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Abstract

We establish weak and strong posterior consistency of Gaussian process priors studied by Lenk [1988. The logistic normal
distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83 (402), 509-516] for density estimation.
Weak consistency is related to the support of a Gaussian process in the sup-norm topology which is explicitly identified for many
covariance kernels. In fact we show that this support is the space of all continuous functions when the usual covariance kernels are
chosen and an appropriate prior is used on the smoothing parameters of the covariance kernel. We then show that a large class of
Gaussian process priors achieve weak as well as strong posterior consistency (under some regularity conditions) at true densities
that are either continuous or piecewise continuous.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Logistic Gaussian process priors for Bayesian nonparametric density estimation were introduced and studied by
Leonard (1978) and Lenk (1988, 1991). Lenk (1988) showed that the posterior has an elegant description through a
conjugacy class of generalized logistic Gaussian processes. Different numerical approaches for calculating the Bayes
estimate were also proposed by Lenk (1988, 1991). Compared to the Dirichlet mixtures of normals, which are cur-
rently the most popular as well as the most studied priors for densities, logistic Gaussian process priors have greater
flexibility in modeling smoothness through covariance. Somewhat different Gaussian process priors appear in the
works of Kimeldorf and Wahba (1970), Wahba (1978), which relate to estimation of integrated mean square risk of
splines. See also Gu and Qiu (1993). However, the connection of these priors with the priors of Lenk is not yet fully
explored.

In this paper, we initiate a theoretical study by examining weak and strong posterior consistency of the logistic
Gaussian process prior. Posterior consistency is discussed in Ghosal et al. (1999), Barron et al. (1999), Ghosh and
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Ramamoorthi (2003) etc. It is well-known that weak and strong consistency of the posterior imply weak and strong
consistency of the Bayes estimates (see Ghosh and Ramamoorthi, 2003, Proposition 4.2.1).

Our study of consistency, more specifically, Theorems 4.1-4.6 have helped us in identifying a novel and fast way to
compute the posterior under a logistic Gaussian process prior. The details of this work will be reported elsewhere.

The prior is formally introduced in Section 2 for the space of densities on a bounded interval of R?, d > 1. Section
3 details the basic concepts and results about weak and strong posterior consistency. In Section 4, Theorem 4.1 relates
weak consistency of a logistic Gaussian process prior to the sup-norm support of the underlying Gaussian process. A
precise and useful characterization of this sup-norm support for a general class of Gaussian processes is obtained in
the subsequent theorems. In Section 5, we obtain sufficient conditions required for strong consistency to hold. It is
worth noting that when d > 1, conditions for strong consistency differ significantly from those in the case of d = 1.
For the higher dimensions, certain differentiability conditions of the underlying process are required and the proof
works through a different sieve, vide Van der Vaart and Wellner (1996), which first came to our notice from the paper
of Ghosal and Roy (2005).

2. Logistic Gaussian process priors

As indicated before, we shall focus only on densities supported on a fixed bounded interval I in R¢ for some d > 1.
Without loss of generality we take I = [0, 1]¢. Denote by w +— f;, the logistic transformation from the space of
functions on I to the space of densities (w.r.t the Lebesgue measure) on / given by,

w(t)

fol® =7 c el (1)
1

ew®) ds’
whenever the integral exists.

Consider a fixed function x(-) on I and a family of covariance functions {o (-, -)} on I x I that depends on a finite
dimensional parameter f3. Take a probability distribution H on the space of 5. Let GP; (0, ) denote the distribution of
a separable mean zero Gaussian process on / with covariance (-, -). Assume that,

VB € support(H), W ~ GP;(0,0p) = / etOTWE) g5 < 00 as. )
1

This assumption allows us to model a random density f on [ in the following way:

FIW. B= furw,
W1~ GP(0,ap),
B~H.

The process f,+w (?) realizes its values in the space of densities on /, thus inducing a prior on this space. We shall call
this a logistic Gaussian process prior and denote it by I1.

The choice of a bounded interval avoids integrability problems. In this case, (2) is true whenever W admits almost
surely continuous and hence bounded sample paths under GP; (0, o). Such a condition is rather easily satisfied by
many o 4. In principle, we could define a process on an unbounded set and study the conditions required in defining
(1). In this paper we concentrate on the bounded case for technical convenience. A major effort would be required to
extend the results to the unbounded case.

The density f;, sort of captures the central path of the process fjyw. This can be seen from the identity
E(log furw ®)|B) = u(t) + const., whose logistic transform is nothing but f,,. This enables one to appropriately
elicit the parameter u in presence of prior knowledge. One default choice is 4 = 0 which produces the uniform density
as the prior guess.

A simple way to choose the family o is the following. Let oo (-, -) be a fixed covariance function on RY x RY and

let f € (R)?. Then,

ap(s, 1) =ao(Bs, pt), s,t el
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is a covariance function on I x I. Here, for d > 1, s is the vector of coordinatewise products of f# and s. What makes
this formulation appealing is that,

& .
W~ GP(0,0p) <= W()= Wo(f-) with Wy ~ GPp;(0, 69). 3)
Hence small f§ results in smooth sample paths of f and large f§ produces oscillating sample paths. In other words,

p acts like a (inverted) smoothing window in this model. The base covariance kernel o determines the degree of
differentiability of the sample paths of W and can be selected appropriately to reflect prior expectations.

3. Basics of consistency
Suppose independent observations X1, ..., X, are available from a density f belonging to some space of densities
Z . Let I1 be a prior distribution on % . The notion of consistency of the posterior IT(-| X1, ..., X,) at fo is formalized

by the following two definitions, which differ only in terms of the topology on .# under consideration.

Definition (weak consistency). A prior Il on % is said to achieve weak posterior consistency at fy if for any weak
neighborhood U of fy, II(U|X1, ..., X,) — 1 almost surely under Py,.

Definition (strong consistency). A prior I on Z is said to achieve strong posterior consistency at fo if for any
Li-neighborhood U of fo, H(U|X1, ..., X,) — 1 almost surely under Py, .

For weak consistency, an elegant sufficient condition was derived in Schwartz (1965) in terms of a Kullback—Leibler
(KL) support condition on IT and fj. We give the details below.

Definition (KL supporr). Let K (f, g) denote the KL divergence | f log(f/g) between any two densities f and g. An
fo € Z is said to be in the KL support of IT if

Ve>0, II(f:K(fo, f)<e)>0.
We would use the notation fy € KL(II) to mean that fj is in the KL support of II.
Theorem 3.1 (Schwartz). If fo € KL(I1), then I achieves weak posterior consistency at fp.
Remark. It is natural that for any kind of posterior consistency to hold, the true fy should belong to some sort of
support of the prior. Otherwise, the posterior probability near fy would be always zero. Theorem 3.1 says that even for

weak consistency one requires this condition in a fairly strong form, namely, fj is in the KL support of I1.

For strong consistency one needs more than just having fy € KL(IT). The following theorem from Ghosal et al.
(1999, Theorem 2) gives a precise sufficient condition using metric entropy. We first provide with the definition of this.

Definition. Let (%, d) be a metric space. For any set G C & and any ¢ > 0, the metric entropﬁy J (4, G, d) is defined
as the logarithm of the minimum & > 1 for which there exist g1, ..., gr € & suchthat G C | J;_{f : d(f, gi) <}

In the following we would use || - ||1 to denote the L; norm on the space of densities on /.
Theorem 3.2. Suppose for all ¢ > 0 there exist § < ¢, b < 82/2, co, c1 > 0 and sets F,, such that for all large n,

(a) H(Ff) <cie "0 and
(b) J(6, Fu, |l - ) <nb.

Then, II achieves strong posterior consistency at any foy € KL(II).
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Remark. The assumption in Theorem 3.2 is a kind of regularity condition on the prior. It identifies a relatively small
set F; outside which the prior puts exponentially small probability.

4. Weak consistency of logistic Gaussian process priors

We start by exploring the relationship between the processes W and f}, 1w in an attempt to find the KL support of I1.
The following simple theorem is crucial. In the subsequent sections, || - ||oc Would denote the sup-norm on functions
over [.

Theorem 4.1. For any two functions w1 (t) and wy(t) on I,

le-wl
f,u+w2

< 2¢.

o]

lwi — w2llec <& = ||log

Proof. Since wy(t) — e <w;(t) <wy(t) +¢forall ¢ € I, it follows that,

e Eelt)Fwa(t) _ quD+wi() _ et +wa(t)  yyp < f

and hence,
- / QHD+W20) g / MO+ g _ oF / O+ ;.
I I I
Therefore,

e % futun (1) < futw, (1) <€ fuqun(t) V€1

from which the result follows easily. [J

An immediate consequence of this result is that [[wy — wz||eo < & implies that K ( fj4w,, futw,) < 2¢. Therefore,
one can reformulate the condition of Theorem 3.1 as

Jfo= furw, withsome wy satisfying Ve > OPr(|W — wollec < &) > 0. 4)

However, such a representation of fy is possible only if fy is strictly positive on /. The stronger form stated above
would be more useful to address fj that may touch zero at some points (see Theorem 4.6 and the remarks following it).
The reformulation given in (4) suggests that one should study the sup-norm support of the process W. It is worth
pointing out that up to this point we do not need W to be a Gaussian process.
To obtain a precise characterization of this sup-norm support we would require the Gaussian assumption to a large
extent. The following theorem gives the key result in this direction.

Theorem 4.2. Define a set of functions on I as,

k
oA ={w= Zaio[;(z‘i*, -) for some [ € support(H), k>1, a; € R, 17 €1

i=1

and let </ denote its sup-norm closure. Assume

(A1) M, m > 0 such that m<oo(t, 1) <M, Vt € (RT)4.
(A2) 3C >0, g > 0 such that [oo(t, 1) + 60(s, s) — 200(t, )12 <Clls — t||4 Vs, t € (RT)?
(A3) Foranyn>1landanyty,..., t, € ([R{+)d, 2 = ((a(t;, tj))) is nonsingular.

Then,

wo € o & Ve>0, Pr(|W — wolloo <€) >0.
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After proving this result we have found out from a referee that the result about Gaussian processes is known. In
view of this we offer only a brief plausibility argument of the if part in the Appendix. This is the part needed for
posterior consistency. We choose to omit the plausibility argument in the less important converse direction. Full details
are available from us on request.

Remark. The quantity on the left-hand side of (A2) is nothing but the canonical metric d (s, t) =[Var(Wy(s)—Wy(2))] 172
on the index set induced by the process Wy ~ GP(0, gp). The Lipschitz condition in (A2) relates this metric to the
Euclidean distance on the index set. This condition produces strong bounds on the oscillations of W and ensures that
it admits continuous sample paths almost surely.

Remark. A number of commonly used covariance functions satisfy the assumptions stated in the above theorem. For
example, an easy way to satisfy (A3) ford =1, is to put 6o (s, t) = ¢ (s —t) where ¢ is the characteristic function of some
symmetric probability density. Such stationary covariance kernels can be easily generated by taking ¢ (h) = exp(—h?)
or ¢p(h) = 1/(1 + h?). For this special case of stationary oy, the condition in (A2) reduces to /1 — ¢(h) <c|h|. This
makes the verification straightforward.

Theorem 4.2 underlines the necessity to understand the set .o better. We would do so for some specific covariance
functions arising from both stationary and nonstationary processes. It turns out that if support(H) = (R*)?, then in
most of the cases the set .o/ equals C (I)—the set of all continuous functions on /.

For the following theorems we would use the notation .,  to emphasize the dependence of the set .«/ on the
particular ¢p and H that define it. Theorem 4.3 deals with the case when the underlying process is a Brownian
motion with a random shift. Theorems 4.4 and 4.5 cover the broad category of stationary covariance functions like

exp(— Y. It — si), I/TT; (1 + |t — si]5), ete.
Theorem 4.3. Suppose d =1 and o¢(t,s) = 1 + min(¢, s), then ,5;/50,” =C().

Proof. Observe that any function f, ; of the form

0, t<a,
r—a

Jap(@®) = h—a a<t<b, (5)
1, b<t,

for some 0 <a < b <1, admits the representation,

O-O(ta b) - O-O(tv a)
Ja.b(t) = (6)
b—a
and that any piecewise linear continuous function f with knots at {0 =1ty <#; <--- < = 1} can be expressed as the
linear combination

k
f@) = @)oo, )+ Y (fWt) = fEG-1) fi (D). @)

i=1

Since the collection of piecewise linear continuous functions forms a dense subset of C(7), the proof is complete. [

Theorem 4.4. Take d =1 and support(H)=R*. Suppose aq can be written as ao(t, s) = ¢(t —s) for some continuous,
nowhere zero, symmetric density function ¢ on R. Then </ 5y g = C(I).

Proof. For /i >0, define ¢, (x) = (1/h)¢p(x/h) and let

k
o = :w(t) = Zaid)h(t, 1) for some h>0, ke N, a; e R, 1/ € I}. )
i=1

It is straightforward that ./, g = o/ . Now if f = g * ¢, for some continuous function g supported on /, where
f1 % f» denotes the convolution of two functions, then f € .o/ ¢- This follows from the approximations given by the
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Riemann sums of the integral in the convolution. Now take any arbitrary continuous function fj on /. Fix an ¢ > 0 and
consider the function

= — fo(0)—— — fo(l) ———, 9
J1(®) = fo(®) = fo( )¢h0(0) Jo(1) o0 ©)
where hg > 0 is suitably chosen to ensure that
max (| f1(0)[, | (D) <e/12. (10)
Using continuity of f; we can find a § > 0 such that
SuPé|fl (1) = fi(s)l <e/12. (11)
|t—s|<0
Take i > 0 such that
0
/ dp(x)dx>1—¢/(12M), (12)
-5
where M = sup, ;| f1(¢)| <oo. Take f> = fi * ¢;,. Then forany ¢ € I,
1
A0 = £OI= A0 = [ g0 -0 ax
1 1
= 170 = [ s —de+ [ (G0 = i —n ds
1 1
N0l (1 —/0 op(t —X)dX> +/0 |f1() = [y, (r — x) dx
1
<@ <l —/0 Pt —x)dx>
#f RO = Al -0
IN[t—6,14-0]
Hf o IA@ = AW ) ds (13)
IN[7—8,1+]°

The first term of (13) is smaller than ¢/6 by (10) for ¢ € [0, 6) U (1 — §, 1] and by (12) for ¢ € [J, 1 — ]. The second
and the third terms of (13) are always less than ¢/6 by (11) and (12), respectively. From this the result follows. [

Theorem 4.5. Suppose d > 1, support(H) = (RY)? and
oo(t,s) =0y (11, 5105 (2. 52) -~ 04 (ta, 5a) (14)
for some functions og)(t, s),1<i<d,on]0, 1] x[0, 1]. Assume J;/J(i) 0= CI[0, 1] for each i where H; is the marginal
o i

distribution of ; under H. Then ,sz_foo,y =C(I).

Proof. By Stone—Weierstrass theorem, the collection of functions

B = if(fh sty =Y g ()ga() - gralta) i n>1, gii € C[0, 1] (15)
k=1

forms a dense set in C (/). But, since support(H) = (RMHY, o/ oo, H 1itself is a dense subset of 4 and hence the result
follows. [

Remark. It is claimed in Lenk (1988) that for any Z ~ GP;(0, o) and any integrable function g on I, Pr(||Z —
gll1 <€) > 0forall ¢ > 0. Our results in this section suggest that this is not true in general but holds for many commonly
used covariance kernels.
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A lot can be gained whenever the sup-norm support of W is identified as C (/). The following theorem implies
that for any such logistic Gaussian process prior I1, any continuous density function fj belongs to the KL support. In
particular, this covers the case when fy = Beta(a, b) with a, b > 1. The proof needs Theorem 4.1 in its full force since
the representation (4) may not always apply.

Theorem 4.6. Suppose o satisfies the assumptions (A1)—(A3) and that A =C (I).Also assume that u(-) is continuous.
Then any continuous density function fo on I satisfies fo € KL(II).
Proof. For any ¢ > 0 take ¢ > 0 such that log(1 + ) < ¢/2. Define f as

Sfot) +9

fil) = 153

, tel.

Then f; is continuous and strictly positive on I. Therefore, w1 (-) = log f1(-) — u(-) € <. Observe that,

K (for fuew) = /fo(t)lng() /f() N

A0 &
Jo(t) / fu+w1( ) H f,u+w1

1 log(1 + o log dr < log ——
/ﬁ’(” % Ty 4o el F O [ folylog T m s dis 3+ o Foew

Therefore, by Theorem 4.1,

fu+w1

Pr(K (fo, fu+w) <&) = Pr (
w+w

log =———

<§> >Pr(||W—w1||oo<§>>0

since wy € .«7. This proves the result as ¢ > 0 is arbitrary. []

Remark. A similar result can be proved when fj is a uniform density on some compact subinterval K of /. Here
again, for any ¢ > 0, we construct a strictly positive continuous density f; on I for which K (fo, f1) <¢&/2. But the
construction is a little more involved and uses Urysohn’s lemma to obtain an intermediate fy that is continuous and
close to fo.

Remark. The above two results can be extended to the case when f is a finite mixture of densities that are either
continuous on / or uniform on a subinterval. Such finite mixtures cover the large class of piecewise continuous densities
on / whend = 1.

5. Strong consistency of logistic Gaussian process priors

For strong consistency results, we simply produce F,,’s that satisfy the regularity condition of Theorem 3.2. When
d =1, we would use F,, = {fusw : W € S,} where,

[s—t|<1/n

Sp=qw: sup |w(s)—w@)| <8/12}
That such F,’s satisfy the requirements of Theorem 3.2 can be assessed using the following result.

Theorem 5.1. Let o satisfy the assumptions (A1)—(A3) and suppose Pr(f > n4/?) < exp(—cn) for all large n for some
fixed ¢ >0.Then J (¢, Fy, || - 1) <nb and II(FY) < A exp(—na) for some A, a, b.

Proof. A simple calculation along the line of Theorem 4.1 shows that [|[w; — walleo < &/4 = || frrw; — futwsll1 <é
for small enough ¢ > 0. Therefore, J (¢, Fy, || - 1) <J(e/4, Sus || - |loo)-
Fixann>1andlett; = j/n, 0< j <n. Define,

Ap=1{m=(mo,...,my) € 2" i mg=0,|mjr1 —m;|<1, j=0}
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and let C,, denote the set of w such that w(0) = 0, w(t;) = m;e/12 for 1< j<n for some m € A, and w is
linear in every [#j,?;+1]. A standard argument produces that C, forms an ¢/4-net of §,. From this we conclude
J(&/4, Sn, || - lloo) < log(#C,) =log(#A,) = nlog3. Note that the constant log 3 could be changed to any constant b
by redefining F,, with a suitable scaling on n.

To prove the other statement, note that it suffices to bound the probability of F,. uniformly over § < n? /2 1t can be
argued using Borell’s inequality (also see Van der Vaart and Wellner, 1996, Proposition A.27) that for any f < n4/?,

Pr sup  |[W(s) — W(t)| >¢/12|p <Aexp(—a’/o—i)
|s—t|<1/n
from some constants A, a’ where

O’Z = sup EW(s) — W(t)ﬂ)zg(cﬁ/n)zgcz/n.

|s—t|<1/n

From this the result follows easily. [

Remark. For d > 1 the sieve S, defined above fails as its entropy shoots up to n¢. But one can construct a smaller
sieve with large probability using existence of higher order derivatives of W. We briefly overview the structure of these
sieves as presented in Ghosal et al. (2003). Suppose there are numbers f3,,, M,, — oo and a positive integer o such that,

Pr (max p> ﬁn> <e ™ for some ¢ >0,
J

Mﬁﬁ;z“ >bn and M,‘f/“ =o0(n) forsomeb; >0
and for each ¢ € I, the function g (¢, -) admits continuous partial derivatives up to order 2o + 2. Define,
Sy ={w : [|DT(w)]loo < Mn, Iq] <0},

where forg € {0,1,2,...}¢, |q|= > g and D?(w) stands for the partial derivative @4l jodiyy - 0t Hw(n, ..., tg).
Then S, satisfies,

T(1, S || - lloo) SKME 57" Pr(W ¢ 8,) < Ae™" (16)

for some K, A, b.
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Appendix A

A plausibility argument for the if part of Theorem 4.2: To keep the argument simple we only consider the case wg € 7.
Note that one can write such a wy as wog = Zle aiop, (tl.*, ) forsome k>1,a; € R, t,.* € I and f, € support(H). It
follows from the representation (3), the assumption (A2) on g and the fact that f; € support(H ), that it is enough to
prove Pr(|W — wolleo < €lfp) > 0.

First, choose a fine grid {#1, .. ., t;,} covering I that includes the points ¢;". The prior probability of W and wy differing
by less than ¢ at these grid points is positive by (A3).
The conditional distribution of W given W,, =(W (¢1), ..., W(t,)) is a Gaussian process with covariance free of W,,,.

Let pyy, denote the mean of this conditional process. Then, for a fine grid, the oscillations of the centered conditional
process W — puy, can be suitably bounded. This makes the conditional process put positive mass on sample paths
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which are within ¢ distance of zy, . The proof of this is somewhat technical, drawing upon the theory of a.s. continuity
and boundedness of sample paths for a GP (see Adler, 1990 and Van der Vaart and Wellner, 1996, Corollary 2.2.8).

It remains to handle the conditional mean uy, when the vector Wy, is close to wom = (wo(#1), - . . , wo(f))- If this
function is Lipschitz, then the condition |W () — wo(¢)| < ¢ at the grid points and the fineness of the grid would ensure
4w, — wolleo < & Unfortunately, the Lipschitz property is hard to show since the conditional mean involves inverse
of a high dimensional matrix. It is at this point that the assumption wgy € ./ comes handy. An easy direct calculation
shows that

Py, () = wo () (A1)

and hence its Lipschitz property follows from that of wq (which is Lipschitz by (A2), (A3)). A little more work shows
that wy, is Lipschitz when max; |W (z;) — wo(#;)| <e.
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