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Abstract

We have used atomistic molecular dynamics (MD) simulations to study the structure and dynam-

ics of water molecules inside an open ended carbon nanotube placed in a bath of water molecules.

The size of the nanotube allows only a single file of water molecules inside the nanotube. The water

molecules inside the nanotube show solid-like ordering at room temperature, which we quantify by

calculating the pair correlation function. It is shown that even for the longest observation times, the

mode of diffusion of the water molecules inside the nanotube is Fickian and not sub-diffusive. We

also propose a one-dimensional random walk model for the diffusion of the water molecules inside

the nanotube. We find good agreement between the mean-square displacements calculated from

the random walk model and from MD simulations, thereby confirming that the water molecules

undergo normal-mode diffusion inside the nanotube. We attribute this behavior to strong posi-

tional correlations that cause all the water molecules inside the nanotube to move collectively as a

single object. The average residence time of the water molecules inside the nanotube is shown to

scale quadratically with the nanotube length.
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I. INTRODUCTION

Fluids confined in nanometric scales are known to behave very differently from their bulk

counterpart [1]. Structurally, they show solid-like ordering, induced by the confinement,

whereas their diffusion constants are of the same order of magnitude as those of ordinary bulk

liquids. Water confined in carbon nanotubes serves as an ideal example of such a system. The

interest in studying such systems arises from the importance of understanding the properties

of confined water and from the possibility of extrapolating the conclusions to other physical

situations of similar nature, such as water adsorbed in nanopores in biological and geological

systems. In recent years, Molecular Dynamics (MD) simulations have been used to study

various aspects of these systems in microscopic detail [2, 3, 4, 5, 6, 7, 8]. Such studies

complement experimental investigations by providing detailed microscopic understanding

of some of the experimentally observed features. In some cases, simulations also make

interesting predictions that can be tested in experiments.

Both structural and dynamical properties of water molecules in nanotubes have been

investigated in MD simulations. Water molecules confined in nanotubes exhibit a variety of

spatially ordered structures not seen in bulk water. MD studies of Koga et al. [5, 6] pre-

dict the occurrence of hexagonal, heptagonal, square or pentagonal ice nanotube structures

inside carbon nanotubes of diameter ranging from 11 to 14Å under different conditions.

Some of these structures have been inferred from x-ray diffraction [9] and neutron scattering

[10] experiments. Striolo et al. [7] have performed Grand Canonical Monte Carlo (GCMC)

simulations to study the adsorption of water in single-walled carbon nanotubes and found

structures similar to those observed in neutron scattering experiments [10]. GCMC simula-

tions on adsorption of organic mixtures of cyclohexane, methane, ethane etc. inside carbon

nanotubes show ordered arrangement of the adsorbed molecules [11].

Among the dynamical properties of confined water, one that has attracted a lot of atten-

tion is the process of conduction of water molecules through nanopores. It is believed that

this process is important in understanding the transport through biological ion channels [12].

Hummer et al. [2] studied the conduction of water molecules through narrow carbon nan-

otubes using MD simulations. They found that clusters of water molecules are transferred

through the nanotube in the form of occasional bursts arising due to pressure fluctuations

occurring outside the nanotube. Beckstein et al. [3, 4] have extended such simulations to
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study the density fluctuations of water inside other hydrophobic pores. Transport of oxygen

and organic molecules such as methane, ethane and ethylene through carbon nanotubes has

also been studied [13, 14, 15, 16] through MD simulations.

Another interesting question about the dynamics of water molecules in narrow carbon

nanotubes is concerned with the mode of diffusion of the water molecules. If the diameter

of the nanotube is comparable to the size of a water molecule, then the water molecules can

not cross one another while they are inside the nanotube and they have to move in a single

file. Various earlier studies [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] suggest that under these

conditions, the water molecules inside the nanotube should exhibit a kind of sub-diffusive

behavior known as single file diffusion where the mean-square displacement (MSD) scales

with time t as t1/2 at long times. A crossover from normal mode diffusion (MSD ∝ t) to

single file behavior has been observed in experiments on colloidal particles suspended in

water inside narrow trenches [28, 29, 30, 31] and on molecules diffusing through channels in

zeolites [32].

The question whether molecules exhibit single file diffusion inside narrow carbon nan-

otubes has been investigated in a number of simulation studies. Lee et al. [13] have studied

the diffusion of oxygen molecules inside open-ended carbon nanotubes of various diameters.

They interpret their simulation results implying that oxygen diffuses through wide (17,0)

nanotubes via normal mode diffusion, whereas inside narrow (10,0) nanotubes, the molecules

exhibit sub-diffusive behavior (MSD ∼ tα, where the exponent α is less than unity). The

simulations of Mao et al. [14] suggest that spherical methane molecules exhibit normal mode

diffusion inside closed carbon nanotubes, whereas aspherical molecules such as ethane and

ethylene diffuse by a mode which is between normal and single-file. In all these simulations,

the time over which the MSD is measured is rather short (100 − 500 ps). Also, due to

finite-size effects arising from the smallness of the nanotube length (these effects will be

discussed in detail below), it is difficult to draw a firm conclusion about the true nature of

diffusion inside the nanotube from the time-dependence of the MSD. For these reasons, we

believe that the simulations mentioned above do not provide conclusive evidence for sub-

diffusive behavior of molecules inside a carbon nanotube. Recently, Striolo [8] has performed

MD simulations of the diffusion of water molecules inside a (8,8) nanotube using periodic

boundary conditions in the direction of the axis of the nanotube. This artificial boundary

condition prevents the water molecules from escaping the nanotube and hence it is possible
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to obtain MSD data at long times with good statistics. These simulations show that the

water molecules inside the nanotube initially undergoes ballistic diffusion (MSD ∝ t2) which

crosses over to normal mode diffusion at long times.

In this work we use MD simulations to study the structural and dynamical properties of

water molecules inside (6,6) carbon nanotubes of diameter 8Å and lengths L equal to 14,

28 and 56Å in a bath of water. Since the water molecules inside the nanotube can not cross

one another, a primary goal of our study is to determine whether single file diffusion occurs

in this system. Here the interactions among the water molecules inside the nanotube are

much stronger compared to those among the colloidal particles considered in experiments

[28, 29, 30, 31] that demonstrate the occurrence of single file diffusion. This can be inferred

from the packing fraction of the water molecules inside the tube. The packing fraction,

η, is defined as η = Nσ/L, where N is the number of water molecules, σ the diameter of

each molecule and L, the length of the tube. This quantity is close to unity for the water

molecules inside the (6,6) nanotube (it depends to some extent on the equilibrium density

of the water molecules in the bath). This introduces strong correlations in the positions and

displacements of the water molecules in the nanotube. These correlations and the effects

of the open ends of the relatively short nanotubes considered in our study (in particular,

the fact that the range of correlations is comparable to the length of the nanotube) have

important bearings on the diffusion behavior of the water molecules.

We find that the confined water molecules are spatially ordered, much like a solid, at

temperatures as high as 300 K. The MSD of the confined water molecules increases linearly

with time t at relatively short times (after a very short initial regime of quadratic increase

characteristic of ballistic motion), indicating normal-mode diffusion over this time scale. At

long times the MSD eventually saturates. We show, by comparing the simulation results

with analytic ones obtained from a simplified random walk model described below, that

the observed behavior is completely consistent with normal mode diffusion of the water

molecules inside the nanotube. In particular, we observe that the departure of the MSD

versus t curve from the initial linear behavior is a consequence of biased sampling arising

from the fact that the MSD is measured only for the molecules that stay inside the nanotube.

This conclusion is consistent with existing results [33] that show that the statistics of the

bursts of water molecules passing through a narrow carbon nanotube [2] are consistent with

one-dimensional random walk behavior. Our work also brings out that the normal mode
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diffusion found recently by Striolo [8] for water molecules in narrow carbon nanotubes with

periodic boundary conditions persists in the more realistic situation of open-ended nanotubes

immersed in water.

The remainder of the paper is organized as follows. Section 2 describes the details of

the simulation. In Section 3 we describe the results obtained from the MD simulations

for the static structure and the dynamics of the water molecules inside the nanotube. In

Section 4 we propose a random walk model to explain the dynamics of the confined water

molecules and compare the analytic results for the model with those obtained from our

MD simulations. Section 5 contains a summary of our main results and a few concluding

remarks.

II. DETAILS OF SIMULATION

We have simulated a (6,6) carbon nanotube of 8Å diameter placed in a bath of TIP3P [34]

water molecules at 300K and 1 atmosphere pressure. During the simulation the nanotube

was held fixed inside the simulation box, with its long axis along the z direction. The

simulations have been performed using AMBER 7 [35]. We have considered open-ended

nanotubes of length L equal to 14Å, 28Å and 56Å. A given simulation contained 1000

to 2200 water molecules depending on the size of the nanotube used. The interactions

between various atoms have been described by classical force fields. The carbon and oxygen

atoms were modelled as Lennard-Jones particles, the details of which are given in Table I.

The carbon-carbon bond length was 1.4Å and the corresponding spring constant was 938

kcal/(mol Å2), the equilibrium C-C-C angle was 2π/3 radians and the corresponding spring

constant was 126 kcal/(mol rad2). The simulations were performed for periods varying

between 8 ns and 20 ns (longer simulations were carried out for nanotubes with larger L)

and the coordinates were stored at an interval of 1 ps.
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III. RESULTS

To quantify the positional ordering of the water molecules inside the nanotube we have

calculated the pair-correlation function for the water molecules inside the nanotube using

g(z) =
1

N

N
∑

i=1

N
∑

j=1,j 6=i

< δ(z − zij) >, (1)

where zij is the axial separation between the i th and the j th water molecules, N is the

number of water molecules inside the nanotube and the angular brackets indicate an average

over time.

The calculated pair correlation functions for nanotubes of length 14Å, 28Å and 56Å are

shown in Fig. 1. The distinct peaks of g(z) suggest that there is solid-like ordering of the

water molecules inside nanotube, even at a temperature of 300K, for all the three tube

lengths. The nearest-neighbour distance between the water molecules is 2.6Å, similar to

that obtained by Hummer et al. [33]. The heights of the peaks of g(z) are smaller for

shorter nanotubes and the peak height decreases faster with z as the length of the nanotube

is reduced. However, this does not imply that the degree of positional order of the water

molecules inside the nanotube decreases as the tube length is reduced. The differences

between the results for g(z) for nanotubes of different length arise from a simple finite-size

effect, namely that the fraction of molecules that have a smaller number of neighbors due

to their proximity to the open ends of the nanotube is larger for smaller tubes. This finite-

size effect on the form of g(z) is seen clearly on comparing the g(z) obtained for the 14Å

tube with that calculated for the water molecules residing in the central 14Å portion of

the 28Å nanotube, taking only the molecules in this central region in the sums in Eq.(1).

This comparison is shown in Fig.2. The observation that the two correlation functions are

identical confirms that the degree of positional correlations is the same in nanotubes of

length 14Å and 28Å. That the water molecules are correlated over distances comparable

to the length of the nanotube has important consequences on the diffusion behavior of the

molecules, as discussed below.

We find that the trajectories of neighbouring molecules inside the nanotube are ex-

tremely correlated. In order to quantify this correlation we have calculated the quantity,

< δzi(δt)δzj(δt) >, where δzi(δt) and δzj(δt) are the displacements of the ith and jth water

molecules, respectively, in a time interval of δt. For this calculation, δt was taken to be 1
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ps. The angular brackets indicate averaging over time origins and pairs of water molecules

inside the nanotube. This quantity was calculated as function of the separation z between

the molecules i and j for nanotubes of all three lengths. Results for this correlation func-

tion are shown in Fig. 3. It decays as the separation z is increased, signifying the loss of

correlation of the displacements of widely separated particles. The separation at which this

correlation function decays to zero is close to the length of the tube, implying that the dis-

placements of all the molecules inside the tube are correlated for tubes of all three lengths.

This observation, consistent with the positional correlations shown in Fig. 1, implies that

the water molecules inside the nanotube tend to move together as a single object.

The MSD of the water molecules inside the nanotube was calculated using

< ∆z2(t) >=
1

N

N
∑

i=1

< [zi(t + t′) − zi(t
′)]2 >t′, (2)

where t is the time difference, t′ is a time-origin and N is the number of water molecules.

The angular brackets indicate an average over time origins. The open ends of the tube

allow particle exchange with the water bath. As a result, while calculating the quantity,

[zi(t + t′) − zi(t
′)]2, for the ith water molecule, one has to ensure that this molecule has

stayed within the nanotube for the entire interval of time between t′ and (t + t′). To ensure

this, we have multiplied [zi(t+ t′)−zi(t
′)]2 by

∏(t+t′)
t′ Pi(t

′′), where the quantity Pi(t) is equal

to unity if the ith molecule is inside the nanotube at time t and zero otherwise. Similarly

the number of time-origins which contribute for a particular molecule i and time difference

t is
∑

t′
∏(t+t′)

t′ Pi(t
′′). This way, even though the sum in Eq.(2) goes over all the water

molecules present in the system, only those molecules that have entered the tube at least

once contribute in the calculation of the MSD.

The finite lifetime of the water molecules inside the nanotube makes it difficult to find

sufficient number of long-lived water molecules, the identification of which is crucial for good

statistics of the MSD at long times. Hence, the simulation was run for 8 ns for the system

with 14Å nanotube to get MSD data up to 200 ps. The run-time of the system with 28Å

nanotube was 12 ns to get MSD data for a period of 1 ns. For the 56Å nanotube, even

after running the simulation for about 16 ns, we were unable to get good quality data for

the MSD at long times. In this method, the short time data are obtained from averages

over a large number of molecules, about 300 to 400, and also a large number of time origins.

The number of time-origins as well as the number of water molecules available for averaging
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decrease as one goes to longer time difference t. For this reason, the long-time MSD data

are more noisy. At the longest time differences for which the MSD has been reported in this

work, the number of molecules contributing is approximately 50.

The time-origin averaged MSD of the water molecules inside the 28Å nanotube is shown

in Figure 4 (top panel, solid line). The initial portion of the curve is linear in time, indicating

normal mode diffusion. At longer times, the curve bends downward and finally it saturates

to a constant value. The diffusion constant, calculated from the initial slope of the MSD

versus t curve, is 2.2, 2.5 and 2.8 (×10−5cm2/s) for the water molecules inside the 14, 28

and the 56Å nanotube, respectively. Even though there is a slight length dependence, the

reason for which is not clear, the value of the diffusion constant is roughly half of that of

bulk TIP3P water, 5 × 10−5cm2/s. It is interesting to note at this point that the value

of the diffusion constant obtained from our calculations is in agreement with that reported

by Berezhkovskii et al. in Ref.[33]. The diffusion constant estimated from the mean inter

particle separation of a = 2.6Å (this is exactly what we get from the position of the first

peak of g(z)) and the mean hopping time τ = 13 ps, reported by Berezhkovskii et al., is

2.6 × 10−5cm2/s, which is very close to the values obtained from our simulations.

A naive interpretation of the downward bending of the MSD versus t curves at longer

times would be a crossover from normal mode diffusion to sub-diffusive behavior as t is

increased. In particular, it is possible to find a time window in which the local slope of

the MSD versus t curve in a log-log plot is approximately equal to 0.5, the value expected

for single file diffusion. However, such an interpretation of the data is not correct. As

discussed in detail in the next section where we present a simple model for the dynamics of

the water molecules inside the nanotube and compare the simulation results for the MSD

with analytic ones obtained for this model, the MSD data shown in Fig. 4 are completely

consistent with normal mode diffusion of the water molecules. The fact that each molecule

that contributes to the calculation of the MSD for time t is required to stay inside the

nanotube of finite length for the entire observation time t leads to the downward bending

and eventual saturation of the MSD at long times.

Figure 4 (bottom panel, solid line) shows the MSD calculated with a fixed time origin

which is taken to be the time at which each water molecule enters the nanotube. The MSD

shown in this plot is, therefore, the mean-square displacement of a water molecule inside

the nanotube from its point of entry. This set of data is more noisy than the time-averaged
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one due to lack of averaging over time origins. It is, however, clear that this curve saturates

at long times at a value higher than the saturation value of the time-origin averaged MSD.

Also, the behavior of this curve near t = 0 is different from that of the time-origin averaged

MSD. All these features of the results for the fixed time origin MSD can also be explained

from the random walk models discussed in the next section.

Another important quantity characterizing the dynamics of the confined water molecules

is the survival probability of the water molecules inside the nanotubes. This probability was

calculated using the definition [36]

Q(t) =
N

∑

i=1

<
t0+t
∏

tk=t0

Pi(tk) >, (3)

where the summation is over all the water molecules and the angular brackets denote an

average over the time origin t0. The survival probability was normalized to unity at t = 0 by

dividing the Q(t) of Eq.(3) by its value at t = 0. Configurations saved at every 1 ps interval

were used in the calculation of this quantity. Q(t) defined above is the probability that a

water molecule remains inside the nanotube for all times between t0 and t0 + t, averaged

over the initial time t0. It is related to p(t), the distribution of residence times of the water

molecules inside the nanotube, in the following way.

Q(t) =

∫ tm
t (t′ − t)p(t′)dt′

∫ tm
0 t′p(t′)dt′

. (4)

Here tm is the total time of the simulation which, for all practical purposes, may be taken

to be infinity. A related quantity, which is also sometimes called the survival probability,

is S(t), the probability that a water molecule that enters the nanotube at time t0 remains

inside the nanotube for all times between t0 and t0 + t. This quantity is related to the

residence time distribution p(t) by

S(t) =
∫ tm

t
p(t′)dt′, (5)

which implies that p(t) = −dS(t)/dt. Using this result in Eq.(4), we get the following

relation between the measured survival probability Q(t) and the quantity S(t).

Q(t) =

∫ tm
t S(t′)dt′

∫ tm
0 S(t′)dt′

. (6)

If the residence time distribution decays exponentially with time at long times, i.e. if p(t) ∼

exp(−t/τ), then both Q(t) and S(t) would also decay exponentially with the same time scale

τ which would be the average residence time of the water molecules inside the nanotube.
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The survival probability Q(t) obtained from MD simulations for the 28Å nanotube is

shown as a function of time t in Fig.5 in a semi-log plot. It is clear from the plot that Q(t)

decays exponentially with t at long times. This data is calculated from a simulation which

ran for 20 ns. Results for the 14Å tube also show similar behavior. The value of the time

constant τ (the average residence time) is 73 ± 0.7 ps for the 14Å tube and 371 ± 5 ps for

the 28Å tube. These values are roughly proportional to L2. The exponential decay of the

survival probability and the quadratic dependence of the time scale τ on the length of the

nanotube are both consistent with normal mode diffusion of the water molecules inside the

nanotube. This is explained in detail in the next section.

IV. RANDOM WALK MODELS AND COMPARISON WITH MD RESULTS

Due to the very high degree of correlation among the positions and displacements of the

confined water molecules demonstrated in the preceding section, it is reasonable to form

the following approximate description of the dynamics of the water molecules inside the

nanotube: the group of water molecules, each separated from its neighbors by the inter-

particle spacing a, form a “solid” object of size comparable to the length L of the nanotube.

This group of strongly correlated molecules moves back and forth along the tube, randomly

kicked by water molecules from the bath if it happens to be near an end of the tube. If one

of the molecules in this group goes out of the tube, another one enters the tube within a

short time, keeping the total number of molecules inside the tube roughly constant in time.

Hence the motion of this group of molecules can be described as a one-dimensional random

walk of a single “effective” particle on a line segment of length L. Since we consider the

dynamics of the water molecules only during the time they spend inside the nanotube (a

molecule that goes out of the nanotube becomes a part of the bath and is not considered in

our calculations), the one-dimensional random walk has absorbing boundaries at the two end

of the tube (z = 0 and z = L). The time t is a continuous variable here. Hence we call this

model a continuous time random walk (CTRW). All the results pertaining to this model can

be calculated analytically. We have also considered a discrete time random walk (DTRW)

model (see below) for which results were obtained from Monte Carlo (MC) simulations.

The diffusion equation for the quantity P (z, t|z0, 0), the probability of finding the particle
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at z at time t, given that the particle was at z0 at the initial time t = 0, is given by,

∂P

∂t
= D

∂2P

∂z2
, (7)

where D is the diffusion constant. The absorbing boundary conditions for the above equation

are

P (0, t|z0, 0) = P (L, t|z0, 0) = 0, (8)

whereas the initial condition is P (z, 0|z0, 0) = δ(z − z0). The solution of Eq.(7) with the

initial and boundary conditions specified above is

P (z, t|z0, 0) =
∞
∑

n=1

2

L
sin

(

nπz0

L

)

sin
(

nπz

L

)

e−D(nπ

L
)2t . (9)

The time-origin averaged MSD can be analytically calculated from the expression

< ∆z2(t) >=

∫ ∞
0 dt0

∫ L
0 dz2

∫ L
0 dz1P (z2, (t0 + t)|z1, t0)(z2 − z1)

2P (z1, t0|z0, 0)
∫ ∞
0 dt0

∫ L
0 dz2

∫ L
0 dz1P (z2, (t0 + t)|z1, t0)P (z1, t0|z0, 0)

. (10)

The MSD with fixed time-origin, discussed in the preceding section, is given by

< (z(t) − z0)
2 >=

∫ L
0 dz(z − z0)

2P (z, t|z0, 0)
∫ L
0 dzP (z, t|z0, 0)

. (11)

The quantity S(t) defined in the preceding section, which is the probability that the particle

does not go out of the tube during the time interval between 0 and t, is given by

S(t) =
∫ L

0
P (z, t|z0, 0)dz

=
∞
∑

n=1

(

2

nπ

)

sin
(

nπz0

L

)

[1 − (−1)n]e−D(nπ

L
)2t . (12)

The survival probability Q(t) measured in our MD simulations may be obtained by combin-

ing this with Eq.(6).

We have used these analytic expressions to calculate all the dynamical quantities mea-

sured in the MD simulations. The input parameters required for comparing the results from

the random walk model with those obtained from MD simulations are the diffusion constant,

D of the water molecules inside the nanotube and z0, the position of a water molecule at time

t = 0, i.e. at the moment it comes inside the nanotube. We used the value of D estimated

from the slope of the MSD versus time curve near the origin. The value of z0 used in the

calculation is the mean of the starting coordinate of a water molecules inside the nanotube,

measured from the end through which it enters the tube. In making a comparison of the
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analytic results for the CTRW model with those obtained from MD simulations, one should

keep in mind the fact that the positions of the water molecules are measured at discrete

intervals of 1 ps in the simulations. It is known from earlier studies of similar problems

(see, for example, Ref.[37]) that this discrete sampling can make the results for dynamical

quantities significantly different from those obtained from a continuous-time description.

The difference in the present case arises from the fact that events in which a water molecule

goes out of the tube and re-enters it between two successive measurements of its position

(which are separated by 1 ps) are not detected in the discrete sampling. This makes values

of the MSD and the survival probability obtained from discrete sampling higher than those

calculated for the continuous time model.

To examine the effects of discrete sampling, we have used MC simulations to study the

dynamics of a random walk model in which a particle, initially at z = z0, performs a DTRW

in which the length of each step is a Gaussian random variable with zero mean and variance

equal to 2Dδt, where D is the diffusion constant obtained from our MD simulation and

δt = 1 ps, the time between two successive measurements of the particle position in the

MD simulation. The time in the DTRW model is defined as nδt where n is the number of

steps taken by the particle. The MC simulations were carried out with absorbing boundary

conditions at z = 0 and z = L, and all dynamical quantities were measured using the same

methods as those in the MD simulation.

The results obtained for the CTRW and DTRW models compare well with those obtained

from our MD simulations. A comparison of the results for the MSD is shown in Fig. 4 in

which the top panel shows the time-origin averaged MSD, and the bottom panel shows the

MSD with fixed time origin. The data obtained from the DTRW model are denoted by the

dashed curve, whereas the analytic results from the CTRW model are denoted by the dash-

dotted curve. While both the random walk models reproduce all the features of the MD

data, the agreement is better for the DTRW results, as expected. As in MD simulations, the

MSD saturates at long times and the value of the MSD at saturation depends on the length

L of the tube. For the time-origin averaged MSD, the analytic CTRW model predicts that

the saturation occurs when
√

< ∆z2(t) >/L ≃ 0.31, whereas the MSD with a fixed time

origin saturates at
√

< (z(t) − z0)2 >/L ≃ 0.52. This and other differences between the

MD results for the two MSDs are correctly reproduced by the random walk models. Similar

agreement between MD and random walk results is also found for the 14Å nanotube.
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Results for the survival probability Q(t) for the 28Å nanotube are compared in Figure

5. As expected, the DTRW results for the survival probability are slightly higher than the

CTRW results. Both of these show exponential decay at long times. For the CTRW model,

the time scale τ = L2/(π2D), since the term corresponding to n = 1 in Eq.(12) dominates

at large t. This gives τ = 308 ps for the L = 28Å tube. The numerical result for τ obtained

for the DTRW model is τ = 328± 10 ps. These values are in fair agreement with the result

(τ = 371± 5 ps) of our MD simulation. The results for τ for the L = 14Å nanotube are: 84

ps (CTRW), 94±5 ps (DTRW) and 73±0.7 ps (MD). The random walk results for τ show a

slight departure from the expected L2-dependence because the values of D used for the two

values of L are slightly different. Given the extreme simplicity of the random walk models,

the agreement between the random walk and MD results for the survival probability may

be considered quite satisfactory. The agreement between the model and simulation results

for the MSD is better than that for the survival probability. This is probably due to the

fact that the details of the complicated process of water molecules entering and exiting the

nanotube, which are completely neglected in the random walk model, affect the survival

probability more than the MSD.

It is clear from the results discussed above that the simple one-dimensional random walk

models provide a good description of all the dynamical features found in our MD simulations.

From this observation, we conclude that the water molecules undergo normal mode (Fickian)

diffusion inside the nanotubes under the conditions considered in our MD simulations.

V. CONCLUSIONS

In summary, we have shown that the water molecules inside a narrow (6,6) nanotube of

diameter 8Å are spatially ordered with a mean nearest-neighbor distance of 2.6Å. To mimic

the motion of the spatially ordered chain of water molecules inside the nanotube, we propose

a random walk model for the diffusion of a single particle in a finite 1D channel. The MSD

calculated from this model agrees well with that obtained from the MD simulations. This

establishes that the water molecules undergo normal mode diffusion inside these short, open-

ended carbon nanotubes even for the longest observation times. It is argued that the reason

behind the observation that the water molecules undergo normal-mode diffusion and not sub-

diffusion, as the geometric constraints would have suggested, is the strong correlations due
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to hydrogen bonding between neighboring water molecules. We also measure the survival

probability of the water molecules inside the nanotube from MD simulations and calculate it

from the random walk model. There is good agreement between the results from the model

and MD simulation for the time scale (average residence time) of the exponential decay of

the survival probability. This time scale is shown to depend quadratically on the length of

the nanotube, which is another piece of evidence in support of the conclusion that the mode

of diffusion is normal.

Our results have important implications for the possibility of observing single file diffusion

in narrow channels of finite size. If the particles inside the channel interact with one another

so strongly that they form a single strongly correlated cluster, then their mode of diffusion

would be normal (Fickian) instead of single-file even if the particles can not cross one another.

This is probably the reason for observing normal mode diffusion in a recent MD simulation

[8] of water molecules in a narrow carbon nanotube with periodic boundary conditions

– the simulation shows that the water molecules form a tightly bound cluster inside the

nanotube. To observe single file diffusion in such a system, the parameters (interaction

strength, temperature, length of the channel, etc.) must be such that the particles inside the

channel form several clusters. It would be interesting to check, by simulations or experiments,

whether a crossover from normal mode to single file diffusion occurs in such a system as

appropriate parameters are changed to go from a situation in which the particles form a

single cluster inside the channel to one with several clusters.
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VII. FIGURE CAPTIONS

Fig. 1. The pair correlation function g(z) for the water molecules inside the 14, 28 and

56Å nanotubes. The well separated peaks signifies a solid like positional ordering of the

water molecules inside the nanotube even at a temperature of 300 K. The average spacing

between the water molecules is about 2.6Å.

Fig. 2. In order to probe the effects of the open ends of the nanotube on the positional

ordering of the water molecules we have compared the positional correlation of only the

water molecules residing in the central 14Å within the 28Å nanotube, with those inside

the 14Å tube. The fact that both the correlation functions are identical confirms that the

degree of positional correlations is same in both the nanotubes.

Fig. 3. The quantity < δzi(δt)δzj(δt) > as a function of the separation between the “i”

th and the “j” th molecule, in units of a0, the mean inter-particle spacing, whose value is

2.6Å. The correlation of dispacements at two sites decays as one increases the separation

between the sites.

Fig. 4. The time-origin averaged MSD (top panel) and the fixed time-origin MSD

(bottom panel) for the water molecules inside the 28Å nanotube. The solid curve is data

from MD, dashed curve denotes data from DTRW and the dash dotted curve is data from

CTRW.

Fig. 5. The survival probability, Q(t), for the water molecules inside the 28Å nanotube.

The long time data obtained from MD is denoted by circles. This data has been fitted to

the function exp(−t/τ), the solid line is the fit for which τ = 371 ± 5 ps. The dashed line

indicates Q(t) obtained from DTRW, whereas the dash-dotted curve is result from CTRW.
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Species ǫ(kcal/mol) σ(Å)

Carbon(CA)− Carbon(CA) 0.086 3.4

Carbon(CA)− Oxygen(OW ) 0.11 3.27

TABLE I: The Lennard Jones interaction parameters between various atomic species.
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