian broadening due to the finite strength a tribution functiong(r) for I'="50. The distance is measured in

nonzero range of the pinning potential. The second term,,its of a, defined bymaZp,=1. The curve forf (r)/p, has been

f(r), describes the correlation hole and the oscillatory dengpjfted upward by one unit in order to bring out its similarity with
sity modulation in the vicinity of the pinning center. It in- (),

volves an integration of a lattice density was/€ " over the
polar angle,G being one of the shortest reciprocal lattice are such that the integrated weight of the Gaussian term ap-
vectors of a triangular lattice of densipj. The cutoffr,,  pearing in the expression fgr'(r) [Eq. (2)] remains very
denotes the first minimum of the Bessel functidg(Gr). close to unity for all values oF, indicating that the pinning
This form is by construction close to the homogeneous liquiccenter traps one vortex at all temperatures lying in the range
pair distribution functiong(r). It is, therefore, physically considered. These temperatures are, therefore, lower than the
sound and we have found that it yields the lowest free energgo-called thermal depinning temperatufg,. The optimal
among other similar choices. The variational paramedgrs value ofb; is found to be quite close to the expected value,
andb, describe, respectively, tteirengthand therangeof ~ BV,/a?, wherea is the range of the parabolic pinning po-
the pinning at the origin, while, andb, describe, respec- tential. Figure 1 shows a plot of the radial density profile
tively, theamplitudeand therangeof the density modulation f(r) outside the range of the pinning potential as a function
near the pinned vortex. of the distance at a temperature corresponding lie=50.
Using Egs.(1) and (2), we have carried out a numerical We also show on the same plot the pair distribution function
minimization of the excess free energy induced by a singlg(r) of the homogeneous liquid, calculated from the data for
pin as a function of the four parametexrs, b;, a,, andb,. c(r) used in the evaluation of the free energy. As expected,
The minimization is done under the following constrairtis:  f(r)/p, is very similar tog(r), with slightly less-pronounced
the density at every point must remain non-negatiii¢the  oscillations due to imperfect localization of the vortex at the
integral of p’, the deviation of the local density from the origin. These results indicate that the variational ansatz of
average value, must be equal to z€éoconservation of the Eq. (2), together with the Ramakrishnan-Yussouff free-
number of vortices Since both the functions appearing in energy functional of Eq(1), provide a good description of
the expression fop' are short-range, nonzero contributions the density inhomogeneity produced in the vortex liquid by a
to the integrals of Eq(1) come only from regions close to single strong pinning center.
the origin, and it is not difficult to evaluate these integrals To study the process of thermal depinning of vortices
numerically[the double integral appearing in the third term from the defects, we repeated the calculation described
of Eq. (1) is evaluated by converting it into a single integral above for a number of different values 8%, andI’, treat-
in Fourier spack We have carried out this calculation for a ing them as independent parameters. The optimal values of
number of values of in the range 5&I"'=<120, which cor- the variational parametei®,, b;, c;, andd; were deter-
responds to temperatures in the range between 45 and 201§ined for each pair of values @V, andI'. The probability
for BSCCO. We note that these temperatures are higher thasf the pinning defect being occupied by a vortex was then
the equilibrium crystallization temperature of the vortex sys-obtained as the integral of the Gaussian term in the expres-
tem without disorder, which is estimated from molecular-sion for the densityEq. (2)]. The results for this occupation
dynamics simulatiorf$ to correspond td"=140. If we keep  probability as a function oV, for three different values of
the value of8V, fixed atI'/4 (see Sec. )| then we find that T are shown in Fig. 2. It is clear from the data that the
the optimal values of the variational parametagsandb;  occupation probability is very close to unifye., the vortex
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wherer;=r—R;, 1=1,2, and the new functioff includes
the possibility of a sixfold angular modulation of the density,

f'(ry)=ayJo(Gr,) for ri<rg,

o
™
I

f’(ri)=azeb2“irm){(l—a)Jo(Gri)

6

1 i
+a=>, eCTi| for ri>ry,. (4)
61

Here the quantitye, O<a<1, describes the amount of

Occupation Probability
o
(o)}
I

04 - rotational symmetry breaking in the density wave near each
— I'=50 pinned vortex, which is introduced by means of the second

‘® --- =80 term in the bracket in Eq(4). The vectors{G,}, k
0.2 e T-120 =1,2,...,6represent the six shortest reciprocal lattice vec-

tors of a triangular lattice of density,. The two sets of
: vectors {Gi} and {GZ} at the two pinning centers make
12 14 angles#; and #, (modulo 60°) with the line joining the

|
6 8 10

BV pinning centers.
0 We first describe the results of a calculation in which the

FIG. 2. The probability of occupation of a pinning center as aparamete'D‘_IS set equal to ,Zero’ 1€, the,po,SS'b'“ty of angu-
function of BV, whereV, is the depth of the pinning potential and lar mo_dulanon of the density near the pinning Cen_ters IS not
B is the inverse temperature. The data for three values of the df@ken into account. For each value of the separatisnR,
mensionless coupling constait(see text are shown. —Ry/, the free energy obtained by using the expression of

Eq. (3) for the density in Eq(1) is numerically minimized
is fully pinned at the defegfor 8V,>8, and that it begins to  with respect to the four variational parameters b;, c;
decrease below unitf.e., the vortex begins to get thermally andd;. This minimization is carried out under the two con-
depinnedl as BV, is decreased beloy8V .=8. The decrease straints mentioned above and an additional one that ensures
of the occupation probability g8V, is decreased belo@V,.  the existence of a “correlation hole” outside each of the two
becomes sharper as the valuelbis increasedi.e., as the pinning centers. Operationally, the third constraint amounts
temperature is decreageddowever, the value of3V. ap-  to ensuring that the density vanishes immediately outside the
pears to be nearly independent of the valué€ of the range range of the pinning potential of each pinning center. &or
considered. Using parameter values appropriate for BSCC&a,, we find that the optimal values @&f; and b, corre-
and the two-fluid form for the temperature dependenck,of spond to full occupation of the two pinning centers. Typical
we find thatBV,~8 corresponds to a temperature of aboutresults for the dependence of the free energy of a pair of
60 K. Since the occupation probability decreases smoothly tpinned vortices on the separatidnare shown in Fig. 3. As
zero asBV, is decreased beloV,, it is difficult to iden-  expected, commensurability oscillations occur as a function
tify a particular temperature as the depinning temperaturef the intervortex separatiot the free energy exhibits local
Tgp- Our results, however, predict that nearly all vorticesminima at values ofi corresponding to the first two maxima
will be thermally depinned at temperatures corresponding tof f(r) (see Fig. 1, and the minima off(r) correspond to
BVo<4. local maxima of the free energy as a functiordoHowever,

Let us now consider two defects with spacithgeach of the energy scale associated with these oscillations is rather
them pinning a vortex, thus generating an oscillating densitysmall compared to the pinning energy. It is, therefore, not
wave in its vicinity. The matching of these density wavessurprising that the “frustration” caused by incommensura-
leads to commensurability effects between the interdefedbility is not sufficient to prevent simultaneous occupation of
distanced and the lengtha,. These effects come from two- two pinning sites separated by a distadeeag. This is con-
body correlations which, in two dimensions, introduce notsistent with decoration experimerifsyhich show that al-
only radial but also angular short-range correlations, reflectmost every pinning site is occupied by a vortex when the
ing a tendency of vortices surrounding a pinned one to orgarumber of pinning sites is smaller than the number of vorti-
nize into predominantly hexagonal arrangements without &es. The occupation probability of the pinning centers begins
fixed orientation. When two pinned vortices are nearby, on¢o decrease below unity as the valuedof decreased below
expects an interaction that tries to lock together the locah,, indicating that two pinning centers separated by distances
orientations around the two pinned vortices. The range ofmuch smaller tham, are not likely to be occupied simulta-
this interaction is expected to be roughly thatggf) but its  neously. It would be interesting to look for this effect by
detailed form is unknown. In order to evaluate it, we write examining closely the images obtained from decorations
the density distribution in the neighborhood of two pinning experiment¥ in which the positions of both the pinning de-
centers located aR; and R, as a simple superposition of fects and the vortices are determined simultaneously.
individual density waves: We now consider the possibility of a nonzero angular

) , modulation @+ 0). In the first calculation we carried out to
p(N=p+ae Pi+ae P2+f'(r)+f'(rp,), (3) examine this possibility, the values of the variational param-
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FIG. 4. The free energy differeng@AF = B[F(a) —F(a=0)]
of a pair of pinned vortices separated by distadeel.%, (which
corresponds to the nearest-neighbor distance in a triangular Jattice
as a function of the amplitude of angular modulationgsee Eq.
(4)] for two values ofT".

FIG. 3. The pinning contribution to the free energy of a pair of
vortices trapped at two defects separated by distandéne dotted
line represents the value g asd— «, obtained as two times the
free energy of a single pinned vortex.

etersa;, b;, a, andb, were kept fixed at their optimal
values obtained from the calculation with=0. The free yortex. An oscillating coupling results, the period of which is
energy was then minimized as a function of the “mixing” determined bya,, the intrinsic length scale in the homoge-
parameterr and the two angles}; and6,. We found thatat  neous liquid. This effective interaction involves both radial
low temperatures, the free energy is minimized for a smalltranslational and angular(orientational degrees of free-
but nonzero value of, indicating that some degree of an- dom. The fact that the effective interaction is short range
gular order is indeed preferred. The optimal valueeofs  while the bare intervortex interaction is long rar{gggarith-
relatively large if the spacing between the defects is close mic) is a consequence of the screening produced by the un-
to 1.9, or 3.3, the distances corresponding to the nearestpinned vortices, which can adjust their positions in response
neighbor and next-nearest-neighbor spacings of a triangulas the forces produced by the pinned vortices. It is interesting
lattice. The minimum of the free energy is obtained #gr to note the analogy of this effective interaction with the
=6, for all values ofd, and asd is increased from one Ruderman-Kittel-Kasuya-YosidgdRKKY) interaction be-
lattice spacing, the optimal value of these angles switchesveen localized electron spins on dilute magnetic impurities
between 0° and 30°, corresponding to the two possible oriin metals, which arises from matching the induced polariza-
entations of one of the shortest reciprocal lattice vectors withions of the Fermi liquid of conduction electrons with an
respect to the line joining two neighboring sites in a triangu-intrinsic length scale equal to the Fermi length. However, in
lar lattice. An angle of 30° corresponds to the two pinnedthe case considered here, the effective interaction between
vortices being nearest neighbors, afg=6,=0° to next- the angularorientational degrees of freedom is more com-
nearest neighbors on a triangular lattice. plicated than in the RKKY case since certain specific orien-
We then carried out a more accurate variational calculatations defined with respect to the axis joining the two
tion for d=1.9a, (the nearest-neighbor distance in a triangu-pinned vortices are preferred. In a periodic pin array, this can
lar lattice) in which the values 0B, and 6, were fixed at 30°  effectively lead to a crystalline orientation, but for a random
and the free energy was minimized with respect to the paarray frustration will occur.
rametersa;, by, a,, andb, for each value of the mixing The results of our calculatiofFig. 4) show that, ifB
parameter. The results of this calculation for two values of >B, pinned vortices do not induce a substantial amount of
I' are shown in Fig. 4. It is clear that a small but nonzerosixfold angular order in their vicinity, even at the lowest
value of « is preferred and that this value increases as théemperature considered here. This result is consistent with
temperature is reduced. Similar results were obtainedifor decoration experiments™® showing that the correlation
=3.5a; and 6,= 6,=0°. The optimal values of for other length associated with sixfold bond-orientational order is
“incommensurate” values ofl were found to be substan- very small (about one lattice spacingvhen the number of
tially smaller. pinning sites is small compared to the number of vortices.
The results described above show that the unpinned volHowever, the interaction described above may play an im-
tices mediate a short-range effective interaction between twportant role in the freezing transition. B>B,, crystalliza-
pinned vortices. This effective interaction clearly originatestion of small domains around pinned vortices should dra-
from the density modulations induced around a given pinnednatically enhance angular correlations and increase the size
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FIG. 5. The pinning part of the free energy per unit cell of a
square array of pinning centers as a functiorBéB,, whereB is
the magnetic induction ané, is the “matching field.”

FIG. 6. The magnetizatiodM as a function of the magnetic
inductionB for a square pin arraydotted ling and for no pinning
(solid line) atI'=120.

of the interaction, which in turn would control the quenching
of local orientations into a glassy state. A detailed descrip- The data shown in these two figures contain a few points
tion of this process is, however, beyond the scope of théor B<B,. The free energy for such values Bfwere ob-
present study. tained in the following way. Since the number of vortices is
smaller than the number of pinning centers and the tempera-
IV. PERIODIC PIN ARRAY ture is substantially ]ower than the thermal d(—;-pinning tem-
perature, all the vortices are expected to be pinned for such
Let us now turn to the interesting case of a periodic arrayalues ofB. The vortex system then looks very much like a
of strong pinning_centers, such as the ones recently fabrierystal with a few vacancies B is only slightly lower than
cated in thin films’® In these experiments, the defects sit ath), We assume that these vacancies are mobile, so that the
the points{R;}, which form a square lattice. We first con- average density is obtained by averaging over all possible
sider the cas&>B and calculate theeversiblevortex lig-  locations of these vacancies. The density distribution in this
uid magnetization, given as usual By=B/(4m)—JF/9B.  situation is then given by a set of Gaussian peaks of equal
The free energy is the sum of the uniform liquid contribution height and width located at the pinning centers. The width of
F, and that due to the density fluctuations induced by pingach Gaussian peak is determined, as before, by the range of
[Eg. (2)]. In this calculation, we neglect, for simplicity, the the pinning potential. The height of the peak is determined
possibility of any angular modulation of the density inhomo-from the requirement that the integrated weight under each
geneity produced by a single pinned vor{éxe., we set the peak should be equal ®/B,, the average occupation prob-
parametew of Eq. (4) equal to zerh Such angular modula- ability of each pinning center. The free energy of this state is
tions are expected to slightly enhance the magnetizatiothen calculated using Eql).
anomalies described below. We simply superpose exponen- It is clear from the data shown in Fig. 5 that the pinning
tially damped density waves at each pin, i.e., we s contribution to the free energy has well-defined local minima
=pi+Zip'([r—R|) with p" given by Eq.(2). Since one atB/B, = 1, 2, and 4. These minima obviously arise due to
expects the contribution d¥, to M(H) to be quite smooth the commensurability effects discussed above. In particular,
and any anomaly in th& versusH curve to arise fronF each minimum corresponds to a situation in which the length
—F,, we replaceF, by the usual London expression, ne- of one of the shortest lattice vectors of the square pinning
glecting the smoothly varying contribution of thermal fluc- array coincides with the value af corresponding to one of
tuations. For a give® (or p,), the free-energy difference is the minima of the free energy shown in Fig. 3. The minimum
calculated from Eq.(1) and minimized with respect to atB=B, corresponds to the nearest-neighbor distance of the
a;, by, a,, andb, under the constraints mentioned above.pin array being equal to 159, the value ofd at which the
ThenM(H) is determined by numerically differentiating the first minimum of the free energy of Fig. 3 occurs. The
free energy with respect tB. The results obtained foF minima atB/B, = 2 and 4 correspond, respectively, to the
=120 are shown in Fig. 5 in which the pinning contribution next-nearest-neighbor and nearest-neighbor distances of the
to the free energy per unit cell of the pinning array is plottedpinning array coinciding with the value af at the second
as a function oB/B,, and in Fig. 6 which shows the mag- minimum of the free energy of Fig. 3. We can define an
netizationM as a function oB/B,;. effective pairwise interaction between pinned vortices from
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the data of Fig. 3 by subtracting from the free energy its H
asymptotic value fod—o. A sum of this effective interac-

tion over all pairs of sites of the pinning array yields results

which are qualitatively similar to the ones shown in Fig. 5. In 4
contrast, a sum of the effective interaction over the pairs of
sites of arandomarray of pins shows a smooth variation

with B/B,, without the local minima aB/B,=2 and 4, in- = 3
dicating that the broad distribution of the pair separationina &
random array washes out the commensurability effects found
for a periodic array of pins. This is in agreement with the ‘6_
experimental observati8r® of no anomaly in theM versus 2

H curve forB>B, in samples with a random distribution of
the pinning centers. The free energy shown in Fig. 5 exhibits
a deep local minimum a@B=4B,. This is probably due to 1r
the fact that the ground state of the vortex system for this
value of B is, as found in recent Lorentz microscopy

1
1
1
1

experiment$, very close to a triangular lattice, which is the 0 | L | L I
preferred structure of the vortex system in the absence of 0 04 0.8 1.2
pinning. We have verified that our ansatz for the density d/R

distribution in an unit cell of the pinning array is consistent

with the results reported in Ref. 8. In particular, the positions  FIG. 7. The vortex density, normalized by the average density

of the peaks of the optimal density distribution found in ourp, , along the diagonal of a unit cell of a square pin array for two

calculation are in rough correspondence with the locations ofalues of the ratioB/B,. The distanced is measured from one

the vortices found in Ref. 8 for the same valueBiB ;. corner of the unit cell, an® is the lattice constant of the pin array.
It is clear from Fig. 6 that in addition to the usu@lon-

do) logarithmic behavior, théd(B) curve displays oscilla- of a vortex at the center of each unit cell of the pinning

tions. These oscillations are clegrly porrelated w[th the strucl—attice for B=2B,, in a superconducting film with a square
ture of the free energy shown in Fig. 5. In particular, each

anomaly in theM(B) curve is correlated with a local mini- array of pinning centers. One notices that this corresponds to

mum of the free energy. A strong anomaly with a large nega:[he formation of a square vortex lattice with two sublattices,
tive slope occurs near the matching fielj,. At higher one of vortices _strongly pinngd at the pin.ning 9‘?”“3?5’ and
fields, weaker but still noticeable anomalies occur near thd1® other of vortices weakly pinned at the interstitial sites. It
second and fourth harmonics of the matching field. Thevould be interesting to study whether the interstitial vortices
anomaly at the second harmonic still displays a negativ@Xhibit any freezing transition as the temperature is lowered.
slope, while around the fourth harmonic the magnetization

curve simply flattens. A similar feature has been observed

above the irreversibility field but close 1, in randomly V. SUMMARY AND DISCUSSIONS

irradiated TI- and Bi-based cupratB;:;b,“‘6 and also in irre-

versible magnetization measurements for a periodic pinh In stummztiry,l_we_d ha\'/t?\ z:pphe(al_ th% degﬁlty-fupctlonzalt:
array’ All these features have the same origin, namely, thgneory to vortex liquids with strong disorder. The main resu

commensurability of the vortex system with the periodic pin'S the short-range and oscillatory coupling between strongly
array. This leads to a tendency to pin the vortex densitPinned vortices mediated by the moving ones. Weak but pos-
(equivalently, the value oB) at values corresponding to the sibly reI_evant orlentatllongl effects h.ave_ been founc_i, gnq a
local minima of the free energy occuring B&=nB,, n calculation of magnetization anomalies in a vortex liquid in
=1, 2, and 4. The strongest possible anomaly happens whéfie presence of a periodic pin array is presented here for the
the differenceH —nB,, is perfectly screened, leading to a first time. We predict the occurrence of magnetization
plateauin B, and a local slope of 1/4+ for the theM (H) anomalies at some of the harmonics of the matching field. It
curve. Figure 6 shows that the anomalies are weaker in theould be interesting to look for these anomalies in experi-
liquid due to the thermal motion of the unpinned vorticesments on samples with a periodic array of pinning centers.
which tend to screen out the commensurability interactionWe have also studied the structure and the thermodynamics
Nevertheless, the motion of the unpinned vortices remainsf the vortex liquid at fields close to the matching field. The
correlated with the positions of the pinned ones. This is il-strong magnetization anomaly found ne&sB, may be
lustrated in Fig. 7 which shows the variation of the densityunderstood as a precursor of the so-called “Mott Insulator”
along the diagonal of a square unit cell of the pin lattice forstate in the vortex solié’

B/B4=2.0 and 1.5. Besides the correlation holes of pinned In this work, we have concentrated on the behavior for
vortices, the additional feature in the middle reveals a wealB=B because it is difficult to explore the regini<B,,
pinning potential trapping vortices at thaterstitial site.  with the present method. Indeed, due to the absence of mov-
Weak pinning of vortices at interstitial sites fB=2B, has  ing vortices, screening typical of the liquid state would dis-
been observedin experiments on superconducting films appear in this case, and the effective interaction between
with a square array of submicron holes. Also, recent Lorentpinned vortices would be close to the bare logarithmic one.
microscopy experimerithave clearly shown the localization Also, since all pins would not be occupied, one must face the



57 STRUCTURE AND MAGNETIZATION OF A TWO- ... 11737

difficult task of locating and averaging over many metastablechange at the flux lattice melting transition is belie¥d be
configurationg due to the line character of vortices, together with their long-
While the calculations described here were carried out forange interactions. This suggests that the most probable
a 2D system, it would not be difficult to extend the method tocause of the discrepancy in the calculations of Refs. 18 and
deal with a layered system with straight columnar defectsl9 is the approximation made there in the treatment of inter-
perpendicular to the layers in an external magnetic field thalgyer density correlations. Problems arising from an approxi-
is also perpendicular to the layers. In this case,aherage  Mate treatment of interlayer correlations are, of course, not
density as a function of the 2D coordinatehat describes Présent in the two-dimensiongbne layey calculations de-
the position on a superconducting layer is expected to bécnbed in the present paper. They should not be too serious

samefor all layers. The variational forms of Eq&) and(4) in che SD_cgj]ent%raIiI;atign ?]ither sinE[:ethweﬂonIyl a:?dress ﬁrop—
would then apply to this situation also. The free energyer Ies Inside ine fiquid phase, not the Tux latlice metting

. L . : transition.
would be given by a form that is identical to EG) with the . . .
2D direct pair-correlation functiow(|r—r)|) replaced by An approximate analytic calculation of the thermody-

s, c(nd,|r—r'), wheren is an integer that denotes the sepa-nam'c properties of a strongly pinned vortex liquid was car-

ration between two layers. Since the direct correlation func—rled out recently by Bulaevskil, Vinokur, and Maléywe

tion falls off rapidly with increasing’® in strongly aniso- believe that our work improves upon the treatment of this

. . . aper by taking into account the correlations present in the
tropic materials such as BSCCO, the results obtained fror6ortex liquid through the term in the density functional that

such a calculation would be similar to the ones reported here, . . . .
The interlayer correlations are, in fact, expected to enhanc'éWOIVes the' dlrect'correIann functloo(r) {the entropic
the effects found in the presen,t work ' effects considered in Ref. 10 are described by the first term
A remark should be added in t.his context PreviousOf the density functiona[Eq. (1)] used in our study In

' particular, the commensurability effects we have found,

calculations®*® of the melting of the flux lattice in clean iginating from the short-range correlations present in the
layered superconductors using the same density functional gdlginating ge correl P .
ypriex liquid, would not be accessible in the calculation de-

the one used here reproduce the correct location and slope of . : . .
the melting line in theé3-T plane, but predict the wrong sign scribed in Ref. 10. Our results agree qualitatively with those
of Ref. 10 where they overlap.

for the density discontinuity at the first-order melting transi-
tion. This discrepancy is numerically small in magnitude—  This work was supported by the Indo-French Center for
the calculations predict a small decrease of the density of ththe Promotion of Advanced Research and also by a joint
vortex solid at melting, whereas experiméntshow a very  project between LEPES, Grenoble and Jawaharlal Nehru
small increase. However, this discrepancy is significant inCentre for Advanced Scientific Research, Bangalore under
that it amounts to a violation of the Clausius-Clapeyronthe PICS Program of CNRS, France. We are grateful to T. V.
equation of thermodynamics. The reason for this discrepancirRamakrishnan for many helpful discussions and to Gautam
is not completely clear. The peculiar “icelike” volume Menon for providing the data for liquid-state correlations.
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