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Continuous Melting of a “Partially Pinned” Two-Dimensional Vortex Lattice in a

Square Array of Pinning Centers
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The structure and equilibrium properties of a two-dimensional system of superconducting vortices
in a periodic pinning potential with square symmetry are studied numerically. For a range of the
strength of the pinning potential, the low-temperature crystalline state exhibits only one of the two
basic periodicities (in the x- and y-directions) of the pinning potential. This “partially pinned”
solid undergoes a continuous melting transition to a weakly modulated liquid as the temperature is
increased. A spin model, constructed using symmetry arguments, is shown to reproduce the critical
behavior at this transition.
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Thin-film superconductors with artificially constructed
periodic arrays of pinning centers have attracted much
experimental [1, 2, 3] and theoretical [4] attention in
recent years. Such arrays may consist of micro-holes
(“antidots” [1]), defects produced by heavy-ion bombard-
ment [2], or magnetic dots [3]. The presence of a peri-
odic pinning potential has many interesting effects on
the equilibrium and transport properties of a system of
vortices induced in the sample by an external magnetic
field. Some of these effects, which depend crucially on
the value of the filling factor n that measures the aver-
age number of vortices per unit cell of the pin lattice,
have been observed in imaging experiments [2] and in
measurements of the magnetic [1] and transport [3] prop-
erties of such samples. The melting transition of the vor-
tex lattice in such systems provides an example of two-
dimensional (2d) melting in an external periodic poten-
tial. Evidence for this melting transition has been found
in imaging experiments [2] and magnetization measure-
ments [1]. Similar melting transitions are of interest in
other physical systems such as atoms adsorbed on crys-
talline substrates[5], arrays of Josephson junctions [6],
and colloidal particles in interfering laser fields [7].

The effects of a weak, commensurate, periodic poten-
tial on 2d melting have been studied [5] within the frame-
work of the Kosterlitz-Thouless-Halperin-Nelson-Young
theory [5, 8] of defect mediated melting. For n ≪ 1, this
analysis predicts the occurrence of two continuous tran-
sitions: a depinning transition from a low-temperature
pinned solid phase in registry with the substrate to a
floating solid phase that is essentially decoupled from
the substrate, and a melting transition at a higher tem-
perature where the floating solid transforms to a liquid.
This sequence of transitions has been observed in sim-
ulations [4, 6] of 2d systems in weak, commensurate,
periodic potentials with triangular and square symme-
try. The two transitions are expected to merge into a
single one (from the pinned solid to the liquid) as n is
increased [5, 6] and/or the pinning potential is strength-
ened [4].

In this paper, we report the results of Monte Carlo
(MC) simulations of the equilibrium properties of a 2d
system of vortices in the presence of a square array of
pinning centers. The filling factor n is taken to be unity.
We consider pinning centers that produce a repulsive po-
tential with range comparable to that of the intervortex
interaction. Pinning centers with these properties may be
experimentally realized in arrays of magnetic dots each
of which produces a potential that can be tailored [9] by
adjusting its magnetic moment. Another physical real-
ization is obtained in a square array of strong, attractive,
short-range pinning centers at filling n = 2 [4]. In this
case, each pinning center would trap a vortex at low tem-
peratures, and these pinned vortices would interact with
the remaining interstitial vortices (assuming each pin can
trap only one vortex) via an effective repulsive poten-
tial [10]. The net potential produced by an array of such
pinning centers has very flat minima [10] at the centers
of the square unit cells of the pin lattice (see Fig.1). This
kind of pinning is qualitatively different from that con-
sidered in previous studies [4, 6] in which each pinning
center was assumed to produce an attractive potential
with range much smaller than the intervortex spacing.

We find that this difference in the nature of the pinning
has strong effects on the structure of the low-temperature
solid phase and its melting transition. For a range of
values of the strength of the pinning potential, the low-
temperature state of our vortex system is a lattice with a
basis, with unit cells of size 2d×d, where d is the spacing
of the pin lattice, and two vortices in each unit cell (see
Fig.1). Three other structures, related by symmetry to
the one shown in Fig.1, are equally likely to occur at
low temperatures. We call this phase, which exhibits one
of the two basic periodicities of the square pin array, a
partially pinned solid to distinguish it from the pinned
and floating solid phases mentioned above.

As the temperature is increased, the partially pinned
solid undergoes a continuous melting transition to a
weakly modulated liquid that has the square symmetry of
the substrate. We have used finite-size scaling to analyze
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the critical behavior at this transition. We have also used
symmetry considerations to construct a spin model that
is expected to exhibit a transition in the same universal-
ity class as that of the melting transition in the vortex
system. The values of critical exponents obtained from a
finite-size scaling analysis of the results of simulations of
the spin model are consistent with those obtained for the
vortex system. This transition appears to belong in an
universality class not found in previous studies of similar
systems.

We model the 2d system of vortices as a collection of
point particles interacting via the repulsive potential

U(r) = U0K0(r/λ). (1)

Here, K0 is the Hankel function and U0 = Φ2
0t/(8π2λ2),

where Φ0 is the flux quantum, λ is the penetration depth,
and t is the film thickness. The interaction of the vor-
tices with the pinning centers is assumed to be of the
form AU(r), where the parameter A measures the rela-
tive strength of the pinning potential. We use parame-
ters appropriate for the Nb sample studied in Ref.[2]: λ
= 0.1µm, d = 10λ, t = λ. For these parameter values,
U(r = d)/kB ≃ 7K. We measure lengths in units of λ,
energies in units of U0, and the temperature in Kelvins.

In Fig.1, we have shown the variation of the net pinning
potential for A = 10−3 along a diagonal of a pin square,
and compared it with the potential due to a system of
vortices located at the centers of the pin squares. The
pining potential exhibits a very flat minimum at the cen-
ter of the square. This plot also shows that the pinning
and interaction energies are comparable for this value of
A. We used a simulated annealing procedure to find the
ground states of the vortex system for various values of A.
When A is of order unity or higher, the ground state has
square symmetry, with one vortex located at the center
of each elementary square of the pin array. As A is re-
duced below Ac ≃ 0.012, the ground state is found to be
made up of unit cells that consist of two pin squares. The
vortices in the two squares are displaced from the centers
by equal amounts in opposite directions, as shown in the
lower inset of Fig.1. This displacement causes a reduction
of the interaction energy, which more than compensates
the increase in the pinning energy if A is small. The dis-
tance Dmin of the vortices from the center of the square
increases as A is decreased, and reaches a maximum of
about 0.23d for A ≈ 10−4. We have also calculated the
energy of a vortex lattice of this structure for different
values of the displacement D from the center and found
the D that minimizes the energy for different A. The
results, shown in Fig.1, match well with those obtained
from simulated annealing. These results clearly show a
transition from a fully pinned structure with square sym-
metry to a partially pinned structure with Dmin 6= 0 as
A is decreased below Ac. The ground states for A < 10−5

appear to have a complex, disordered structure (we are
not sure that our simulated annealing procedure located
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FIG. 1: The main plot shows the net pinning potential for
A = 10−3 (solid line) and the potential due to vortices located
at the centers of the squares (dashed line) as functions of the
distance S from the center of a pin square along a diagonal.
The upper inset shows a plot of Dmin, the displacement from
the center that minimizes the lattice energy, as a function
of the pinning-strength parameter A. The lower inset shows
an unit cell of the partially pinned structure. B and C are
the positions of the vortices in the state with square symme-
try and B′ and C′ are their positions in the partially pinned
structure, with BB′ = CC′ = Dmin. Three other structures,
related to the shown one by symmetry, are equally probable
at low temperatures.

the true ground states for such values of A), and the
triangular Abrikosov lattice is recovered for A = 0.

At high temperatures, the vortices form a weakly mod-
ulated liquid with square symmetry. We used MC simu-
lations to study how the system evolves to this state as
the temperature T is increased. We monitored structural
changes by measuring the structure functions S(k) =
〈ρ(k)ρ(−k)〉/N2, where 〈· · ·〉 represents a thermody-
namic (MC) average, ρ(k) is the Fourier transform of
the local density, and N is the number of particles in the
system. We also looked for signatures of a transition by
measuring the specific heat, Cv = 〈(E−〈E〉)2〉/(NkBT 2),
where E is the total energy of the system. When A is
large enough to have a lattice with square symmetry as
the ground state, the system gradually transforms to a
modulated liquid with the same symmetry with no sig-
nature of a phase transition. For lower values of A, when
the symmetry of the ground state is different from that
of the high temperature phase, the system undergoes a
continuous transition that is signalled by a peak in the
specific heat and sharp changes in S(k) for appropriate
ks, as shown in Fig.2 and Fig.3.

The reciprocal lattice vectors of the structure with the
unit cell shown in Fig.1 are G(n1, n2) = (n1

π
d , n2

2π
d ),

where n1 and n2 are integers. For this structure, 〈ρ(G)〉
vanishes for the smallest G corresponding to n1 = 1,
n2 = 0. We have measured the temperature-dependence
of S(G) for the next three smallest Gs: G1 = G(2, 0),
G2 = G(1, 1), and G3 = G(0, 1). Note that G1 and G3
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FIG. 2: Temperature dependence of the structure functions
S(G) for A = 10−4. Data for three values of G (see text), G1

(squares), G2 (circles) and G3 (diamonds) are shown. The
solid lines are guides to the eye. The inset shows the average
displacement D of the vortices from the centers of the pin
squares as a function of the temperature T .

are reciprocal lattice vectors of the square pin array, but
G2 is not. Simulation data obtained in a cooling run for
a sample with A = 10−4 are shown in Fig.2. At high
temperatures, S(G1) and S(G3) have the same small
value, whereas S(G2) is smaller, indicating a weakly
modulated phase with square symmetry. As the tempera-
ture is decreased, S(G1) and S(G2) increase sharply near
T ≃ 5.0K, while S(G3) decreases at about the same tem-
perature. As the temperature is decreased further, the
values of S(G1) and S(G2) approach unity, while S(G3)
goes to zero, indicating a partially pinned structure. As
shown in the inset of Fig.2, the average displacement D
of the vortices from the centers of the pin squares ex-
hibits a sharp increase as the temperature is decreased
across T ≃ 5.0K. These results strongly suggest a phase
transition between the partially pinned state and a state
with square symmetry at T = Tc ≃ 5K.

In order to determine the nature of the transition, we
have carried out a finite-size scaling study of the specific
heat Cv of the system. As shown in Fig.3, Cv peaks at
the transition temperature obtained from the behavior of
S(G) and D, and the peak becomes higher and sharper
as the size of the system is increased. This is the behav-
ior expected at a continuous phase transition for which
finite-size scaling theory [11] predicts that the peak value
of Cv should scale as Lα/ν where L =

√
N is the linear

size of the system, and α and ν are, respectively, the
critical exponents for the specific heat and the correla-
tion length. As shown in the inset of Fig.3, our data
are quite consistent with this behavior, with α/ν ≃ 0.46.
Moreover, we have checked for hysteresis by measuring
the specific heat during heating and cooling runs. We did
not find any evidence for hysteresis, confirming that the
transition is a continuous one. The transition temper-
ature is found [12] to depend non-monotonically on the
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FIG. 3: The specific heat Cv (in units of kB) as a function
of the temperature T for A = 10−4 and two sample sizes,
N = 64 and N = 400. The lines joining the data points are
guides to the eye. The inset shows a double-log plot of Cvm,
the peak value of the specific heat, as a function of the system
size N = L2.

strength A of the pinning potential. As A is decreased be-
low a critical value near 10−2, the transition temperature
increases from zero, attains a maximum near A = 8.10−5,
and then decreases as A is decreased further.

We have used symmetry arguments to construct a spin
model that should exhibit a phase transition in the same
universality class as the transition found in the vortex
system. As noted earlier, the vortex system has four
degenerate ground states: two in which the displace-
ments from the centers of the pin squares are ±Dminŷ

(∓Dminŷ) in even (odd) columns of the pin lattice,
and two others in which the displacements are ±Dminx̂

(∓Dminx̂) in even (odd) rows (x̂ and ŷ are unit vectors in
the horizontal and vertical directions, respectively). We,
therefore, consider four-state planar “spin” variables σi

located at the sites of the dual of the pin lattice. Each
of these variables has unit length and can point in the
four directions, ±x̂, and ±ŷ. One may think of these
variables as representing the directions of small displace-
ments of magnitude δ from the centers of the pin squares.
The distance sij between two vortices in neighboring pin
squares, with displacements δσi and δσj , is given by

s2
ij = d2 + 2δ2(1 − σi.σj) + 2δd(σjα − σiα), (2)

where α is x (y) if the spins σi and σj are separated hor-
izontally (vertically). Since the intervortex interaction
depends only on the distance, and the pinning potential
is independent of the orientation of the σs, the symme-
try of the vortex problem would be preserved in the spin
model if its Hamiltonian is taken to be a suitably cho-
sen function of s2 that leads to the fourfold-degenerate
ground-state structures described above. We have found
that the Hamiltonian

H = Jo

∑

<ij>

exp(−s2
ij/s2

0), (3)
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FIG. 4: The main plot shows the order parameter cumulant
cm of the spin model (see text) as a function of temperature T

for three system sizes, N = 144 (stars), N = 324 (diamonds),
and N = 1024 (circles). The inset shows a finite-size scaling

plot of cm versus L1/ν(T − Tc) with Tc = 3.8 and ν = 0.8.

where the sum is over nearest-neighbor pairs and J0 is
an energy parameter, leads to the expected ground state
structure if the length parameter s0 is sufficiently large.
By expanding the exponential in Eq.(3) and making use
of the properties of the σis, this Hamiltonian may be
written as

H =
∑

<ij>

[J1σiασjα + J2σiβσjβ + J3σiασjα(σiα − σjα)

+ J4σ
2
iασ2

jα + J5σ
2
iβσ2

jβ ], (4)

where α, β are x, y (y, x) for horizontal (vertical) bonds,
and J1, J2, J3, J4 and J5 are functions of J0, δ, d and s0.
While the spins in our model are analogous to those in
the four-state clock model, the Hamiltonian of Eq.(4)
does not have the z(4) symmetry of the clock model.

We have performed extensive MC simulations of the
thermodynamics of the spin model for J0 = 10 (this sets
the temperature scale), d/s0 = 2 and d/δ = 4. For these
parameter values, we find four degenerate ground states
in which the spins point in ±x̂ directions in alternate
rows, or in ±ŷ directions in alternate columns. The order
parameter m is defined as

m =
1

N
〈|Σ1σix − Σ2σix| + |Σ3σiy − Σ4σiy |〉, (5)

where the four sums Σk, k = 1 − 4 are over even
rows, odd rows, even columns, and odd columns, re-
spectively. This definition ensures that m = 1 in any
of the four ground states. The transition temperature
Tc and the correlation-length exponent ν were deter-
mined from a finite-size scaling analysis of the data
for the Binder cumulant [11] for the order parameter,
cm ≡ 1 − 〈m4〉/(3〈m2〉2). The L- and T -dependence of
this quantity near the transition is expected to have the
form cm(L, T ) = f(L1/νt) where f is a scaling function

and t = (T −Tc)/Tc. As shown in Fig.4, plots of cm vs. T
for different sample sizes intersect at T = Tc ≃ 3.8, con-
firming the occurrence of a continuous transition. The
inset of Fig.4 shows that the data for cm for different L
and T collapse to the same scaling curve when plotted
against L1/ν(T − Tc) with ν = 0.8. The other critical
exponents, computed from finite-size scaling analysis of
specific heat, order parameter and susceptibility data [12]
are: β ≃ 0.05, γ ≃ 1.5 and α ≃ 0.4. These values are con-
sistent, within error bars, with the value of α/ν obtained
for the vortex system. These exponent values establish
that the transition in our model is not in the universality
class of the four-state clock model. The observed critical
behavior is also quite different from that expected [5, 8]
near a Kosterlitz-Thouless-type transition. It appears
that the universality class of this transition is different
from those found in earlier studies of similar systems.

To conclude, we have shown that a 2d system of par-
ticles in a periodic potential with square symmetry can
have a partially pinned low-temperature phase that un-
dergoes a continuous transition to a weakly modulated
liquid as the temperature is increased. After the sub-
mission of this paper, we came across two recent papers
that confirm some of our predictions. An experimen-
tal study [13] has analyzed the vortex structure at the
bottom surface of a thin superconductor with a com-
mensurate square array of pinning centers on the top
surface. Vortex lines pinned at the top surface provide,
via their elastic energy, an effective pinning potential of
square symmetry at the bottom surface whose strength
is a decreasing function of the sample thickness. The
experiment finds a structure with the same symmetry as
that of our “partially pinned” lattice for a range of thick-
nesses. A numerical modeling [14] of the experimental
system also yields results quite similar to those shown in
the insets of Fig.1.
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