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We use numerical minimization of a model free energy functional to study the effects of columnar pinning
centers on the structure and thermodynamics of a system of pancake vortices in the mixed phase of highly
anisotropic layered superconductors. The magnetic field and the columnar pins are assumed to be perpendicular
to the layers. Our methods allow us to study in detail the density distribution of vortices in real space. We
present results for the dependence of the average number of vortices trapped at a pinning center on temperature
and pinning strength, and for the effective interaction between nearby pinned vortices arising from short-range
correlations in the vortex liquid. For a commensurate, periodic array of pinning centers, we find a line of first
order vortex lattice melting transitions in the temperatureT vs pin concentrationc plane, which terminates at
an experimentally accessible critical point asc is increased. Beyond this point, the transition is replaced by a
crossover. Our results should also apply, with little change, to thin-film superconductors with strong point
pinning.
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I. INTRODUCTION

In the mixed phase of type-II superconductors, magn
flux penetrates the sample as quantized vortex lines w
form a special physical system known as ‘‘vortex matte
The fascinating equilibrium and dynamical properties of v
tex matter in the mixed phase of high-temperature superc
ductors~HTSC’s! have prompted considerable experimen
and theoretical attention1 for more than a decade. Because
enhanced thermal fluctuations, the Abrikosov lattice in v
pure samples of these highly anisotropic, layered materia
observed to undergo a first order melting transition1 into a
resistive vortex liquid as the temperature is increased.

The properties of the mixed phase of HTSC’s are a
known1 to be strongly affected by the presence of pinni
centers, either intrinsic to the sample or artificially generat
Understanding the effects of pinning in these systems is v
important for practical applications because the presenc
pinning strongly influences the value of the critical current
the mixed phase. Columnar pinning arising from dama
tracks produced by heavy-ion bombardment has rece
much attention in this context because such extended de
parallel to the direction of the average magnetic flux
highly effective2,3 in increasing the critical current by loca
izing vortex lines along their length. Columnar defects p
duce ‘‘strong pinning’’ in the sense that the pinning potent
of a defect is sufficiently strong to pin a vortex line at lo
temperatures. Heavy-ion irradiation generally produce
random array of parallel columnar defects. The effects
such an array of extended defects on the properties of
mixed phase of HTSC’s have been extensively stud
experimentally,2–5 theoretically,6–8 and numerically.9,10 The
thermodynamics of a collection of vortex lines in the pre
ence of a parallel array of random columnar pins has b
analyzed6,8 by mapping the problem to the quantum mecha
ic
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ics of a system of two-dimensional interacting bosons in
external random potential. The main prediction of such th
ries is the existence of a low-temperature ‘‘Bose glas
phase,6–8 separated by a continuous phase transition from
high-temperature, entangled liquid of vortex lines. The th
retically predicted scaling behavior near the Bose glass t
sition has been observed.5 A random array of columnar pins
also affects the equilibrium properties of the hig
temperature vortex liquid, leading to the occurrence
anomalies11 in the reversible magnetization curve nearB
5Bf , whereBf5rpF0 (rp is the areal density of columna
pins andF05hc/2e is the flux quantum! is the so-called
‘‘matching field,’’ andB is the magnetic induction that dete
mines the areal densityr0 of vortex lines (r05B/F0).

It is also possible, through the use of a variety of nan
fabrication techniques,12–17 to create periodic arrays o
strong~in the abovementioned sense! pinning centers in thin-
film superconductors. The interplay between the lattice c
stant of the pin array~determined byBf) and the intervortex
separation~determined byB) can lead to a variety of inter
esting commensurability effects in such systems. Some
these effects have been observed in recent experiments
aging experiments13,17 have shown the formation of ordere
structures of the vortex system at low temperatures for co
mensurate values ofB/Bf . Magnetization measurements12

in the irreversible~vortex solid! regime have demonstrate
the occurrence of anomalies at harmonics ofBf . The effec-
tiveness of pinning at integral values ofB/Bf has been
found14 to produce regularly spaced sharp minima in the
sistivity versus field curve. A pinning-induced reconfigur
tion of the vortex lattice has been observed in
experiment16 on a thin-film superconductor with a rectang
lar array of pinning centers. Some of these effects have b
studied theoretically, using analytic18 and numerical19 meth-
ods. Bulk HTSC samples with periodic arrays of column
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pins have not been fabricated yet, but the technology
doing this appears to be within reach.20

A periodic array of strong pinning centers should ha
significant effects on the melting transition of the vortex l
tice. We consider here the situation whereB.Bf , that is,
when the pin array is relatively dilute. If, in addition, th
value ofB is such that the melting temperature of the vort
lattice in the pure system is substantially lower than the
perconducting transition temperature in zero field, then e
pinning center would pin a vortex at temperatures com
rable to the melting temperature of the pure vortex latti
However, the interstitial vortices, which would be prese
whenever the number of pinning centers is smaller than
number of vortices~assuming that each defect can pin
most one vortex!, may undergo a sharp melting transitio
This would certainly be the case in the limit where the sp
ing of the pin array is sufficiently large. Since the vortic
pinned at the defects produce a periodic potential for
interstitial ones, the melting transition of the latter is an e
ample of a solid to liquid transition in the presence of
external periodic potential. Evidence for such melting of
terstitial vortices has been found in experiments12,13 on thin-
film superconductors with periodic pinning. However, t
thermodynamic behavior at the melting transition has
been characterized in these experiments. The effects
periodic potential on the melting of two-dimensional soli
have been investigated earlier using analytic21 and
numerical22,23 methods. We are not aware of any theoreti
study of the effects of a periodic array of columnar pins
the vortex lattice melting transition in three dimensions.

In this paper, we report the results of a study of the eq
librium properties of the mixed phase of highly anisotrop
layered superconductors in the presence of columnar p
We consider a geometry in which both the magnetic field a
the direction of the columnar defects are perpendicular to
superconducting layers. Our study is based on a model
energy functional24–26 for a system of ‘‘pancake’’ vortices
lying on the superconducting layers. We consider the limit
case of a vanishingly small Josephson coupling between
layers, so that the pancake vortices on different layers in
act via only their electromagnetic coupling. As we discuss
some detail early in the next section, previous theoretical
experimental studies25–30have shown that this limit is appro
priate for describing extremely anisotropic31 Bi- and Tl-
based HTSC’s. These are the systems that we will cons
here. The Ramakrishnan-Yussouff~RY! free-energy
functional24 used in the present work is the same as that u
in earlier studies25,26 of vortex lattice melting in pure sys
tems. The same free energy functional was also used
combination with the replica method for treating quench
disorder, in a study32 of the effects of random point pinnin
on the melting line in theB-T plane. In these earlier studie
the density distribution in the crystalline state was expres
in terms of a few ‘‘order parameters’’ and the free ener
was minimized with respect to these parameters. In
present work, we use a different method which is more po
erful and more appropriate for describing in detail pinnin
induced inhomogeneities of the local density. This meth
developed in our studies33 of the hard-sphere system, in
r
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volves direct numerical minimization of a discretized versi
of the free energy functional. Since both the magnetic fi
and the direction of the columnar pins are assumed to
perpendicular to the layers, thetime-averagedlocal density
of pancake vortices must be the same on all the layers. T
simplification makes the problem effectively two
dimensional and allows a high-precision numerical inve
gation of the effects of columnar pins on the structure a
thermodynamics of the vortex system. Furthermore, our
sults should apply, with little change, to thin film superco
ductors with strong pinning.

The model considered in our work is defined in Sec.
where the method of calculation is also described. We t
consider~Sec. III A! the effects of an isolated columnar p
on the structure of the vortex liquid in the vicinity of the pin
This is done mainly for testing the systematics of our n
merical method and also for determining appropriate val
of the pinning potential to be used in subsequent calcu
tions. We choose throughout the computations numerical
rameter values appropriate for BSCCO. We determine
suitable choice of the discretization scale in order that
numerical method provides an accurate account of the d
sity inhomogeneities produced by the trapping of a vortex
a pinning center. We also determine the range of values
the pinning potential strength for which nearly one vortex
trapped at a pinning center in the temperature range of in
est. The strength of the pinning potential is kept fixed in t
range in our subsequent work: pinning of multiple vortices
a pinning center is not considered because this is rarely
served in experiments. Next, in Sec. III B, we consider
effects of two neighboring pinning centers on the liquid-st
properties. An ‘‘effective interaction’’ between vortice
trapped at the two pinning centers is obtained by calcula
the free energy as a function of the separation between
pinning centers. This effective interaction is found to osc
late with distance. This study and the one-pin calculat
mentioned above complement, in a sense, the analytic w
of Ref. 18 where the RY free-energy functional was used
analyze the structure and magnetization of a tw
dimensional vortex liquid in the presence of strong pinnin
However, we consider here a three-dimensional system w
columnar pins, instead of a two-dimensional system w
point pinning as in Ref. 18. Also, the numerical direct min
mization method used in the present work is more accu
than the analytic variational method in the earlier study.

We next study~Sec. III C! the freezing of the vortex liq-
uid in the pure system. This is done primarily for checki
the method against the results of earlier calculations.25,26We
find results in excellent agreement with those of earlier st
ies. Our method also provides a very detailed and accu
account of the distribution of the density near a lattice po
We then proceed, in Sec. III D, to consider the melting tra
sition of interstitial vortices in a commensurate, triangu
array of columnar pins. As discussed above, this transi
provides a physical realization of three-dimensional melt
in the presence of a commensurate periodic potential. De
ing the concentrationc of pinning centers asc[Bf /B, we
consider values ofc given by 1/l 2 wherel is an integer. For
small concentrations of pinning centers (l>6), we find a
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first-order melting transition from a crystalline solid to a
inhomogeneous liquid. As the pin concentration is increas
the transition temperature increases and the latent heat
the jump in the crystalline order parameter at the transit
decrease. We find that this line of first-order transitionster-
minatesat a critical point beyond which the thermodynam
transition is replaced by a sharp crossover. This critical po
is a rare, experimentally realizable example of continuo
melting in three dimensions. We show that a simple Land
theory provides a semiquantitative understanding of mos
our results. Some of our most salient results on the mel
transition in the presence of a periodic pin array were su
marized in a recent paper.34 Here, we present many detai
which could not be included in that short paper. Section
contains a summary of the main results and some conclu
remarks.

II. MODEL AND METHODS

As explained in the Introduction, we perform in this pap
a numerical study using density-functional theory, which
volves, as its foundation, a model free energy functional
propriate to a system of pancake vortices in a layered su
conductor. Density-functional methods have long be
used24,35with great success in the study of solidification ph
nomena in ordinary fluid systems. Although the theory
basically mean-field based, it works very accurately in
description of first-order melting. We have ourselves p
formed extensive numerical studies of a density vs disor
strength phase diagram of a hard sphere system in the
ence of quenched disorder33 using a methodology quite simi
lar to that employed in the present work. Density function
methods have also been successfully used25,26 to study the
melting of the vortex lattice in layered superconductors wi
out pinning.

The starting point of our calculation is an expression
the free energy of the system, written as a functional of
time averaged local density. In our case the relevant den
is r( i ,r ), the time averaged areal density of pancake vorti
at pointr on thei th layer. In the homogeneous vortex liqu
state in the absence of pinning, this density is uniform an
is given in terms of the magnetic inductionB by r05B/F0,
whereF0 is the superconducting flux quantum. It is custo
ary and convenient to introduce a lengtha0 through the re-
lation pa0

2r051. We will use a0 as our standard unit o
length in terms of which other lengths will be given and w
will usually also normalize densities in terms ofr0.

We write the free energy functional in the form

F@r#5FRY@r#1Fp@r#. ~2.1!

The first term in the right-hand side of Eq.~2.1! is the free
energy of the vortex system in the absence of pinning, w
the second includes the pinning effects. Since the poten
produced by a collection of straight columnar pins perp
dicular to the layers is the same on every layer, thetime-
averageddensity of vortices at any pointr must be the same
on all layers, i.e.,r( i ,r )5r(r ) for all i. Then, the free en-
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ergy per layer corresponding to the first term in the right s
of Eq. ~2.1! may be written24 in an effectively two-
dimensional form

bFRY@r#5E dr$r~r !ln@r~r !/r0#2dr~r !%

2~1/2!E drE dr 8C̃~ ur2r 8u!dr~r !dr~r 8!,

~2.2!

whereb is the inverse temperature. We have defineddr(r )
[r(r )2r0 as the deviation ofr(r ) from r0, the density of
the uniform liquid and taken our zero of the free energy at
uniform liquid value. The functionC̃(r ) is a static correla-
tion function that contains all the required information abo
the interactions in the system. It is given by(nC(n,r ) where
n is the label denoting layer separation,r is the in-plane
distance, andC(n,r ) is the direct pair correlation function35

of a layered liquid of pancake vortices with areal densityr0.
Strongly anisotropic layered superconductors can be

scribed in terms of the Lawrence-Doniach36 Hamiltonian
from which the energy of a system of pancake vortices
be derived.37 In general, these vortices interact via a com
nation of electromagnetic and Josephson couplings. To
culate the contribution of the Josephson coupling to the
ergy, one needs to specify, in addition to the positions of
vortices on the superconducting layers, the precise way
which these vortices are to be connected to form lines. T
resulting effective ‘‘Hamiltonian’’ of the vortex system can
not be written as a sum of pairwise interactions. Howeve
the limit of infinite anisotropy, which corresponds to vanis
ingly small Josephson coupling, the pancake vortices inte
via a pairwise potential which is nonzero for vortices lyin
on different layers because they continue to be coup
through their electromagnetic interaction. This limit is a
appropriate starting point for describing BSCCO, for whi
the anisotropy factorg[lc /lab (lc andlab are the penetra-
tion depths for currents flowing perpendicular and paralle
the copper-oxide planes, respectively! has been estimated31

to be higher than 500. The regime where Josephson coup
is relevant is given by28 lab.gd whered is the layer spac-
ing. Sincelab(T50);1500 Å andd.15 Å for BSCCO,
lab(T50) is substantially smaller thangd, which
indicates28 that the electromagnetic coupling should dom
nate the behavior of the vortex system over much of theH-T
plane.

Analytic25,26 and numerical27 studies based on the ap
proximation of infinite anisotropy have yielded results
good agreement with those obtained from experiments
BSCCO. Also, several experimental studies29,30 have shown
that in BSCCO, the electromagnetic interaction between v
tices dominates over the interaction generated by the Jos
son coupling if the temperature is lower than abo
0.8Tc(H50). As the low-temperature behavior will be ou
primary concern, the assumption of infinite anisotropy
quite reasonable for BSCCO. However, this approximat
should break down in less anisotropic systems such
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YBCO where the Josephson coupling can not be negle
over much of theH-T plane.28

In the limit of infinite anisotropy, it is relatively
straightforward26 to calculateC(n,r ) andC̃(r ) using the hy-
pernetted chain~HNC! approximation.35 Since the interac-
tion term in Eq.~2.2! is of a convolution form, it is numeri-
cally most efficient to deal with it in wave vector space. Th
and the use of fast Fourier transform~FFT! methods reduces
the computation of the interaction term in the free energy
a single sum. One begins with the expression for the Fou
transform ofv(n,r ), the two-body vortex-vortex interaction
which, in the limit of vanishingly small Josephson couplin
between the layers, is given25,26 by

bv~k!5
2pGl2@k'

2 1~4/d2!sin2~kzd/2!#

k'
2 @11l2k'

2 14~l2/d2!sin2~kzd/2!#
, ~2.3!

wherekz andk' are, respectively, the components ofk per-
pendicular and parallel to the layer plane,d is the layer spac-
ing, andl(T) the penetration depth in the layer plane. T
dimensionless quantityG which determines the strength o
the interactions is given38 by

G5bdF0
2/8p2l2. ~2.4!

In coordinate space,v(0,r ) is repulsive and logarithmic inr
while v(nÞ0,r ) is also logarithmic, but attractive an
weaker than the intralayer potential by a factor of roug
(d/l)e2nd/l. Beginning with an interaction of this form, th
HNC procedure of Ref. 26 can be used to numerically co
puteC(k) for the appropriate values of the relevant para
eters. The quantityC̃(k'), the two-dimensional Fourie
transform ofC̃(r ), is then obtained by settingkz50 in C(k).

The second term in Eq.~2.1! represents the contributio
of pinning to the free energy per layer. It is given by

bFp@r#5E drVp~r ! dr~r !, ~2.5!

whereVp(r ) is the dimensionless~normalized bykBT) pin-
ning potential at pointr . This quantity can be written a
Vp(r )5( jvp(ur2Rj u), where the sum is over all pinnin
centers located at the points$Rj% on a plane, andvp(r ) is the
dimensionless form of the potential atr due to a pinning
center at the origin. We take this potential to be of the tru
cated parabolic form18

vp~r !52V0@12~r /r 0!2#u~r 02r !, ~2.6!

wherer 0 is the range of the pinning potential. We will writ
the dimensionless strength parameterV0 asV05aG and the
quantity a will be chosen, as explained below, so that t
pinning is strong enough to localize one vortex at a pinn
center at the temperatures of interest, but not so strong
more than one vortex is bound to a pinning center.

In order to carry out numerical work, we have to di
cretize our system. We introduce for this purpose a com
tational triangular lattice of sizeL. On the sites of this lattice
we define density variablesr i[r(r i)v, wherer(r i) is the
density at mesh pointi andv the area of the unit cell in the
ed

o
er

-
-

-

g
at

u-

computational lattice, proportional to the square of its latt
constanth. We haveL[Nh, so that the computational lattic
hasN2 sites. Periodic boundary conditions are used in all o
calculations.

Our basic procedure is to minimize the free energy of
system given certain values of the relevant parameters
the appropriate initial conditions, that is, some initial set
values for the computational variabler i . Finding the minima
of the free energy is not at all trivial, since one is minimizin
a function of a very large number of variables~we have used
values ofN up to 2048 as discussed below! and these vari-
ablesr i can take values differing by many orders of mag
tude~particularly in the solid phase! and must also satisfy the
nonnegativity constraint. This precludes the use of ma
standard minimization methods. The procedure we use h
is the same as that originally employed in the hard sph
problem33,39,40with the important difference that the calcula
tions involving the interacting term are performed in wa
vector space. This is for two reasons: first, it turns out to
much more efficient, since the time used by Fourier tra
forming back and forth using efficient FFT routines turns o
to be negligible compared with the time saved by not hav
to perform a double sum over the large computational latt
Second, the direct correlation function is more convenien
computed in any case in terms of the wave vector varia
The procedure we use incorporates39 the nonnegativity con-
straints and is insensitive to the large range of the variab
but requires33 a large number of iterations for convergenc
The efficiency of the FFT method, however, still allows us
use the sizes required for the problem.

The minimization procedure finds a local minimum of th
free energy. The minimum located depends on the initial v
ues chosen for the set of variablesr i . The appropriate
choices in each case are discussed in the next section.
erally speaking, nearly uniform initial conditions lead to liq
uid minima while ordered initial conditions with the prope
symmetry lead to crystalline states.

III. RESULTS

A. General and one pin

In this section we present and discuss our numerical
sults. In principle, these could be given in terms of a minim
set of dimensionless parameters. However, it is more ap
priate, in view of this paper’s objectives as discussed in
Introduction, to present the results in terms of physical
rameters with dimensions. This is the course we have ta
The values of the material parameters that we use here
been therefore chosen as appropriate to BSCCO. These
rameters are the penetration depthl and the interplane dis
tanced, which together with the temperature and fundame
tal constants determineG. We set d515.26 Å, l(T50)
51500 Å, and assume a two-fluid temperature depende
of l(T) with Tc(H50)585 K. For these parameter value
the dimensionless quantityG.2650/(T in K! at low tem-
peratures where theT dependence ofl is negligible. We
study temperatures and fields in the region where the mel
transition of the vortex lattice is expected to occur. T
strength of the pinning potential is described by the para
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eter a[V0 /G, as introduced above. We fix the ranger 0 to
r 050.1a0, which corresponds to about 55 Å forB52 kG.

To test our procedures and to find out more about
parameter range to be studied and the system sizes requ
we begin by considering the simple case of an isolated
ning center in a vortex system in the liquid state. We pla
this pinning center in the center of the computational latti
Since periodic boundary conditions are used, this amoun
considering a periodic array of pinning centers with spac
equal to the sizeL of the computational cell. As discusse
below, the values ofL used in these studies are sufficien
large, so that the behavior near a pinning center is not
fected by the presence of its periodic images. We then cho
the initial configuration of the variablesr i as one vortex
located at the pinning center and uniform density everywh
else, with the average density consistent withr0. We then
perform the minimization of the free energy as describ
above. The main issues here are the determination of
appropriate values of the pinning strength, and, from a te
nical standpoint, finding the system sizes, and the value
h/a0 required. A smaller value ofh/a0 implies higher spatial
resolution in describing the variation of the local density, b
at constantN this amounts to a reduction in the size of t
system being studied. One must therefore strike a balan

We have performed this procedure for fieldsB52 and 3
kG and at several temperatures in the range of interest
222 K) at those fields. We have considered values oN
ranging from 128 to 2048 witha0 /h from a maximum of 80
down to values of order unity. Representative results of
rather extensive study are shown in Fig. 1. In this figure
plot the density variabler ~normalized byr0) as a function
of the dimensionless distancer from the pin, measured in
units ofa0. The data in the figure are all taken at a tempe
ture T520.0 K and a fieldB52 kG, with the parametera
set at 0.06. Results are shown for two cases:N5512 with
a0 /h520 and N51024, a0 /h540. The scaling ofa0 /h
with N ensures that we are comparing systems containing
same number of vortices. The two results are very close
each other. We have also obtained results forN52048,

FIG. 1. Numerical accuracy of density profile calculations. T
normalized local density variabler/r0 in the presence of a singl
pinning center is plotted vsr, the distance from the pinning cente
in units of a0. Two sets of data are plotted, for the same physi
parameter values (B52 kG, T520 K). One set was compute
with N5512, a0 /h520 ~crosses! and the other set~solid line! with
N51024, a0 /h540 ~see text!. A third set with N52048, a0 /h
580 would be completely obscured by the solid curve if plotted
e
ed,
-

e
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a0 /h580, which are completely indistinguishable fro
those atN51024, so that if we had plotted them they wou
not be visible: the two plots atN51024 andN52048 would
be on top of each other. This and similar data obtained
other temperatures and fields tell us the range of values oN
and a0 /h needed to obtain high quality data. The resu
subsequently presented in this and the next subsection
obtained atN51024 anda0 /h540

The high peak at smallr in Fig. 1 represents the larg
vortex density at the pinned site. This density then dec
away in an oscillatory manner, as shown in the figure,
wards its long range limit, which is unity for our normaliza
tion. As expected,18 the behavior ofr(r )/r0 outside the
range of the pinning potential is very similar to that of th
radial distribution function35 of the unpinned vortex liquid a
the temperature and magnetic induction being conside
Thus, the medium and long range behavior of the densit
reasonable. The behavior ofr(r ) at very short distances
inside the pinning range, is shown in Fig. 2. One can see
this figure how the results are well fit, as expected, by
exponential forme2vp(r ), where the pinning potential in
units of kBT is given by Eq.~2.6!. This confirms that our
computational mesh is sufficiently fine even at these v
small ranges.

Next, we must find the appropriate values of the pinni
strength parametera, as introduced above. We wish to co
sider here, of course, the case of strong pinning, but ne
thelessa should remain small enough so that the to
amount of flux pinned at each site remains on the aver
below one superconducting flux quantum. To choose the
propriate value, we studied the average number of vorti
pinned as a function ofa. Sample results are shown in Fig
3, where the number of vortices pinned at the site~obtained
by integrating the density over the pinning range! is dis-
played as a function ofa. The data shown in this figure wer
taken atB52 kG andT518.0 K; data at other relevan
fields and temperatures are very similar. We see that
number of pinned vortices rises very rapidly witha until a
very marked kink occurs, at about the value when one vor
is pinned on the average. It is clear that one should us
value ofa just below the kink in the curve, and in this stud
we have used the valuesa50.05 anda50.06 ~the smaller
value was used in calculations at lower temperatures!. For T

l

FIG. 2. Short distance~within the range of the pinning potential!
results for the normalized density profile~dots!. A fit to an expo-
nential form in the pinning potentialvp(r ) ~dotted line, see text! is
also shown.
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in the range of interest here (15222 K), these values ofa
correspond toV0;729. This is consistent with the result
of the two-dimensional study of Ref. 18 where it was fou
that the average number of vortices trapped at a pinning
ter decreases sharply below one as the dimensionless pin
strengthV0 becomes lower than about 8.

B. Two pinning centers

Having in the previous subsection determined the prop
ties of the density profile when the pins are, in effect, ve
far apart, we consider now the case where there are
pinning centers separated by a smaller distanced. With a set
so that each center pins nearly one vortex, we expect to h
when the two centers are not too far apart, interactive effe
as a function ofd, as the density oscillations emanating fro
each pinning center~see Fig. 1! must be distorted to matc
each other. We perform this calculation by placing the t
pinning centers symmetrically around the center of the co
putational triangular lattice, on the longer diagonal. For
initial conditions, we place one vortex on each of the tw
pinning sites, and a uniform density on the remaining co
putational sites, consistent with the average density beingr0.
We have performed this study at fields of 2 and 3 kG and
several temperatures. Results atB52 kG and T520 K,
with a50.06 are shown in Fig. 4. These results were ag
obtained atN51024, a0 /h540. In the main plot we give

FIG. 3. Integrated density within the range of the pinning p
tential ~that is, the average number of vortices pinned at a cen!,
as a function of pinning strength given by the parametera, defined
in the text. For values of the pinning strength just before the kink
the curve, nearly one vortex is pinned at a center. The tempera
is 20 K and the field 2 kG.
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two examples of the density profile as a function of distan
Only one half of the density distribution is plotted, with th
origin corresponding to the center of the lattice and the h
zontal axis representing distances along the diagonal.
distribution is then symmetric about the origin, and the d
tance from the center of the first peak to the plot’s origin
half the interpin distance. The solid curve corresponds to
case whered ~in units ofa0) is 1.95 and the dashed curve
the case where it equals 2.60. One can see at larger valu
r, away from both pins, an oscillatory decay similar to that
Fig. 1. The behavior in the interpin region near the plot o
gin is more complicated. At shorter interpin distances~as in
the solid curve!, the density is very small between the tw
centers, but when that distance is increased to over twicea0
~see the dashed curve!, it becomes possible to have a pe
between the two pinning centers, and asd is further in-
creased, additional intersite peaks appear as well.

When the two centers are close enough to interact,
free energy will obviously depend on whether the oscil
tions in the density profiles corresponding to the two cent
‘‘lock’’ or not. This implies18 that the free energy of the
system should be an oscillatory function of interpin distan
To verify this, we have evaluated the free energy as a fu
tion of interpin distanced. Results are shown in the corne
inset of Fig. 4. The dashed horizontal line is the result for
case whered is very large, that is, twice the value for a sing
pin @recall that the zero of free energy is taken to be the at
uniform liquid state, see Eq.~2.2!#. This value is bF
524.680 for the case plotted. The solid curve shows

-
r

n
re

FIG. 4. Density profiles in the presence of two pinning cente
The two centers are placed symmetrically around the origin~see
text!. In the main plot, the density profiles are shown as a funct
of the distancer from the origin, that is, from the midpoint betwee
the two pinning sites. The inset shows~solid line! the free energy as
a function of the pin separationd. The horizontal dashed line mark
the infinite distance limit. The curves shown in the main plot are
the cases where the distanced between centers equals 1.95a0 ~solid
curve! and 2.60a0 ~dashed curve!. The first corresponds to a mini
mum of bF ~inset!, the second to a nearby maximum. The resu
shown are forB52 kG, T520 K.
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behavior of bF as a function of interpin distance and
clearly displays the oscillatory behavior of this quantity. A
found in Ref. 18, the free energy has minima at inter
distances approximately corresponding to the position of
maxima of the single pin density profile shown in Fig.
This reflects that it is easier, for those distances, to lock
oscillations corresponding to the two centers. The two
distances corresponding to the two curves shown in the m
plot of Fig. 4 were chosen so that one corresponds to a
energy minimum~solid line! while the other~dashed curve!
corresponds to a nearby maximum. The higher value of
free energy in the latter case is due to greater difficulty
matching the two profiles in this case. This difficulty is r
flected in the smaller height of the first peak ofr(r ) outside
the range of the pinning potential and the appearance
small peak ofr(r ) nearr /a0.0.6. The oscillatory behavio
of the free energy as a function ofd implies an oscillatory
dependence of the magnetization of the vortex liquid on
applied magnetic field when a periodic array of pinning ce
ters is present. In particular, the reversible magnetization
the liquid state is expected to show minima near certain
tegral values ofB/Bf .

The integrated density inside the range of a pinning ce
remains close to unity when the pin separationd is greater
than 2a0. As the value ofd is decreased below 2a0, the
integrated density begins to decrease and becomes sub
tially lower than unity ford,1.5a0. Thus, the simultaneou
occupation of two pinning centers by two vortices is likely
the centers are far apart~in units of a0), but unlikely only
when the two pinning centers are separated by distances
than about 1.5a0. This is consistent with decoratio
experiments41 which show that nearly all pinning sites a
occupied by vortices when the number of pinning sites
smaller than the number of vortices (B.Bf).

C. Melting in the pure system

As a preliminary step in our study of the effect of an arr
of pinning centers on vortex lattice melting, we have carr
out calculations of the melting transition of the pure syst
for B52 and 3 kG. This is in order to determine the ‘‘clean
limit of our subsequent results. In addition, our numeri
solutions in the pure limit can be compared with those
tained from variational treatments25,26 of the same RY free-
energy functional in which the density distribution in th
crystalline phase was expressed in terms of the Fourier c
ponents of the density at a few small reciprocal lattice v
tors.

The computational cell used in our pure limit calculatio
is one triangular-lattice unit cell with lattice constantL. The
spacingh of the computational grid is chosen to have t
valuesL/N with N516, 32, 64, and 128. Crystalline minim
of the free energy are obtained by running the minimizat
routine with initial states that have a sharp peak of the d
sity at the center of the computational cell. At sufficien
low temperatures such minima are found for a range of v
ues of L. Typical results obtained forB52 kG, L
51.9884a0, and two values ofN (N516 andN5128) are
shown in Fig. 5 where the dimensionless free energybF of
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one unit cell of the vortex crystal is plotted as a function
the temperatureT. We find that the free energies of the cry
tal obtained for all the values ofN listed above are essen
tially the same, as exemplified by the data shown for t
values ofN, indicating that the effects of discretization a
minimal provided thath<L/16.0.125a0.

The equilibrium valueL0 of the lattice parameter is dete
mined by finding the value ofL that minimizes the free en
ergy at a givenB andT. The dependence ofbF on the value
of L for B52 kG, T518.5 K is shown in Fig. 6. The value
of L0 is found to be close to 1.988a0, which is slightly

higherthan the spacingA2p/A3 a0 of a triangular lattice of
densityr0. This reflects the well-known result1 that the den-
sity of a vortex latticeincreasesslightly at melting. The tran-
sition temperature is determined from the zero crossing
the free energy of the crystalline state, calculated forL5L0,
as a function ofT, as illustrated in Fig. 5, which shows th
results of computations performed atL5L0. For B52 kG,
the melting temperature is thenTc518.45 K. This value of
Tc is slightly higher than that obtained variationally.26 This is
expected: the free energy of the crystal obtained in our
constrained minimization should belower than that obtained
in calculations where the free energy is minimized with
spect to a few parameters only.

FIG. 5. Computation of the melting temperature for the pu
system at a fieldB52 kG. The symbols, connected by a solid lin
represent the computational results for the dimensionless free
ergy of the crystal, as explained in the text. The results are show
be independent ofN which determines~see text! the mesh size used
in the computation. The temperature at which the solid line cros
the liquid free energy~zero by convention, dashed line! is the melt-
ing point.

FIG. 6. Determination of the equilibrium lattice parameterL0 at
melting. The dimensionless free energy of the crystal at fixedB and
T is plotted here vs the lattice parameterL. The free energy has a
minimum atL5L0.1.988a0.



n
o
e

ne
th

e
la

.
in
e
e
o
e

f t

s

ia
e
.

o
ot

W

in
l-

g.
t

e
de-
.

us
of

tice
ns

the

ce

r of

, to

case
tex

re

by
in

ne
ng

s-
mi-
ob-
ling
h

ial
ter

age

tem-
uid
d its

f
er
e.
nes
es.

th
th

ol
sia
The discontinuity in the entropy at the crystallization tra
sition is obtained from the numerically calculated slope
the bF versusT curve at the transition temperature. Th
Fourier transform of the density distribution at the crystalli
minimum obtained at the transition temperature yields
value of the jump in the crystalline order parameterm, de-
fined as the magnitude of the Fourier component of the d
sity at the shortest reciprocal lattice vector of the triangu
lattice. At B52 kG the entropy changeDs per vortex is
0.29kB , and the jump in the order parameterm is Dm
50.52. Very similar results are obtained forB53 kG: Tc
515.10 K, Ds50.28kB , Dm50.52, L051.985a0. These
are in close agreement with the results of earlier studies1,26

Our numerical method provides detailed and accurate
formation about the spatial distribution of the time averag
density in a unit cell of the vortex lattice. We find that th
density function near the center of the unit cell is, to a go
approximation, invariant under a rotation about an axis p
pendicular to the layers and passing through the center o
unit cell. Figure 7 shows a plot of the local densityr(r )
~angularly averaged and normalized by the average den
r0) at the crystalline minimum obtained forB52 kG, T
518.5 K, L51.988a0, as a function of the distancer from
the center of the unit cell. As shown in the figure, a Gauss
fit to the data for smallr provides a good account of th
dependence of the density onr except at larger distances
The value of the Lindemann parameterL at melting may be
obtained approximately from the width of the gaussian fit,
more accurately from a numerical evaluation of the ro
mean-square displacement

^r 2&5

E r 2r~r !dr

E r~r !dr
, ~3.1!

where the integrals are over a lattice unit cell andr is the
radius vector measured from the center of the unit cell.
find that the value ofL at melting is 0.26 forB52 kG and
0.25 for B53 kG. These values, similar to those found
earlier work,1,26 are substantially larger than the typical va

FIG. 7. Radial dependence of the density distribution in
vortex lattice. The quantity plotted is the angular average of
normalized local densityr(r )/r0. It is given as a function of the
distance from the center of a crystalline unit cell. The symb
~crosses! are the computed results, and the solid line is a Gaus
best fit, valid at small distances from the center of the cell.
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ues of L in simple three-dimensional solids near meltin
The large value ofL implies that the peak of the density a
the center of the unit cell is not very sharp~see Fig. 7!. This
helps explain why relatively coarse values of the mesh sizh
~e.g.,h5L0/16) are adequate for obtaining an accurate
scription of the density distribution in the crystalline state

D. Periodic array of columnar pins

Having obtained these clean limit results in the previo
subsection, we proceed now with our study of the effects
a commensurate, periodic array of pins on the vortex lat
melting transition. We consider a triangular lattice of pi
with spacing equal tolL 0, wherel is an integer andL0, as
defined above, is the equilibrium value of the spacing of
pure vortex lattice at its melting point for the value ofB
being considered. Thus the pin concentration isc[1/l 2. The
computational cell used is one unit cell of the pin latti
~which containsl 2 unit cells of the vortex lattice! with peri-
odic boundary conditions and one pin located at the cente
one of the vortex lattice unit cells. The value ofh was fixed
at L0/64 in the calculations forB52 kG. We also carried
out a few calculations forB52 kG usingh5L0/16. The
results obtained for this larger value ofh were found to be
essentially the same as those obtained forh5L0/64. We
therefore usedh5L0/16 in our calculations forB53 kG.
We set the pin strength parameter, as mentioned above
a50.06 in the calculations forB52 kG. A slightly smaller
value, a50.05, was used in the calculations forB53 kG
because the temperature range of interest is lower in this
and the strength required to pin slightly less than one vor
is somewhat smaller.

The crystalline and liquid minima of the free energy we
located from ‘‘heating’’ and ‘‘cooling’’ runs, respectively. In
a heating run, the crystalline minimum was first located
minimizing the free energy starting with an initial state
which the density distribution in each of thel 2 vortex lattice
unit cells contained in the computational cell was that in o
unit cell of the vortex lattice of the pure system at its melti
point for the same value ofB. The crystalline minimum so
obtained was ‘‘followed’’ to higher temperatures by increa
ing the temperature in small steps and running the mini
zation program at each temperature with the minimum
tained at the previous step as the initial state. In a coo
run, a liquid minimum was first obtained at a relatively hig
temperature by minimizing the free energy with an init
state consisting of one vortex located at the pinning cen
and uniform density everywhere else, so that the aver
density wasr0. This minimum was then ‘‘followed’’ to lower
temperatures as in the heating runs, but decreasing the
perature in small steps instead of increasing it. The liq
state is not homogeneous in the presence of pinning an
free energy is nonzero.

For both values ofB studied and relatively small values o
c ( l 510, 8, 7, and 6!, we found a range of temperatures ov
which both crystalline and liquid minima are locally stabl
The crossing of the free energies of these two minima defi
a first-order transition between crystalline and liquid stat
Results for the transition temperatureTc as a function ofc
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for B52 and 3 kG are shown in Fig. 8. The presence
columnar pins is found to increaseTc . This should be ex-
pected: columnar pins suppress the disordering effects o
lateral wandering of vortex lines, and a commensurate p
odic array of such pins clearly promotes crystallization.
other words, an external potential having the same symm
as the crystal favors the crystalline state. The results foB
52 and 3 kG are quite similar, withTc for B53 kG re-
duced by approximately 3.4 K for all these values ofc. The
discontinuities in the entropys and the order parameterm
decrease asc increases34 because pinning-induced order
the liquid increases withc.

Our results yield not only bulk quantities but also ve
detailed information on the density distribution of the vor
ces. This quantity is experimentally accessible in scann
tunneling microscopy~STM! and scanning Hall probe mea
surements. In Fig. 9, we show the variation of the local d
sity r along a line joining two neighboring pinning cente
for the crystalline and liquid minima near the transition te
perature forc51/49 andB52 kG. The density profile in
the liquid minimum can be viewed as a superposition
liquidlike profiles near individual pins~compare with Fig. 1,

FIG. 8. Phase diagram~transition temperatureTc as a function
of pin concentrationc) for B52 kG ~solid symbols! and B
53 kG ~open symbols!. The circles denote first order transition
and the squares mark crossovers. The dotted lines are polyno
fits, included to guide the eye. The arrow marks the approxim
position of the critical point atB52 kG. At B53 kG the critical
point is nearT517.6 K.

FIG. 9. Density distribution for the coexisting liquid and cryst
states at the melting transition for pin concentrationc51/49 and
field B52 kG. The normalized density profiles are plotted alon
line joining two pins, one nearx50, and the other just beyond th
right edge of the figure.
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noting the vertical axis scale!, with small-amplitude, damped
oscillations aboutr5r0. In contrast, the density in the crys
talline state exhibits higher, sharper and asymmetric peak
the lattice points, with the density rising more sharply on t
side closer to the pin, particularly at smaller distances fr
the pin site. Similar plots forc51/64 may be found in Ref.
34. These plots clearly bring out the obvious differences
tween the structures of the coexisting crystal and inhomo
neous liquid phases.

The density distributions at the liquid minima exhibit a
expected18 a sixfold angular modulation. This is illustrated i
Fig. 10 where we have shown the average density at the
peak of the normalized local density near a pinning cen
~i.e., the density averaged over the region 1.75a0<r
<1.9a0, wherer is the distance from the pinning center! as a
function of the angle measured from the line joining t
pinning center to one of its nearest neighbors. The d
shown are for the liquid minimum obtained forB52 kG,
T519.6 K andc51/49. A sixfold angular modulation of the
density is clearly seen in the figure. The minima of the de
sity occur on the lines that join the pinning center to
nearest neighbors. This is different from the behavior fou
in the crystalline minima where density maxima occur on
lines joining neighboring pinning sites~this can be seen at
different value ofc from inspection of Fig. 12 below!.

The full two-dimensional density distributions at the liq
uid and crystalline minima obtained near the transition te
perature forB52 kG andc51/36 are shown as gray sca
plots in Figs. 11 and 12, respectively. The plot for the liqu
minimum exhibits the usual correlation ‘‘hole’’ around th
pinning site at the center, and concentric ‘‘rings’’ of alterna
ing high and low densities with sixfold angular modulatio
The angular modulation at the first ring is less pronounc
~and less obvious in a gray scale plot! than that depicted in
Fig. 10 for c51/49. The plot for the crystalline minimum
illustrates how the detailed structure of the periodically
ranged crystalline density peaks changes with the dista
from the pinning site at the center. The ability of our nume
cal method to provide detailed information about the dens
distribution in highly inhomogeneous states is clearly illu
trated in these figures as well as in Figs. 9 and 10.

The degree of order in the liquid state increases with
pin concentrationc, thereby decreasing the difference b

ial
te

FIG. 10. Sixfold angular modulation of the density in the liqu
state forB52 kG, T519.6 K, c51/49. The normalized density
averaged over the first peak~see text! is plotted vs the angle mea
sured from a line joining two pinning sites.
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tween the crystalline and liquid minima. This has dras
consequences for the crystallization transition. The beha
we find for c.1/36 (l ,6) for both values ofB is signifi-
cantly different from that described above. Forc51/25 and
c51/16, the apparent minima obtained in heating and co
ing runs have almost the same free energy, but somew
different values of the order parameterm. We have shown in
Fig. 13 plots ofm versusT obtained from heating and coo
ing runs forB52 kG andc51/25~circles and squares!. The
small difference in the heating and cooling values ofm peaks
at a temperatureT[Tx.21.2 K. In Fig. 14 we show the
two corresponding density profiles obtained atT521.2 K.
These plots are analogous to those in Fig. 9 forc51/49. In
sharp contrast to that case,~and also to thec51/36 case
shown in Figs. 11 and 12! the two profiles are now very
similar, with the one obtained in the heating run exhibiti
only a slightly higher degree of order, consistent with t
higher value ofm. This leads to the suspicion that the fre
energy atc51/25 may have only one very ‘‘flat’’ minimum
nearT5Tx under the conditions studied. When attempting
find a minimum, our numerical routine stops when the fr
energy gradient becomes smaller than a certain small con
gence parameter. When a minimum is very flat, it may s
at slightly different configurations when approaching it fro
different directions in configuration space.

If this situation occurs, then the density configuration
the true minimum of the free energy should be better
proximated by a linear combination of the density config

FIG. 11. Gray scale plot, as indicated, of the normalized den
field r(r )/r0 at the liquid minimum forc51/36. A pinning center is
located at the center of the shown unit cell of the pin lattice.

FIG. 12. Gray scale plot of the normalized density field at
crystal minimum coexisting with the liquid minimum shown in th
previous figure.
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rations found in heating and cooling runs. We therefo
evaluated the free energy for a set of configurations$r i(x)%
defined by

r i~x!5xr i
(1)1~12x!r i

(2) , ~3.2!

where$r i
(1)% and$r i

(2)% are the density configurations, at th
same temperature, at the apparent minima obtained in h
ing and cooling runs, respectively. The mixing parameterx is
in the range 0<x<1. If one then plots the free energy thu
obtained either as a function ofx or, equivalently, as a func
tion of m(x)[xm(1)1(12x)m(2), wherem(1) andm(2) are
the order parameters in the two configurations, one finds
it indeed has a minimum atx5x0;0.5 at temperatures nea
the expected transition, for all higher concentrations,c
>1/25. An illustration, for the caseB52 kG, T521.2 K,
andc51/25 discussed above, is provided by Fig. 15. If o
attempts such a procedure at lower concentrations, on
other hand, the resulting plot turns out to have a maximu
rather than a minimum, nearx50.5.

This analysis shows that the suspicions mentioned ab
were correct and that forc>1/25, only one minimum of the

ty

FIG. 13. Illustration of the different values of the order para
eter m found in heating and cooling runs~squares and circles, re
spectively! at higher values of the pin concentration (c51/25, B
52 kG in this case!. The triangles represent the equilibrium valu
of m found as explained in the text. The solid line is a polynomial
to the equilibrium data. The dotted curve is the absolute value of
derivative of the solid line.

FIG. 14. Density profiles, depicted as in Fig. 9, for the heat
and cooling runs shown in Fig. 13, at temperatureT521.2 K,
which is very close to the crossover temperatureTx defined in the
text.
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free energy exists at each temperature. The value of the
energy at this minimum is lower than those found in t
heating and cooling runs. Thus, there is no first-order tra
tion at c51/25 or higher. The line of first-order transition
found for smaller values ofc ends at a critical point which
lies betweenc51/36 andc51/25 at both values of the field
considered.

At c.1/36, above the critical point, a crossover rath
than a sharp transition characterizes the change from liq
like to solidlike behavior. The crossover temperature can
conveniently defined from the numerically calculated te
perature derivative of the ‘‘equilibrium’’ valuem(x0) of the
order parameter. Plots of bothm(x0) and its temperature
derivative are shown in Fig. 13. The temperature at wh
the derivative of the order parameter peaks is obviously v
close to the temperatureTx defined earlier as that at whic
the difference between the order parameters obtained in h
ing and cooling runs peaks. The crossover temperature
therefore be identified withTx . The sharpness of the cros
over suggests thatc51/25, T5Tx.21.2 K is close to the
critical point forB52 kG, as indicated by the arrow in Fig
8. For c51/16 the crossover is smoother. Our results forB
53 kG are very similar to those at the lower field, with
similar value of the criticalc but lower crossover tempera
tures ~this is obvious from Fig. 8!, with Tx.17.6 K for c
51/25.

The crossover to the crystal state atc.1/36 may be cor-
related with the onset of percolation of vortices which a
‘‘localized’’ according to a density-based criterion. Localiz
tion of vortices is, strictly speaking, a dynamical pheno
enon, but some information about localization may be
tained from the distribution of the time-averaged loc
density. The local density near a point where a vortex
localized should be significantly higher than the average d
sity r0. Therefore, a density-based criterion for localizati
may be obtained by demanding that the density near a p
where a vortex is localized exceed a suitably chosen cu
value rc . Our results for the density modulation around
isolated pinning center suggest an appropriate choice for
cutoff. One can see, for example, in Fig. 1, that in the te
perature range of interest the local density in the neighb

FIG. 15. The ‘‘mixed’’ free energy plotted as a function o
m(x), as explained in the text, atc51/25, B52 kG, T521.2 K.
The triangles represent the results of the computation. The s
irregularity of the data points reflects numerical uncertainties. T
dashed line is a fit to the Landau expansion of Eq.~3.3!.
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hood of an isolated pinning center~but outside the range o
its pinning potential! does not exceed 3r0 if the system is in
the liquid state. This suggests that values of the local den
r less than 3r0 correspond to mobile vortices. We, therefor
take rc53r0. We divide the computational cell intol 2

vortex-lattice unit cells and associate a localized vortex w
a unit cell if the local density exceedsrc at some point inside
that cell. We then examine whether the unit cells that cont
localized vortices according to this criterion percolate acr
the sample.

All the vortex-lattice unit cells in a crystalline minimum
contain localized vortices, since the maximum value ofr i at
the lattice sites of a crystal always exceedsrc . In contrast,
only the vortex-lattice unit cells in which pinning centers a
located and, in some cases, the nearest neighbors of such
cells, contain localized vortices in the coexisting liquid min
mum at the crystallization transition forc<1/36. Thus, for
c<1/36, the crystallization transition trivially coincides wit
a percolation of unit cells containing localized vortices. F
c>1/25, in the crossover region, we have found that the u
cells containing localized vortices do not percolate if t
temperature is higher than the crossover temperatureTx de-
fined above, but percolation occurs belowTx . Typical results
are shown in Figs. 16 and 17. In Fig. 16, we have shown
locations of the units cells containing localized vortices
the minimum obtained in the heating run forB52 kG, T
521.2 K andc51/25. These unit cells do not percola
across the 535 computational cell, while the cells contain
ing mobile vortices do. Since the degree of localization in
minimum obtained in the heating run is higher than that
the minimum obtained in the cooling run, no percolati
would be obtained at this temperature if the cooling-r
minimum or the equilibrium configurationr i(x0) were used
for finding the unit cells containing localized vortices. On t
other hand, as shown in Fig. 17, the unit cells contain
localized vortices do percolate across the sample in
‘‘equilibrium’’ configuration obtained at the slightly lowe
T521.1 K. At this temperature, the heating run shows p

ht
e

FIG. 16. Location of cells containing localized vortices und
the indicated conditions. The circles denote the positions of the
vortex lattice unit cells contained in a unit cell of the pin lattice.
pinning center is located in the unit cell at the bottom left corner
star in a circle denotes that the unit cell contains a ‘‘localize
vortex according to the criterion given in the text. The temperat
here is slightly higher than the crossover temperatureTx for B
52 kG, c51/25. The cells containing localized vortices do n
percolate across the 535 sample.
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colation, but the cooling run does not. Thus, percolation
curs at a temperature very close to the crossover temper
Tx.21.2 K. Very similar results were obtained forB
52 kG, c51/16, andB53 kG, c51/25, indicating that
this is a general condition. This result is physically reas
able: a system in which localized vortices percolate~and
consequently, the mobile ones do not percolate! should be-
have as a ‘‘solid’’ at long length scales.

It is easy to see that the occurrence of a critical point
the phase diagrams of Fig. 8 does not contradict any fun
mental principles. In the presence of commensurate peri
pinning, the liquid and the crystal have the same symme
Since the degree of order in the liquid increases withc, it is
possible for the liquid and the crystal to become indist
guishable beyond a critical value ofc. One can then go from
one phase to the other without crossing a sharp phase bo
ary.

The basic features of the phase diagrams may be un
stood from a simple Landau theory. From well-known sy
metry arguments42 one can write down a Landau expansi
for F:

bF5
1

2
a2m22

1

3
a3m31

1

4
a4m42gm, ~3.3!

wherem is our order parameter, the constantsa3 anda4 are
positive, anda2 decreases with decreasingT. The ‘‘ordering
field’’ g is proportional to the pin concentrationc. A simple
analysis shows that this free energy leads to a first-o
transition forg,gc5a3

3/27a4
2 and a critical point atg5gc ,

a25a2c5a3
2/3a4. The transition temperature increases w

the ordering fieldg in agreement with the arguments prev
ously discussed. The latent heat and the order paramete
continuityDm vanish as (gc2g)1/2 asg approachesgc from
below. It was shown in Ref. 34 that our data forDs andDm
are indeed well described by the form}(cc2c)1/2 with cc
close to 1/25.

More quantitatively, it is possible to fit ourbF vs m data
to the form Eq. ~3.3!. The best fit for B52 kG, T
521.2 K, c51/25, is shown in Fig. 15. The fitting param
eter values area2570.71, a35234.87, a45261.71, andg
57.12. Using the values ofa3 anda4 obtained from the fit,
we geta2c570.26 andgc57.01. These values are very clo

FIG. 17. As in the previous figure, but at a temperature sligh
lower than the crossover temperatureTx . The cells containing lo-
calized vortices now percolate across the sample.
-
ure
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to, but slightly lower than the best-fit values ofa2 and g,
indicating that the critical point forB52 kG is, as we had
already stated, very close toc51/25, T521.2 K. This ex-
plains the sharpness of the crossover atc51/25. The numeri-
cal results forB53 kG can be analyzed in the same way.
fit for T517.6 K, c51/25 yields then values ofa2c andgc
which are less than 1% lower than the best-fit values ofa2
andg, respectively. Therefore the Landau free energy give
good semiquantitative account of the critical behavior of o
density functional computations for both values ofB. This
strengthens our conclusions about the existence and loca
of the critical point.

IV. SUMMARY AND DISCUSSION

We have used in this paper numerical minimization o
discretized free energy functional to study the effects of
lumnar pinning on the structure and thermodynamics o
system of pancake vortices in the mixed phase of hig
anisotropic layered superconductors. The most salient re
of our study is the existence of a critical point in the vorte
lattice melting phase diagram when a commensurate, p
odic array of pinning centers is present. Our results show
the line of the melting transition in theT-c plane, which is of
course first order for small values of the concentration
pinning centers, terminates at a critical point as the pin c
centration is increased. Beyond this critical point, the tran
tion is replaced by a crossover, with smooth behavior of
order parameter and other thermodynamic quantities. To
knowledge, this is the first quantitative theoretical predicti
of a continuous melting transition in a three-dimensional s
tem. This critical point should be experimentally accessib
the pin lattice spacing forB52 kG, c51/25 should be
;0.55 mm, close to the spacing of the radiation-induced p
array of Ref. 13. The same group recently showed20 that
columnar pins can be created in BSCCO in a highly co
trolled manner. We, therefore, expect that the fabrication
bulk HTSC samples with a periodic array of columnar pi
with appropriate spacing is technically feasible. Fabricat
of such samples and experiments to verify our theoret
predictions would be most welcome.

We have shown that most of the features of our ph
diagram can be understood from a simple Landau the
The critical point found in our study is analogous to t
liquid-gas critical point in mean-field theory. Fluctuations a
expected to change this correspondence because the sy
try of our order parameter is different from that for th
liquid-gas transition. Theoretical studies of the universa
class of this critical point would be interesting. However, t
location of the first order melting line and the existence a
experimental accessibility of the critical point should
quantitatively described by our work. We have also sho
that the smooth crossover from liquid-like to solid-like b
havior beyond the critical point might be interpreted as
percolation threshold for localized vortices.

The one-pin results reported here provide useful inform
tion about the dependence of the average number of vort
trapped at a pinning center on the temperature and
strength of the pinning potential, while our results for t

y
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interaction between two neighboring pins illustrate the o
currence of interesting effects in the liquid state arising fro
the commensurability of the separation of the pins with
average intervortex separation. Finally, our method yie
very detailed results for the density distribution in the sy
tem, which is accessible through STM and scanning H
probe measurements.

As noted in Sec. II, the symmetry of the thre
dimensional system considered here makes the calcula
effectively two dimensional, with the functionC̃ playing the
role of the two-dimensional direct pair correlation functio
The direct pair correlation function of a two-dimension
vortex liquid18,26is quite similar to the functionC̃ used in the
present study. We, therefore, expect that most of the res
obtained here should apply, at least qualitatively, to thin-fi
superconductors in the presence of strong pinning centers
noted in Sec. III, some of our one- and two-pin results
indeed in good quantitative agreement with those obtaine
Ref. 18 for a two-dimensional system of vortices with stro
pinning. This leads us to expect that the phase diagram
tained here for the vortex lattice melting transition in t
presence of a periodic array of pins should apply, with
more than fairly minor quantitative changes, to the melti
transition of a two-dimensional vortex lattice in thin-film su
t
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perconductors with commensurate periodic pinning. Sin
periodic arrays of strong pinning centers have already b
fabricated12–17 in thin-film superconductors, our prediction
can be readily tested in experiments. One should, howe
keep in mind that the predictions of our mean-field-like de
sity functional calculation are less reliable in two dimensio
where the effects of fluctuations are stronger. The melt
transition in a pure two-dimensional system without pinni
can be continuous,21 whereas the mean-field prediction o
first-order melting is always realized in pure thre
dimensional systems. Our main result about the existenc
a critical point in the phase diagram should apply to thin-fi
superconductors with commensurate periodic pinning if
system exhibits a first-order melting transition in the abse
of pinning.

The melting transition of the lattice of interstitial vortice
in the presence of a commensurate, periodic array of pinn
centers provides a physical example of melting in the pr
ence of an external periodic potential. Similar melting tra
sitions are of interest in other systems such as atoms
sorbed on crystalline substrates,21 and colloidal particles in
interfering laser fields43 and arrays of optical traps.44 Our
method and results would be of relevance to these syst
also.
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