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Motivated by the many recent experimental studies of non-classical rotational inertia (NCRI) in
superfluid and supersolid samples, we present here a study of the hydrodynamics of a superfluid
confined in the two-dimensional region (equivalent to a long cylinder) between two concentric arcs
subtending an angle β, with 0 ≤ β ≤ 2π. The case β = 2π corresponds to a blocked ring. We discuss
the methodology to compute the NCRI effects, and calculate these effects both for small angular
velocities, when no vortices are present, and in the presence of a vortex. We find that, for a blocked
ring, the NCRI effect is small, and that therefore there will be a large discontinuity in the moment
of inertia associated with blocking or unblocking circular paths. A number of mathematical issues
are pointed out and resolved.

PACS numbers: 47.37.+q, 47.32.Ef

I. INTRODUCTION

Flow without dissipation is the defining feature of su-
perfluidity. Because of this property the moment of in-
ertia of a vessel containing a superfluid is different from
(smaller than) that when the liquid is in the normal state.
This effect is largest in the absence of vortices, when su-
perfluid flow is irrotational. The difference between the
moments of inertia when the liquid, confined by bound-
ary conditions, is in the normal and superfluid states is
known as the “non-classical rotational inertia” (NCRI).
The occurrence of NCRI is often used as an experimental
signature of superfluidity. Superfluid hydrodynamics and
the resulting NCRI have been studied extensively [1] in
the past for simple geometries, such as spherical, cylindri-
cal or rectangular containers rotating about a symmetry
axis. Because of several recent developments, some of
which are briefly discussed below, it has become neces-
sary to understand the properties of flow of superfluids in
enclosures of more complicated geometry. These provide
the motivation for our present study.

Recent observations [2–6] of NCRI in torsional oscilla-
tion experiments on solid 4He have been interpreted as
the occurrence of a “supersolid” phase. This interpreta-
tion of the experimental results is controversial. There is
experimental [5, 7] and theoretical [8] evidence suggest-
ing that the observed NCRI is due to superfluidity along
grain boundaries in a polycrystalline sample. Since the
grain boundaries in polycrystalline samples form com-
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plex disordered structures, calculations of the flow prop-
erties and the rotational inertia of a superfluid confined
in irregular-shaped channels are necessary for a quantita-
tive assessment of whether this mechanism is the correct
explanation of the observed results. In this context, it is
important to examine whether the superfluid component
can flow along continuous closed paths in the sample.
Since the geometry of the network of grain boundaries
would depend on thermodynamic variables such as the
temperature and pressure, and on the cell geometry, the
availability of such paths would also depend on these pa-
rameters and conditions. Thus, an understanding of the
dependence of the NCRI on such variables requires, for
example, a calculation of how the NCRI arising from a
blocked ring of superfluid changes as the blockage is re-
moved. To check whether the observed NCRI is due to
the occurrence of superfluidity, the NCRI of samples in
which the solid 4He is confined in the annular region be-
tween two concentric cylinders has been measured [2] in
the presence of a barrier in the annulus that prevents pos-
sible flow of the superfluid along a closed path surround-
ing the rotation axis (the common axis of the cylinders).
The NCRI observed under these conditions is found to be
much smaller than that for samples in which the artifi-
cial block is not present. The calculation just mentioned
is obviously relevant for a quantitative understanding of
the results of such experiments. Finally, an understand-
ing of experimental results [6] on the dependence of the
NCRI on the frequency of torsional oscillations requires
a theoretical understanding of vortex formation and crit-
ical velocity in superfluids confined in irregular-shaped
channels.

The recent explosion of activity in experimental and
theoretical studies of superfluidity and other quantum
phenomena in trapped, ultracold atomic systems pro-
vides another motivation for our study. Various signa-
tures of superfluidity, such as persistent flow, NCRI and
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formation of quantized vortices have been observed in
both bosonic [9–11] and fermionic [12] systems. While
the early experiments on such systems were carried out
for traps with simple geometry, more recent experiments
have begun to explore the properties of superfluid con-
densates in traps with more complex structure. Su-
perfluid flow in a toroidal trap has been observed re-
cently [11], and experimental conditions under which a
ring-shaped optical trap can be realized have been sug-
gested [13]. Studies of superfluid hydrodynamics in con-
tainers with complex geometry are obviously relevant for
understanding the results of experiments on superfluidity
in atomic systems confined in such traps.

A third and also important motivation is that there
have been many experimental studies of the flow prop-
erties and NCRI of superfluids confined in porous media
such as vycor glass and containers packed with fine pow-
der [14, 15]. The first experimental observation [16] of
“supersolid” behavior was for solid 4He confined in vy-
cor glass. Since the pores in these systems have complex
geometry, it is necessary to work out the hydrodynamics
of superfluids in irregular-shaped channels in order to un-
derstand the results of these experiments in quantitative
detail.

To shed light on the flow properties of confined super-
fluids, we have studied the hydrodynamics of a superfluid
confined in a two-dimensional region between two con-
centric circular arcs, each of which subtends an angle β
at their common center. The annular region between the
two arcs is bounded on two sides by straight walls along
the radial direction. Thus, the special case with β = 2π
corresponds to a ring that is blocked by a wall placed
perpendicular to its inner and outer peripheries. This
two-dimensional geometry corresponds, neglecting edge
effects, to that used in many experiments on supersolid
behavior in 4He where the helium is confined in the an-
nular region between two concentric cylinders, under the
assumption that the cylinders are long enough and the
confined system is homogeneous along the cylinder axis.
In the limit of vanishing inner radius, this geometry cor-
responds to that of a wedge with opening angle β. The
limit β = 2π in this case represents a circular container
with a straight blocking wall extending from the center
of the circle to its periphery.

We assume throughout the paper that the fluid is in-
compressible. We first consider the case where there are
no vortices (so that the superfluid flow is irrotational),
and solve the hydrodynamic equation for the velocity
field for rotation about an axis perpendicular to the plane
of the system and passing through the common center of
the arcs that form its boundary. The sample geometry is
reflected in the boundary conditions for the velocity field.
For incompressible and irrotational flow, the velocity field
can be expressed in terms of either a scalar or a vector
potential (stream function), analogous to those in electro-
magnetic theory, both of which satisfy the Laplace equa-
tion with appropriate boundary conditions. The scalar
potential method is simpler, and leads to series that con-

verge rapidly. We have used this method to obtain the
velocity field for β = 2π and β = π. For a general value of
β, however, the stream function method, although more
difficult in that it leads to series that are not convergent,
but Borel summable, is more powerful. We have there-
fore used it to obtain the velocity field for arbitrary β.
We present analytic results for the velocity field and the
moment of inertia for arbitrary values of the inner and
outer radii and the opening angle β. We also derive a
simple “parallel axis” theorem that relates the moment
of inertia for rotation about any axis perpendicular to the
plane of the system to the calculated value for rotation
about an axis passing through the center of mass.

In the context of experimental observations of NCRI in
solid 4He, the most important result of our study is about
the NCRI of a blocked ring. When the ring is blocked,
the superfluid can not flow through it. However, due to
the irrotational nature of superfluid flow, the moment
of inertia is smaller than that for rigid-body rotation.
Therefore, the drop in the moment of inertia when the
block is removed (the superfluid does not contribute to
the moment of inertia when there is no block) is less
than the rigid-body value. Our calculations show that
the moment of inertia of a blocked ring whose width is
small compared to its radius is very close to its moment
of inertia for rigid rotation, so that unblocking the ring
(i.e. the opening up of a closed path) produces a large
drop in the moment of inertia (nearly equal to its rigid-
rotation value), which would show up in an experiment
as a relatively large value of the NCRI.

Our calculations uncover several interesting mathe-
matical issues and we indicate ways of addressing them.
Some of these were also present in earlier studies [1] of
superfluid hydrodynamics, while some are new. We dis-
cuss these questions as they appear throughout the pa-
per. We consider also the nucleation of vortices in the
sample. As pointed out in Ref. [1], states with vortices
present will have, at sufficiently larger values of the an-
gular velocity Ω, a lower free energy than the vortex-free
state. One new result is that the velocity field for a wedge
with β > π formally diverges at the tip of the wedge for
any nonzero value of Ω. This means that the implicit
assumption that the velocity field nowhere exceeds the
critical velocity is in principle mathematically incorrect
for these wedges: for any nonzero value of Ω, there must
be a region near the tip where the liquid is in the normal
state. Although in practice, as we will see, the size of the
region where this occurs is too small to have any measur-
able consequence in the usual geometries, it may be an
important point in other cases. We show that this diver-
gence of the velocity can be removed by the presence of
a single vortex. We calculate the position of this vortex
and the rotational inertia in its presence. This result sug-
gests that vortices may be present in these systems even
if the angular speed of rotation is arbitrarily small, im-
plying that the critical angular speed for the nucleation
of a vortex is zero. Whether this happens or not would
be determined by a balance between the free-energy cost
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of creating a vortex and that of creating a normal region
near the tip. We will show that in typical experimen-
tal situations, the free energy cost of creating a vortex is
the relevant one and vortices do not occur for sufficiently
small angular velocities. We calculate the critical angu-
lar velocity for vortex nucleation, which turns out, for
typical samples, to be in the experimentally important
range of angular velocities. We show how the rotational
inertia is modified by these vortex excitations.

The rest of this paper is organized as follows. In sec-
tion II, we describe in detail our calculations. We present
first two alternative methods of calculating the velocity
field in the vortex free case, and discuss the results ob-
tained for this field and the moment of inertia. We then
explain how to include the nucleated vortices. A sum-
mary of our results and a discussion of their implications
for experimental studies of superfluidity are presented in
the concluding section III.

II. RESULTS

A. Formulation of the problem

We consider, as explained above, superfluid flow in an
ideal cylinder, long enough in the z direction so that
edge effects are negligible and the problem quasi two-
dimensional. The cross sections of the cylinders that we
will consider will be bounded by two concentric circular
arcs of radii a and b (with a > b) and encompassing an
angle that we will call β. In the limit b = 0 the shape
of this cross section is that of a circular wedge. We will
consider all values of β, 0 < β ≤ 2π. It must be empha-
sized that the case β = 2π is not the same as that of a
ring, since a boundary along a radius still exists.

In the absence of vortices (the generalization to the
case when vortices are present will be discussed below)
the superfluid velocity field v(r) for an incompressible
fluid satisfies the equations:

∇ · v(r) = 0 (2.1a)

∇× v(r) = 0. (2.1b)

The boundary condition, corresponding to rotation
around some center O with uniform angular velocity Ω

is:

v(r)⊥ = (Ω × r)⊥ (2.2)

were r is a vector from O to a point on the boundary, and
the index ⊥ denotes the component perpendicular to the
boundary. The point O is not necessarily the center of
mass of the system: in general we will take it to be, for
reasons of obvious computational convenience, the center
of the arc or arcs that are part of the boundaries of our
system.

There are two obvious ways to solve Eqs. (2.1). The
first is to introduce a scalar potential V (r) such that

v(r) = ∇V (r). In that case V (r) satisfies the Laplace
equation:

∇2V (r) = 0 (2.3)

and Eq. (2.2) is a Neumann boundary condition on V .
Alternatively, one can introduce a stream function Ψ(r)
such that:

vx = −∂Ψ/∂y (2.4a)

vy = ∂Ψ/∂x, (2.4b)

where one can think of Ψ as the z component of a vector
potential [v(r) = −∇× (ẑΨ(r))]. It is obvious that Ψ(r)
satisfies the Laplace equation:

∇2Ψ(r) = 0 (2.5)

Now, however, the boundary conditions are of the Dirich-
let form [1]: at any point in the boundary,

Ψ(r) =
1

2
Ωr2. (2.6)

It turns out, as we will see, that for certain special val-
ues of β such as π and 2π, the scalar potential method
is much simpler to use and leads to expressions for v(r)
in the form of rapidly convergent series which are very
convenient. However, for other values of β, this method
becomes rather awkward. The stream function method
on the other hand can be used for any value of β, but the
resulting expressions involve asymptotic series. These
are, however, Borel summable and agree with the re-
sults obtained from V (r) in the cases where the scalar
potential method works well. For this reason, we will
first present here results obtained from V (r) for β = 2π
and β = π and then consider the general case using the
stream function.

Once the velocity field is obtained, the angular momen-
tum (and hence the moment of inertia) can be calculated
by straightforward integration of the velocity field. In
this way, the depletion of the moment of inertia from its
rigid body value is obtained. In general our origin O is
not the center of mass (COM) of the system: therefore
it is important to discuss an interesting property of the
nature of the parallel axis theorem shift in the superfluid
case. If one considers the moment of inertia of the super-
fluid with respect to the COM, ICOM

SF one finds, of course,
that it is always smaller than that of the corresponding
rigid object (RO) of the same shape and density, ICOM

RO .
Indeed, for the case of a circle ICOM

SF vanishes. With re-
spect to an arbitrary origin O one has for the superfluid
a total moment of inertia IT

SF = ICOM
SF + IPA

SF where the
last term is the parallel axis shift. The key point here
is that this shift is the same as that for the rigid object.
One has:

IPA
SF = IPA

RO . (2.7)

The proof of this theorem is very simple: the problem,
as defined by the above equations and boundary condi-
tions, is linear. If one shifts the origin from the COM to
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a point a distance R away from it, the velocity field of
the boundaries shifts to v = (r+R)×Ω. In view of this,
the linearity of the problem, and the boundary condition
Eq. (2.2), the solution of the shifted problem is the veloc-
ity field computed with respect to rotations around the
COM, plus a uniform velocity field R × Ω. This second
field trivially satisfies the equations and takes care of the
additional term in the boundary condition. But it is triv-
ial to verify that such a constant field leads simply to a
parallel axis theorem shift in the moment of inertia equal
to that for the corresponding rigid object. This applies
irrespective of the shape of the object: it is not limited to
the wedge shapes considered here. It is straightforward
to check by direct calculation that it applies, for exam-
ple, to the ellipsoidal shapes of Ref. 1. This theorem has
physical consequences: since the parallel axis shift cannot
be “depleted” from its RO value by the superfluid flow,
in general the fractional depletion of ISF will always be
largest when the rotation is around the COM.

B. Scalar potential method for β = 2π and β = π

To illustrate the results, let us first turn to the simplest
case where β = 2π, b = 0 (a circle with a wall along its
radius). For this case, one can very simply use the scalar
potential method. We write, in polar coordinates:

V (r, φ) =
∑

m≥1

amrm/2 sin(mφ/2)+
∑

m≥1

bmrm/2 cos(mφ/2).

(2.8)

With the radial wall set along the φ = 0 direction, the
azimuthal component of the velocity,

vφ(r, φ) =
∑

m≥1

m

2
amrm/2−1 cos(mφ/2)

−
∑

m≥1

m

2
bmrm/2−1 sin(mφ/2) (2.9)

must equal Ωr at φ = 0. This immediately tells us that
all the am vanish except a4, which equals Ω/2. The radial
component is then:

vr(r, φ) = Ωr sin(2φ) +
∑

m≥1

m

2
bmrm/2−1 cos(mφ/2)

(2.10)
At r = a we have vr = 0 and hence:

−Ωa sin(2φ) =
∑

m≥1

m

2
bmam/2−1 cos(mφ/2) (2.11)

from which one obtains that all the bn with even n are
zero while for odd n:

bn =
32Ωa

πn(n2 − 16)an/2−1
. (2.12)

From these and Eqs. (2.9) and (2.10) we have the final
result for the velocity field:

vr(r, φ) = Ωr sin(2φ) +
16Ωa

π

∑

n odd

ρn/2−1 1

n2 − 16
cos(nφ/2) (2.13a)

vφ(r, φ) = Ωr cos(2φ) −
16Ωa

π

∑

n odd

ρn/2−1 1

n2 − 16
sin(nφ/2) (2.13b)

where ρ ≡ r/a.

Two remarks are needed about these simple results;
first, the series involved are very rapidly convergent. Sec-
ond, the velocity components have a square root sin-
gularity at the origin. Physically, this is not impor-
tant: the relevant number is the value of r at which
the velocity would exceed the Landau critical velocity[17]
vc ≈ 2.5× 104cm/s. For typical experimental situations,
the maximum value of Ω is less than 0.1s−1 (see for
example[2, 6]). This would mean than only at values
of r/a around 10−11 would vc be exceeded. Such small
values of r would not have any experimentally measur-
able consequence (the hydrodynamic description we use
would not even apply to such length scales). Also this
divergence is not present for nonzero values of the inner

radius b, and the inner radius is finite (of order 10−2 cm)
in torsion and rotation experiments. Mathematically, the
singularity is integrable, and allows for the formal cal-
culation of the moment of inertia. However, the above
does mean that the assumption that the velocity is lower
than vc everywhere in the system or that no vortex is
present in the system may not be strictly correct in cer-
tain geometries. There may be experimentally realizable
situations where this effect would have observable conse-
quences. This is discussed in detail in sections II D and
II E.

The angular momentum is obtained by integration of
rvφ over the sample and the moment of inertia is just the
ratio of the angular momentum and the angular velocity
Ω. We will use units in which the areal mass density is



5

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

x/a

y/
a

0.5 0.6 0.7 0.8 0.9 1
Ρ

-0.15
-0.1
-0.05

0
0.05
0.1

0.15

v r

0 1 2 3 4 5 6
Φ

0.6

0.65

0.7

0.75

0.8

0.85

0.9

v Φ

FIG. 1: The velocity field for a blocked ring with c = 0.5. The
first panel shows the relative strengths of the velocity field as
a function of position. The second panel is the radial compo-
nent (in units of Ωa) plotted vs ρ ≡ r/a at azimuthal angles
φ (from bottom to top) π/16, π/8, π/4, 7π/4, 15π/8, 31π/16.
The third panel, in the same units, shows the azimuthal com-
ponent of the velocity vs. φ at ρ = 0.6, 0.75, 0.9.

unity. We obtain the result:

ISF = −
128a4

π

∑

n odd

1

n(n2 − 16)(n + 4)
, (2.14)

which, after numerically evaluating the rapidly conver-
gent series, gives ISF = 0.693a4. Thus we have for this

0 0.2 0.4 0.6 0.8 1
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1
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I S
F

FIG. 2: Moment of inertia of an obstructed ring in terms of
its aspect ratio c ≡ b/a. In the top panel the ratio R of ISF

(Eq. (2.22)) to the rigid body value is plotted, while in the
bottom panel we plot ISF itself, in units such that a = 1. The
maxima in the two plots are at different values of c.

obstructed circle:

ISF

IRO
≈ 0.441. (2.15)

The same method can be used at β = π. In that case
the only significant difference is that in the expression for
V (r) one must write:

V (r, φ) =
∑

m≥1

amrm sin(mφ) +
∑

m≥1

bmrm cos(mφ).

(2.16)
As before, all the coefficients an are determined from the
boundary conditions on vφ at φ = 0 and φ = π. Both
are satisfied if all an vanish except a1 = Ω/2. The bn

are determined then from the boundary condition on vr.
The result for the velocity field is:
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vr(r, φ) = Ωr sin(2φ) +
8Ωa

π

∑

n odd

ρn−1 1

n2 − 4
cos(nφ) (2.17a)

vφ(r, φ) = Ωr cos(2φ) −
8Ωa

π

∑

n odd

ρn−1 1

n2 − 4
sin(nφ). (2.17b)

The series are again convergent, and now the previously
found integrable singularity at the origin is absent. The
moment of inertia with respect to the origin is:

ISF = −
16a4

π

∑

n odd

1

n(n2 − 4)(n + 2)
. (2.18)

Numerically, we have ISF = 0.488a4 which gives a ratio
ISF /IRO = 0.621, a value higher than that for the circle.
However, we must recall that in this case O is not the
COM and that (as shown above) there is no reduction in
the parallel axis term so that from the point of view of
the COM the reduction must be larger. Indeed one finds
that:

ICOM
SF

ICOM
RO

= 0.41, (2.19)

which is actually a little less than that for the circle.
One can see that it is awkward to extend this simple

procedure to other values of β. If one sets for example
β = π/2 and doubles again the angles and powers in
the expression for V (r) one finds that it is not possible

to satisfy the boundary condition for vφ at φ = 0 and
φ = π/2 from a single term in the first sum (the an co-
efficients) in the potential. Similar difficulties are found
at e.g. β = 3π/2. Although these difficulties should not
be unsurmountable, we will instead use the stream func-
tion method in the general case and deal appropriately
there with the mathematical difficulties associated with
the asymptotic series that then result.

However, one can easily generalize this simple proce-
dure, for the above values of β, to the physically more
relevant case where b > 0. We will consider here the im-
portant case of an obstructed ring, β = 2π. In that case
one simply has to add to the potential in Eq. (2.8) the
appropriate negative powers of r. Taking into account
directly the boundary condition on vφ we write:

V (r, φ) = Ωr sin(2φ)+
∑

m≥1

(

bmrm/2 +
cm

rm/2

)

cos(mφ/2).

(2.20)
The coefficients bm and cm are then found from the
boundary conditions on vr at r = a and r = b. One
then obtains the velocity fields:

vr(r, φ) = Ωaρ sin(2φ)
16Ωa

π

∑

n odd

cos(nφ/2)
1

(1 − cn)(n2 − 16)

[

ρn/2−1fn(c) −
gn(c)

ρn/2+1

]

, (2.21a)

vφ(r, φ) = Ωaρ cos 2φ
16Ωa

π

∑

n odd

sin(nφ/2)
1

(1 − cn)(n2 − 16)

[

ρn/2−1fn(c) +
gn(c)

ρn/2+1

]

. (2.21b)

where c ≡ b/a < 1, fn(c) = 1 − cn/2+2 and gn(c) = cn − cn/2+2. Plots of the fields given by Eqs. (2.21) are shown
in Fig. 1. All the plots in the figure are for c = 0.5, a value in the region where, as we shall see below, NCRI effects
are found to be largest. In the first panel, the vector field is displayed in two dimensions over the entire sample. The
units of velocity are arbitrary, but the overall pattern of the field is then clearly shown. In the second and third panels
we show a plot of vr (in units of Ωa) vs r (in units of a) at several values of the azimuthal angle φ and a plot, in the
same units, of vφ vs φ at several values of r. One can see that the boundary conditions are satisfied.

The moment of inertia of the superfluid blocked ring is:

ISF = −
128a4

π

∑

n odd

1

n(n2 − 16)(1 − cn)

[

1

n + 4
f2

n(c) −
1

n − 4
g2

n(c)

]

, (2.22)

The behavior of this quantity as a function of aspect ratio
c is well worth noting. In the first panel of Fig. 2 we plot

the ratio R ≡ ISF /IRO for a blocked ring of aspect ratio
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c, vs. c. As noted above, the value for c = 0 (blocked cir-
cle) would, strictly speaking, have to be corrected, but
the range of c affected by this is negligible. The ratio
R increases very quickly with c: at c = 1/2 it already
reaches 0.875 while at c = 0.75 it exceeds 97%. We see,
therefore, that a narrow superfluid circular channel rotat-
ing about its center behaves essentially like a rigid body
when it is blocked. Since, when unblocked, its moment of
inertia vanishes, we see that in such a channel there will
be a sharp discontinuity in I as it is blocked or unblocked.
In a sample containing a number of such channels, dis-
continuities or glitches in I will occur as the channels are
blocked or unblocked. As c → 1, R → 1 and the un-
blocking would drop R from one to zero, the maximum
amount. One should recall, however, that I vanishes at
c = 1 for both the superfluid and the rigid body. In an
experimental situation one would measure the difference

in I with the channel blocked and unblocked which is
ISF itself. This quantity has a broad maximum centered
around c ≈ 0.52 as one can see in the second panel of
Fig. 1. There we plot ISF itself in units such that a is
unity. From this plot one can see that the important
experimental contribution would come from a range of
rings with c values in the region 0.2 through 0.8.

C. Stream function method for arbitrary β

As discussed in section II A, the velocity field can be
written in terms of a stream function Ψ(r) that satisfies

the Laplace equation with Dirichlet boundary conditions
(see Eqs. (2.4- 2.6)). Following Ref. [1], the general solu-
tion for Ψ(r) for arbitrary β can be written as

Ψ(r) =
1

2
Ω

∫

dl′r′2n′ · ∇′G(r′, r), (2.23)

where the line integral
∫

dl′ is over the boundary of the
system, n

′ is a unit vector along the outward normal to
the boundary, and G(r, r′) is the Green’s function for the
Laplacian operator, satisfying the equation

∇2G(r, r′) = δ(r − r
′), (2.24)

and the boundary conditions

G(r, r′) = 0 (2.25)

for all r on the boundary of the system. Thus, Ψ(r) and
hence, the velocity field, can be obtained from Eq. (2.23)
once an expression for the Green’s function, satisfying
Eqs. (2.24) and (2.25) is obtained.

As in section II B, we first consider, for simplicity, the
case b = 0, which corresponds to a wedge of radius a
and opening angle β. The Green’s function in this case
is easily obtained [18] to be

G(r, φ; r′, φ′) = −
1

π

∞
∑

n=1

1

n
r

nπ/β
<

(

1

r
nπ/β
>

−
r

nπ/β
>

a2nπ/β

)

sin(nπφ/β) sin(nπφ′/β), (2.26)

where r> (r<) is the larger (smaller) one of the two radial coordinates r and r′. Using this in Eq. (2.23), we obtain
the following expression for the stream function Ψ(r):

ΨΩ(r, φ) =
2Ωa2

π

∑

n odd

sin(nπφ/β)

[

nπ2/β2

n2π2/β2 − 4

(

−
( r

a

)nπ/β

+
r2

a2

)

+
1

n

( r

a

)nπ/β
]

. (2.27)

The radial and azimuthal components of the velocity field, obtained from ΨΩ(r, φ) through the relations

vr = −
1

r

∂Ψ

∂φ
, vφ =

∂Ψ

∂r
, (2.28)

are given by

vr(r, φ) =
2Ωa2

πr

∑

n odd

(

nπ

β

)

cos(nπφ/β) ×

[

nπ2/β2

n2π2/β2 − 4

(

( r

a

)nπ/β

−
r2

a2

)

−
1

n

( r

a

)nπ/β
]

, (2.29a)

vφ(r, φ) =
2Ωa2

π

∑

n odd

sin(nπφ/β) ×

[

2r

a2

nπ2/β2

n2π2/β2 − 4
−

nπ

βr

( r

a

)nπ/β
(

nπ2/β2

n2π2/β2 − 4
−

1

n

)]

. (2.29b)

Calculation of the velocity field for β = π/2 requires some care because the denominators of some of the terms in
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Eqs. (2.29) go to zero for β = π/2 and n = 1. The nu-
merators also vanish for these values of β and n, so that
finite contributions that vary smoothly with β across π/2
are obtained for the velocity components. Similar behav-
ior is found for β = 3π/2 for which the n = 3 term in
the denominators in Eqs. (2.29) vanishes. These results
also exhibit, for β > π, a singularity rπ/β−1 as r → 0,
which can be readily seen from Eqs. (2.29) to arise from
the n = 1 term in the sum. This is in agreement with
what we found from the scalar potential method. As dis-
cussed in detail in the previous section, this divergence,
although mathematically interesting, is not relevant in
realistic physical situations and we will ignore it in this
part of our discussion. This singularity is always inte-
grable. Therefore, the angular momentum of the super-
fluid about the origin (tip of the wedge) is easily calcu-
lated for all β using these expressions for the velocity
components. The result for the moment of inertia about
O is

ISF =
2a4

π

∑

n odd

1

n

(

nπ

β
+ 4

)

1

(nπ/β + 2)2
. (2.30)

For the case β = 2π, the moment of inertia about the
origin is given by the infinite series

ISF (β = 2π) =
4a4

π

∑

n odd

1

n

n + 8

(n + 4)2
. (2.31)

This infinite series appears to be different from the one in
Eq. (2.14) which was obtained using the scalar potential
method. In particular, the series in Eq. (2.31) converges
more slowly than the one in Eq. (2.14). However, using
the identity

∑

n odd

1

(n − 4)(n + 4)
= 0, (2.32)

it can easily be shown that these two expressions for the
moment of inertia are mathematically identical. We have
also checked that a similar situation applies when the re-
sults for the moment of inertia obtained from Eqs. (2.29)
for β = π are compared to those obtained in the preced-
ing section using the scalar potential method.

However, the situation is much more complicated
when, instead of comparing the moments of inertia, one
compares directly the velocity fields obtained by the two
methods. In this case it is not sufficient to add or sub-
tract a series that converges to zero. The reason is that
while the series in Eqs. (2.13) converge for all angles φ
and for any r 6= 0, those in Eqs. (2.29) and (2.27) do
not. This question is related to other technical difficul-
ties with the result (2.27), and in general with the stream
function method, which we will further address below.

The moment of inertia of the wedge for rigid-body ro-
tation about O is IRO = βa4/4, and its moment of in-
ertia for rigid-body rotation about its COM is given by
ICOM
RO = IRO − IPA

RO with IPA
RO = 8a4 sin2(β/2)/(9β). Us-

ing these results and Eq. (2.30), we have calculated the

0 1 2 3 4 5 6 7
0.2

0.4

0.6

0.8

1

β

I S
F
/I R

O

FIG. 3: The ratios ISF /IRO (upper curve), and ICOM

SF /ICOM

RO

(lower curve) for a superfluid wedge as a function of the open-
ing angle β, 0 < β ≤ 2π. ISF is calculated from Eq. (2.30).

ratios ISF /IRO and ICOM
SF /ICOM

RO as functions of the an-
gle β. The results are shown in Fig. 3. These ratios are of
course less than unity, the level of suppression being given
by the NCRI effect. In the figure we see that this frac-
tional suppression is always larger in the COM frame,
that is, ISF /IRO is always higher than ICOM

SF /ICOM
RO , ex-

cept of course at β = 2π where the two are the same.
This is in agreement with the theorem proved at the end
of Sec. II A. It is interesting that the ratio ICOM

SF /ICOM
RO

is not a monotonic function of β – it exhibits a minimum
at β = π/2.

A representative plot of the velocity field for a wedge
with β = (7/8)2π is shown in Fig. 4. The velocity vector
field is plotted in arbitrary relative units, as in the first
panel of Fig. 1. It is instructive to compare that panel
with Fig. 4. In the earlier case we have c = 0.5 whereas
in Fig. 4 we have a wedge, c = 0. The rise in the absolute
value of the velocity as r → 0 can now be seen. On the
other hand, the behavior of of vr as a function of φ is
clearly very similar: it follows from the second panel of
Fig. 1 that vr is very small except for angles near the
radial boundaries, and this is clearly the case also for
this c = 0 wedge. The behavior of vφ with φ is also quite
similar.

We now return to the technical difficulties with the
general solution for the velocity field obtained above via
the stream function. As noted in section II A, the quan-
tity Ψ(r, φ) should be equal to Ωr2/2 at all points on the
boundary, and the physical velocity field should satisfy
the boundary conditions vφ(r, φ) = rΩ for φ = 0, β and
vr(r, φ) = 0 for r = a. It is easily seen from Eqs. (2.27)
and (2.29b) that both Ψ(r, φ) and vφ(r, φ) vanish for
φ = 0 and φ = β (since sin(nπφ/β) = 0 for these values
of φ). Thus the boundary condition on the radii appears
to be violated even though the construction of the vector
potential via the Green’s function would seem to ensure
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that it will not be. As to Eq. (2.29a) for the radial com- ponent of the velocity, it can be written as

vr(r, φ) =
8Ωa2

βr

∑

n odd

cos(nπφ/β)
1

n2π2/β2 − 4

[

( r

a

)nπ/β

−
r2

a2

]

−
2Ωr

β

∑

n odd

cos(nπφ/β). (2.33)

While the first term on the right-hand side of this equa-
tion vanishes for r = a, the second term does not. Thus,
this component also appears not to satisfy the required
boundary conditions. Numerically, however, we have
found that these quantities do approach values consistent
with the required boundary conditions as the boundaries
are approached from inside, but there is a discontinuity
as the boundary is approached and the values exactly at
the boundaries do not satisfy the boundary conditions.
This does not affect the calculated values of the angu-
lar momentum and the moment of inertia because these
quantities are not sensitive to the values of the velocity
components exactly at the boundary.

However, this numerical argument is not fully satisfac-
tory. Fortunately there are better ones. First, one can
see that this behavior is associated with the nonconver-
gence of the series. The last term in Eq. (2.33), for ex-
ample, is not merely nonzero: the series that it contains
is not convergent while that in the first term is. Indeed
the rearrangement of terms leading from Eq. (2.29a) to
Eq. (2.33) isolates just this nonconvergent part. However,
by rewriting the cosines in terms of exponentials one can
verify that the series in the last term of Eq. (2.33) is
Borel summable[20] (and also Euler summable) with the
result being zero. With this proviso, Eq. (2.33) satisfies
the boundary condition analytically. Similar arguments
can be made for ΨΩ and for the azimuthal component of
the velocity.

This mathematical problem can also be solved by re-
defining the stream function as

Ψ(r, φ) → Ψ(r, φ) −
2Ωr2

π

[

∑

n odd

1

n
sin(nπφ/β) −

π

4

]

,

(2.34)
where the first term in the right side is that given by
Eq. (2.27). The second therm in the right side, which
is subtracted from the old expression, is zero for all
points inside the wedge [19], and is equal to −Ωr2/2 for

φ = 0, β. Therefore, the subtraction of this quantity does
not affect the behavior of Ψ(r, φ) inside the wedge (where
it still satisfies the Laplace equation). At the same time,
the redefined Ψ(r, φ) satisfies the required boundary con-
dition for φ = 0, β. The new term leads to the following
additional terms in vφ and vr:

vφ(r, φ) → vφ(r, φ) −
4Ωr

π

[

∑

n odd

1

n
sin(nπφ/β) −

π

4

]

,

(2.35)
where again the first term in the right side is the previous
result, in this case Eq (2.29b). The added quantity is
zero at all points inside the wedge, and is equal to Ωr for
φ = 0, β, so that the required boundary conditions for
these values of φ are now satisfied. The equation for vr

becomes

vr(r, φ) → vr(r, φ) +
2Ωr

β

∑

n odd

cos(nπφ/β). (2.36)

The new term, added to Eq. (2.29a), cancels the “offend-
ing” second term in Eq. (2.33), so that the re-defined vr

satisfies the required boundary condition at r = a.

A similar problem with boundary conditions is also
present in the solution given in Ref. [1] for the velocity
field inside a cylinder with a rectangular cross section.
The expression for the stream function given in Eq. (62)
of Ref. [1] does not in fact satisfy the required boundary
conditions posed there at all points on the boundary. As
in the case considered here, this does not affect the results
for the calculated physical quantities in Ref. [1], and this
mathematical problem can be cured by the addition of a
term similar to the one considered above.

The above calculations can be modified readily to treat
a superfluid confined in the annular region between two
concentric arcs with radii a and b (a > b). The Green’s
function in this case has the form

G(r, φ; r′, φ′) = −
1

π

∞
∑

n=1

1

n

1

1 − (b/a)2nπ/β

(

r
nπ/β
< −

b2nπ/β

r
nπ/β
<

)

×

(

1

r
nπ/β
>

−
r

nπ/β
>

a2nπ/β

)

sin(nπφ/β) sin(nπφ′/β). (2.37)

In this case one does not have to worry about the behavior as r → 0. Asymptotic series in the summations over n
are again encountered and handled as in the preceding case. Using this in Eq. (2.23), the stream function Ψ(r, φ),
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and from it, the radial and tangential components of the velocity are obtained. We skip the long expressions for these
quantities and quote the final result for the moment of inertia about the origin:

ISF = IRO −
16a4

β

∑

n odd

1

x2
n(x2

n − 4)

[

x2
n + 4

2(x2
n − 4)

(1 − c4) −
2xn

x2
n − 4

1

1 − c2xn

{(1 + c4)(1 + c2xn) − 4c2cxn}

]

. (2.38)

−1.2 −0.8 −0.4 0 0.4 0.8 1.2
−1.2

−0.8

−0.4

0

0.4

0.8

1.2

x/a

y/
a

FIG. 4: Plots of the velocity field inside the wedge for β =
(7/8)2π. This should be compared with the first panel of
Fig. 1.

Here, xn = nπ/β, c = b/a, and IRO = β(a4 − b4)/4 is
the moment of inertia for rigid-body rotation. We have
checked that this expression reduces to that in Eq. (2.30)
for b = 0, and to that in Eq. (2.22) for β = 2π. In
Fig. 5, we show results for the NCRI in an annular wedge,
as obtained from Eq. (2.38). The plots are the same
as in Fig. 3 except that now we have c = 0.5, in other
words, the fields are as in Fig. 1. Again, the fractional
suppression is larger, as it must be, in the COM and it
has a maximum at a finite value of β.

D. Formation of vortices in a wedge with β > π

As noted above, the velocity field obtained from a cal-
culation in which it is assumed to be irrotational exhibits
a divergence as r → 0 for a wedge with β > π. Thus vc

must be exceeded near r = 0, implying that either there
is a region of normal fluid near the tip of the wedge, or
a vortex is present in the system. As we have indicated,
this issue is unimportant in the torsional oscillation ex-

periments because the region of normal fluid near the tip
would be unobservably small for experimentally relevant
parameter values. It is, nevertheless, interesting to in-
quire about the behavior in the general case. We show
here that this divergence in the velocity field is eliminated
by the introduction of a single vortex.

From symmetry, the vortex must be located along the

0 1 2 3 4 5 6 7
0
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0.4

0.6

0.8

1

β
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O

FIG. 5: The ratios ISF /IRO (upper curve), and ICOM

SF /ICOM

RO

(lower curve) for an annular wedge (Eq. (2.38)) plotted as a
function of the opening angle β, 0 < β ≤ 2π, at a fixed value
of c = 0.5

line φ = β/2. Let the position of the vortex be (rv , β/2).
The presence of a vortex of circulation κ(= h/m, where
h is Planck’s constant and m is the mass of a parti-
cle of the fluid) at (r′, φ′) leads to an additional term,
κG(r, φ; r′, φ′) in the expression for the stream function
Ψ(r, φ) where G(r, φ; r′, φ′) is the Green’s function given
in Eq. (2.26) (see Section 3 of Ref. [1] for a derivation
of this result). This additional term in Ψ(r, φ) (with
r′ = rv, φ′ = β/2) leads to the following additional term
in the expression for the radial component of the velocity
near r = 0:

vr(r, φ) = v0
r(r, φ) +

κ

βr

∞
∑

n=1

rnπ/β

(

1

r
nπ/β
v

−
r

nπ/β
v

a2nπ/β

)

cos(nπφ/β) sin(nπ/2) ≡ v0
r + v1

r , (2.39)
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where v0
r(r, φ) is the curl-free result as given by

Eqs. (2.36). The n = 1 part of the additional term can-
cels the divergent n = 1 contribution of the previous
expression if

κ

(

1

r
π/β
v

−
r

π/β
v

a2π/β

)

= 8Ωa2−π/β 1

4 − π2/β2
. (2.40)

It is easy to check that the divergence in the expression
for the azimuthal component of the velocity is also re-
moved if this condition is satisfied. Defining (rv/a)π/β ≡

ξ, the solution of Eq. (2.40) is ξ = [
√

4 + η2−η]/2, where,

η ≡
8Ωa2

κ(4 − π2/β2)
> 0. (2.41)

One sees that ξ has the nice property that 0 < ξ < 1 for
any value of η. The value of ξ changes from 1 to 0 as
the dimensionless parameter γ ≡ Ωa2/κ increases from
zero to a large value, i.e. the vortex moves inward from
the rim of the wedge to its tip as the angular velocity
increases.

Using the expressions for the radial and tangential
components of the velocity in the presence of a vortex,
the total angular momentum of the superfluid can be
calculated. The presence of the vortex increases the an-
gular momentum about the origin by the amount Lv and
the moment of inertia for rotation about the origin by
IV = LV /Ω. Using the result for the vortex position,
this can be written as

IV =
64a4

π

1

[4 − π2/β2][(a/rv)π/β − (rv/a)π/β]
×
∑

n odd

(−1)
n+1

2
1

n(4 − n2π2/β2)

[

(rv

a

)2

−
(rv

a

)nπ/β
]

. (2.42)

In the presence of the vortex, the moment of inertia about
the origin is (ISF + IV ) where ISF is given by Eq. (2.30)
and IV is given by the equation above. The value of
rv/a to be used in this equation is given by the solution
of Eq. (2.40). Since the vortex position rv depends on
the angular speed Ω, the value of IV also depends on Ω.

Although the divergence in the velocity field at small r
is eliminated by the introduction of a vortex, the free en-
ergy of the state with this vortex is not necessarily lower
than that of the vortex-free state with a small region of
normal fluid near r = 0. Specifically, in the experimental
situations discussed above where the dimensions of the
region of normal fluid are extremely small, the free en-
ergy cost of creating the normal region is negligible and
the free energy cost of creating a vortex is the deciding
factor in determining whether a vortex will be present.
We therefore calculate, in the following subsection, the
free energy of a state with a single vortex.

E. Free energy of a vortex and critical angular

velocity for vortex nucleation

In the free energy calculation, we consider the general
case of a ring with b 6= 0. The angular speed Ω1 at which
nucleation of a first vortex will occur can be determined
from free energy considerations. The free energy F is

given[1] in terms of the energy E and the angular mo-
mentum L as:

F = E − LΩ (2.43)

We will denote here with a subscript 0 the quantities F ,
E and L in the vortex-free state, and with a 1 subscript
those in the presence of one vortex. As stated in the
preceding subsection, the stream function in the presence
of a vortex is:

Ψ1(r) = Ψ0(r) + κG(r, r′) ≡ Ψ0 + Ψ1 (2.44)

where G(r, r′) is the Green’s function given in Eq. (2.37)
and r

′ is the vortex position with coordinates r′, φ′. From
symmetry considerations φ′ = β/2 and the equilibrium
radial position of the vortex, r′ = rv, is to be determined
from free energy minimization. The velocity field and the
angular momentum in the presence of a vortex can be
readily obtained from the stream function of Eq. (2.44).
The angular momentum is given by

L1 = L0 + κa2C (2.45)

where the dimensionless quantity C has the following ex-
pression:

C =
8

π

∑

n odd

(−1)
n+1

2
1

n

1

4 − x2
n

1

1 − c2xn

× [(r′/a)2(1 − c2xn) − (r′/a)xn(1 − cxn+2) − (ca/r′)xn(c2 − cxn)], (2.46)

with xn = nπ/β.
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It is not hard to see explicitly that G(r, r′) has, as expected, a logarithmic singularity at r
′, so that we can write:

G(r, r′) =
1

2π
ln(|r − r

′|/α) + g(r, r′) (2.47)

where α is the radius of the vortex core and g(r, r′), the nonsingular part of the Green’s function, satisfies the Laplace
equation. As shown in Ref. [1] (see also Ref. [21]), the energy in the presence of a vortex can be written as

E1 =
1

2
L1Ω +

1

4
κΩr′2 −

1

2
κΨ0(r

′) −
1

2
κ2g(r′, r′). (2.48)

After some algebra, the nonsingular part of the Green’s function appearing in Eq.(2.48) is obtained as

g(r′, r′) =
1

2π
ln

(

πα

2βr′

)

−
1

π

∑

n odd

1

n

1

1 − c2xn

[2c2xn − (r′/a)2xn − (ca/r′)2xn ], (2.49)

where xn = nπ/β. Using Eqs. (2.45), (2.46), (2.48) and
(2.49), the free energy in the presence of a vortex at
(r′, β/2) may be obtained. The results depend on the
vortex core size, via the logarithmic dependence on a/α
mentioned above. One then minimizes F1 with respect
to r′ to obtain its optimal value rv, and compares F1

and F0 to find the overall equilibrium state. This de-
pends on the value of Ω and, for sufficiently small Ω, it
is the vortex-free state, while for Ω > Ω1 the one-vortex
state first becomes favorable. In practice these calcula-
tions can be done only numerically, but the computations
are not difficult. The relevant dimensionless parameter is
the quantity γ = Ωa2/κ defined in the preceding section.
This parameter is the ratio of the characteristic scale, Ωa,
of the velocity field v

0 due to the rotation alone, and the
scale of the additional velocity field v

1 due to the vortex,
which is κ/a. One needs also to input the value of α/a
for which we take the physically reasonable value of 107.

Results for Ω1 computed for a blocked annular ring
(β = 2π) are given in Fig. 6. There we plot the critical
value of γ vs the aspect ratio c. We see that at reasonably
small or intermediate values of c the critical value of γ
is in the range 10-50 corresponding to angular speeds in
the general range of 10−1/s, which is in the experimen-
tally relevant region. At large values of c this quantity
increases, reflecting that the system is behaving more like
a rigid body, in which case the formation of vortices is
obviously less favorable. A similar trend was seen for pro-
gressively flatter ellipsoids in Ref. 1. This implies that the
conclusions reached in our calculations without vortices
about the sharp discontinuities that should occur when
a reasonably narrow ring is obstructed or unobstructed
are valid in the experimentally interesting range.

In Fig. 7, we show the texture of the velocity field v
1

due to the nucleated vortex alone at c = 0.5 and at a
value of γ slightly higher than its critical value, which
at this value of c is γ1 ≃ 20 (see Fig. 6). The calculated
optimal position of the vortex at these values of γ and c is
rv/a = 0.74. This position is marked by a (blue) circle in
the plot. The fields in this figure should be combined with
those in the top panel of Fig. 1. One should recall that

both plots are in arbitrary units, so that before plotting
the combined field one should divide the fields in Fig. 7 by
γ ≃ 20 to take into account their overall smaller relative
scale. If that were done, however, then the plot would
be very hard to distinguish with the naked eye from that
in the top panel of Fig. 1. For this reason, in order to
give the reader a clearer feeling for the overall texture of
the combined fields, we have plotted them in Fig. 8 after
multiplying the v

1 by a relative weight of 1/2, rather
than 1/20.

The moment of inertia of a ring in the presence of a
nucleated vortex may be calculated from Eqs. (2.45) and
(2.46). The results deviate from those obtained for the
vortex-free state only by a correction of order 1/γ. For
Ω ≥ Ω1 this is therefore significant only at small values
of c. At c → 0 we find for example that, at β = 2π, the
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FIG. 6: The critical angular velocity for vortex nucleation in
a ring (β = 2π). Here the critical value of the parameter γ
(i.e. Ω1a

2/κ) is plotted as a function of c. The circles are
numerical results, connected by straight dashed lines. The
increase at larger c shows that the nucleation of vortices is
unfavorable in that case.
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FIG. 7: (Color online) Fields produced by a nucleated vor-
tex in an obstructed ring with c = 0.5, at Ω = Ω1. Only
the fields produced by the vortex are included. Its position
(marked by a (blue) open dot) is at the optimal value (see
text) rv/a = 0.74. The total flow is the sum of that shown
in this figure, weighed by a factor of 1/γ, and that in the top
panel of Fig. 1. Because γ is rather large, the result would be
hard to distinguish from that shown in Fig. 1.
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FIG. 8: (Color online) Combined velocity fields in the pres-
ence of a vortex. This is the weighted sum of the fields in the
top panel in Fig. 1 and those in Fig. 7. As discussed in the
text, the effect of the vortex has been artificially enhanced
for visibility purposes by using a weight factor of 1/2 for the
vortex fields, rather than the actual 1/20.

moment of inertia of a blocked wedge (c = 0) increases by
about 8.3% as a vortex is nucleated at Ω = Ω1, and the
increase in the moment of inertia due to the nucleation
of a vortex becomes less than 1% for c ≥ 0.33.

The optimal value, rv, of the radial coordinate of the
vortex obtained from free-energy minimization is quite

different from the value for which the velocity due to
the vortex cancels the mathematical singularity at r = 0
found in wedges with β > π. This implies that the veloc-
ity field would formally diverge at r = 0 in such systems
even when a vortex is present at the position correspond-
ing to the minimum of the free energy. As noted above,
this mathematical singularity does not have any physical
consequence in the usual experimentally studied situa-
tions. This interplay between the requirements of keeping
the velocity below the Landau critical value and minimiz-
ing the free energy may lead to interesting behavior in
other possible experimentally accessible situations.

III. SUMMARY AND DISCUSSION

We have calculated here the velocity fields of a super-
fluid sample in a cylindrical wedge, or ring-wedge geom-
etry. We have used two different methods to solve the
relevant hydrodynamic equations both in the absence of
vortices and when vortices are present. From the re-
sulting velocity fields, we have derived formulas for the
moment of inertia, and therefore for the NCRI effect in
these geometries.

Physically, the most important of our results is that
the NCRI effect is most prominent for relatively narrow
rings. Our calculations show that the moment of inertia
of a blocked narrow ring is very close to the rigid-body
value unless the width of the ring is a large fraction of
its outer radius. Since the moment of inertia of a su-
perfluid ring for rotation about its center is zero when
it is unblocked (at least for small Ω), one should see a
considerable change in the NCRI when approximately
circular superfluid channels in a sample are obstructed
or unobstructed. The fractional change in the moment
of inertia as a ring is unblocked (defined relative to the
moment of inertia of the ring for rigid-body rotation) is
maximum when the rotation axis passes through the cen-
ter of the ring. In that case, this ratio approaches unity
very quickly as the aspect ratio c of the ring is increased
toward one (see Fig. 2, top panel), and this ratio has a
value close to 0.44 as c → 0. The magnitude of the change
in the rotational inertia upon blocking/unblocking does
not depend on the location of the axis of rotation. For a
fixed value of the outer radius a, the magnitude of this
change is maximum when the aspect ratio c is close to
0.52 (see Fig. 2, bottom panel). This maximum is very
broad. For an annular superfluid wedge, the moment of
inertia about an axis passing through its tip is close to
the rigid-body value if the opening angle β is small, and
it decreases as β is increased (see Figs. 3 and 5).

The results summarized above are for the case where
there are no vortices, so that the velocity field is irro-
tational. Since one expects vortices to be nucleated as
the rotational speed in increased, we have used a free-
energy criterion to determine the critical angular speed
for the nucleation of a vortex in the system. We find
that the experimentally relevant range of geometries and
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speeds includes both the parameter region where vor-
tices are absent and that where nucleated vortices exist.
For a fixed value of β = 2π (ring geometry), the critical
angular speed increases rapidly as the aspect ratio c is
increased above about 0.5 (see Fig. 6). Also, the increase
in the moment of inertia due to the nucleation of a vor-
tex is rather small (less than 10%) in all cases. These
observations imply that the results mentioned above for
a narrow ring without vortices remain valid for relatively
large values of the angular velocity.

Mathematically, a number of relevant results have been
uncovered and emphasized. There are a number of tech-
nical difficulties in the calculation of the velocity fields,
leading to non-convergent series and singularities. How-
ever, the singularities are integrable and the series are
Borel summable, so that there is no difficulty in calculat-
ing physical quantities such as the angular momentum
and the kinetic energy. We also point out the occur-
rence of a mathematical singularity in the velocity field

in wedges (but not in rings) with β > π and discuss
briefly possible effects of this divergence. This singu-
larity turns out to have no measurable consequence in
commonly studied experimental situations.

In general, the ideas and methods developed here can
be used in other geometries. We believe that the results
and techniques presented here can be very useful in un-
derstanding not only NCRI phenomena in “supersolid”
helium, but also superflow in confined geometries and in
finite systems. Work in which we apply these ideas to
study the NCRI effect in realistic models of grain bound-
ary networks is in progress.
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