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Abstract

We establish weak and strong posterior consistency of Gaussian process priors studied by Lenk [1988. The logistic normal
distribution for Bayesian, nonparametric, predictive densities. J. Amer. Statist. Assoc. 83 (402), 509–516] for density estimation.
Weak consistency is related to the support of a Gaussian process in the sup-norm topology which is explicitly identified for many
covariance kernels. In fact we show that this support is the space of all continuous functions when the usual covariance kernels are
chosen and an appropriate prior is used on the smoothing parameters of the covariance kernel. We then show that a large class of
Gaussian process priors achieve weak as well as strong posterior consistency (under some regularity conditions) at true densities
that are either continuous or piecewise continuous.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Logistic Gaussian process priors for Bayesian nonparametric density estimation were introduced and studied by
Leonard (1978) and Lenk (1988, 1991). Lenk (1988) showed that the posterior has an elegant description through a
conjugacy class of generalized logistic Gaussian processes. Different numerical approaches for calculating the Bayes
estimate were also proposed by Lenk (1988, 1991). Compared to the Dirichlet mixtures of normals, which are cur-
rently the most popular as well as the most studied priors for densities, logistic Gaussian process priors have greater
flexibility in modeling smoothness through covariance. Somewhat different Gaussian process priors appear in the
works of Kimeldorf and Wahba (1970), Wahba (1978), which relate to estimation of integrated mean square risk of
splines. See also Gu and Qiu (1993). However, the connection of these priors with the priors of Lenk is not yet fully
explored.

In this paper, we initiate a theoretical study by examining weak and strong posterior consistency of the logistic
Gaussian process prior. Posterior consistency is discussed in Ghosal et al. (1999), Barron et al. (1999), Ghosh and

∗ Corresponding author.
E-mail address: stokdar@stat.purdue.edu (S.T. Tokdar).

0378-3758/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2005.09.005

http://www.elsevier.com/locate/jspi
mailto:stokdar@stat.purdue.edu


S.T. Tokdar, J.K. Ghosh / Journal of Statistical Planning and Inference 137 (2007) 34–42 35

Ramamoorthi (2003) etc. It is well-known that weak and strong consistency of the posterior imply weak and strong
consistency of the Bayes estimates (see Ghosh and Ramamoorthi, 2003, Proposition 4.2.1).

Our study of consistency, more specifically, Theorems 4.1–4.6 have helped us in identifying a novel and fast way to
compute the posterior under a logistic Gaussian process prior. The details of this work will be reported elsewhere.

The prior is formally introduced in Section 2 for the space of densities on a bounded interval of Rd , d �1. Section
3 details the basic concepts and results about weak and strong posterior consistency. In Section 4, Theorem 4.1 relates
weak consistency of a logistic Gaussian process prior to the sup-norm support of the underlying Gaussian process. A
precise and useful characterization of this sup-norm support for a general class of Gaussian processes is obtained in
the subsequent theorems. In Section 5, we obtain sufficient conditions required for strong consistency to hold. It is
worth noting that when d > 1, conditions for strong consistency differ significantly from those in the case of d = 1.
For the higher dimensions, certain differentiability conditions of the underlying process are required and the proof
works through a different sieve, vide Van der Vaart and Wellner (1996), which first came to our notice from the paper
of Ghosal and Roy (2005).

2. Logistic Gaussian process priors

As indicated before, we shall focus only on densities supported on a fixed bounded interval I in Rd for some d �1.
Without loss of generality we take I = [0, 1]d . Denote by w �→ fw the logistic transformation from the space of
functions on I to the space of densities (w.r.t the Lebesgue measure) on I given by,

fw(t) = ew(t)∫
I

ew(s) ds
, t ∈ I , (1)

whenever the integral exists.
Consider a fixed function �(·) on I and a family of covariance functions {��(·, ·)} on I × I that depends on a finite

dimensional parameter �. Take a probability distribution H on the space of �. Let GPI (0, �) denote the distribution of
a separable mean zero Gaussian process on I with covariance �(·, ·). Assume that,

∀� ∈ support(H), W ∼ GPI (0, ��) ⇒
∫

I

e�(s)+W(s) ds < ∞ a.s. (2)

This assumption allows us to model a random density f on I in the following way:

f |W, � = f�+W ,

W |� ∼ GPI (0, ��),

� ∼ H .

The process f�+W(t) realizes its values in the space of densities on I , thus inducing a prior on this space. We shall call
this a logistic Gaussian process prior and denote it by �.

The choice of a bounded interval avoids integrability problems. In this case, (2) is true whenever W admits almost
surely continuous and hence bounded sample paths under GPI (0, ��). Such a condition is rather easily satisfied by
many ��. In principle, we could define a process on an unbounded set and study the conditions required in defining
(1). In this paper we concentrate on the bounded case for technical convenience. A major effort would be required to
extend the results to the unbounded case.

The density f� sort of captures the central path of the process f�+W . This can be seen from the identity
E(log f�+W(t)|�) = �(t) + const., whose logistic transform is nothing but f�. This enables one to appropriately
elicit the parameter � in presence of prior knowledge. One default choice is � ≡ 0 which produces the uniform density
as the prior guess.

A simple way to choose the family �� is the following. Let �0(·, ·) be a fixed covariance function on Rd × Rd and
let � ∈ (R+)d . Then,

��(s, t) = �0(�s, �t), s, t ∈ I
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is a covariance function on I × I . Here, for d > 1, �s is the vector of coordinatewise products of � and s. What makes
this formulation appealing is that,

W ∼ GPI (0, ��) ⇐⇒ W(·)L= W0(�·) with W0 ∼ GP�I (0, �0). (3)

Hence small � results in smooth sample paths of f and large � produces oscillating sample paths. In other words,
� acts like a (inverted) smoothing window in this model. The base covariance kernel �0 determines the degree of
differentiability of the sample paths of W and can be selected appropriately to reflect prior expectations.

3. Basics of consistency

Suppose independent observations X1, . . . , Xn are available from a density f0 belonging to some space of densities
F. Let � be a prior distribution on F. The notion of consistency of the posterior �(·|X1, . . . , Xn) at f0 is formalized
by the following two definitions, which differ only in terms of the topology on F under consideration.

Definition (weak consistency). A prior � on F is said to achieve weak posterior consistency at f0 if for any weak
neighborhood U of f0, �(U |X1, . . . , Xn) → 1 almost surely under Pf0 .

Definition (strong consistency). A prior � on F is said to achieve strong posterior consistency at f0 if for any
L1-neighborhood U of f0, �(U |X1, . . . , Xn) → 1 almost surely under Pf0 .

For weak consistency, an elegant sufficient condition was derived in Schwartz (1965) in terms of a Kullback–Leibler
(KL) support condition on � and f0. We give the details below.

Definition (KL support). Let K(f, g) denote the KL divergence
∫

f log(f/g) between any two densities f and g. An
f0 ∈ F is said to be in the KL support of � if

∀� > 0, �(f : K(f0, f ) < �) > 0.

We would use the notation f0 ∈ KL(�) to mean that f0 is in the KL support of �.

Theorem 3.1 (Schwartz). If f0 ∈ KL(�), then � achieves weak posterior consistency at f0.

Remark. It is natural that for any kind of posterior consistency to hold, the true f0 should belong to some sort of
support of the prior. Otherwise, the posterior probability near f0 would be always zero. Theorem 3.1 says that even for
weak consistency one requires this condition in a fairly strong form, namely, f0 is in the KL support of �.

For strong consistency one needs more than just having f0 ∈ KL(�). The following theorem from Ghosal et al.
(1999, Theorem 2) gives a precise sufficient condition using metric entropy. We first provide with the definition of this.

Definition. Let (F, d) be a metric space. For any set G ⊂ F and any � > 0, the metric entropy J (�, G, d) is defined
as the logarithm of the minimum k�1 for which there exist g1, . . . , gk ∈ F such that G ⊂ ⋃k

i=1{f : d(f, gi) < �}.

In the following we would use ‖ · ‖1 to denote the L1 norm on the space of densities on I .

Theorem 3.2. Suppose for all � > 0 there exist � < �, b < �2/2, c0, c1 > 0 and sets Fn such that for all large n,

(a) �(F c
n ) < c1e−nc0 and

(b) J (�, Fn, ‖ · ‖1) < nb.

Then, � achieves strong posterior consistency at any f0 ∈ KL(�).
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Remark. The assumption in Theorem 3.2 is a kind of regularity condition on the prior. It identifies a relatively small
set Fn outside which the prior puts exponentially small probability.

4. Weak consistency of logistic Gaussian process priors

We start by exploring the relationship between the processes W and f�+W in an attempt to find the KL support of �.
The following simple theorem is crucial. In the subsequent sections, ‖ · ‖∞ would denote the sup-norm on functions
over I .

Theorem 4.1. For any two functions w1(t) and w2(t) on I ,

‖w1 − w2‖∞ < � ⇒
∥∥∥∥log

f�+w1

f�+w2

∥∥∥∥
∞

< 2�.

Proof. Since w2(t) − � < w1(t) < w2(t) + � for all t ∈ I , it follows that,

e−�e�(t)+w2(t) < e�(t)+w1(t) < e�e�(t)+w2(t) ∀t ∈ I

and hence,

e−�
∫

I

e�(t)+w2(t) dt <

∫
I

e�(t)+w1(t) dt < e�
∫

I

e�(t)+w2(t) dt .

Therefore,

e−2�f�+w2(t) < f�+w1(t) < e2�f�+w2(t) ∀t ∈ I

from which the result follows easily. �

An immediate consequence of this result is that ‖w1 − w2‖∞ < � implies that K(f�+w1 , f�+w2) < 2�. Therefore,
one can reformulate the condition of Theorem 3.1 as

f0 = f�+w0 with some w0 satisfying ∀� > 0 Pr(‖W − w0‖∞ < �) > 0. (4)

However, such a representation of f0 is possible only if f0 is strictly positive on I . The stronger form stated above
would be more useful to address f0 that may touch zero at some points (see Theorem 4.6 and the remarks following it).

The reformulation given in (4) suggests that one should study the sup-norm support of the process W . It is worth
pointing out that up to this point we do not need W to be a Gaussian process.

To obtain a precise characterization of this sup-norm support we would require the Gaussian assumption to a large
extent. The following theorem gives the key result in this direction.

Theorem 4.2. Define a set of functions on I as,

A =
{

w =
k∑

i=1

ai��(t∗i , ·) for some � ∈ support(H), k�1, ai ∈ R, t∗i ∈ I

}

and let Ā denote its sup-norm closure. Assume

(A1) ∃M, m > 0 such that m��0(t, t)�M, ∀t ∈ (R+)d .
(A2) ∃C > 0, q > 0 such that [�0(t, t) + �0(s, s) − 2�0(t, s)]1/2 �C‖s − t‖q ∀s, t ∈ (R+)d

(A3) For any n�1 and any t1, . . . , tn ∈ (R+)d , � = ((�(ti , tj ))) is nonsingular.

Then,

w0 ∈ Ā ⇐⇒ ∀� > 0, Pr(‖W − w0‖∞ < �) > 0.
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After proving this result we have found out from a referee that the result about Gaussian processes is known. In
view of this we offer only a brief plausibility argument of the if part in the Appendix. This is the part needed for
posterior consistency. We choose to omit the plausibility argument in the less important converse direction. Full details
are available from us on request.

Remark. The quantity on the left-hand side of (A2) is nothing but the canonical metricd(s, t)=[Var(W0(s)−W0(t))]1/2

on the index set induced by the process W0 ∼ GP(0, �0). The Lipschitz condition in (A2) relates this metric to the
Euclidean distance on the index set. This condition produces strong bounds on the oscillations of W0 and ensures that
it admits continuous sample paths almost surely.

Remark. A number of commonly used covariance functions satisfy the assumptions stated in the above theorem. For
example, an easy way to satisfy (A3) for d=1, is to put �0(s, t)=�(s− t) where � is the characteristic function of some
symmetric probability density. Such stationary covariance kernels can be easily generated by taking �(h) = exp(−h2)

or �(h) = 1/(1 + h2). For this special case of stationary �0, the condition in (A2) reduces to
√

1 − �(h)�c|h|. This
makes the verification straightforward.

Theorem 4.2 underlines the necessity to understand the set Ā better. We would do so for some specific covariance
functions arising from both stationary and nonstationary processes. It turns out that if support(H) = (R+)d , then in
most of the cases the set Ā equals C(I)—the set of all continuous functions on I .

For the following theorems we would use the notation A�0,H to emphasize the dependence of the set A on the
particular �0 and H that define it. Theorem 4.3 deals with the case when the underlying process is a Brownian
motion with a random shift. Theorems 4.4 and 4.5 cover the broad category of stationary covariance functions like
exp(−∑ |ti − si |	), 1/

∏
i (1 + |ti − si |k), etc.

Theorem 4.3. Suppose d = 1 and �0(t, s) = 1 + min(t, s), then Ā�0,H = C(I).

Proof. Observe that any function fa,b of the form

fa,b(t) =
⎧⎨
⎩

0, t < a,
t − a

b − a
, a� t < b,

1, b� t,

(5)

for some 0�a < b�1, admits the representation,

fa,b(t) = �0(t, b) − �0(t, a)

b − a
(6)

and that any piecewise linear continuous function f with knots at {0 = t0 < t1 < · · · < tk = 1} can be expressed as the
linear combination

f (t) = f (t0)�0(t0, t) +
k∑

i=1

(f (ti) − f (ti−1))fti−1,ti (t). (7)

Since the collection of piecewise linear continuous functions forms a dense subset of C(I), the proof is complete. �

Theorem 4.4. Take d =1 and support(H)=R+. Suppose �0 can be written as �0(t, s)=�(t −s) for some continuous,
nowhere zero, symmetric density function � on R. Then Ā�0,H = C(I).

Proof. For h > 0, define �h(x) = (1/h)�(x/h) and let

A� =
{

w(t) =
k∑

i=1

ai�h(t, t
∗
i ) for some h > 0, k ∈ N, ai ∈ R, t∗i ∈ I

}
. (8)

It is straightforward that A�0,H = A�. Now if f = g ∗ �h for some continuous function g supported on I , where
f1 ∗ f2 denotes the convolution of two functions, then f ∈ Ā�. This follows from the approximations given by the
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Riemann sums of the integral in the convolution. Now take any arbitrary continuous function f0 on I . Fix an � > 0 and
consider the function

f1(t) = f0(t) − f0(0)
�h0

(t)

�h0
(0)

− f0(1)
�h0

(t − 1)

�h0
(0)

, (9)

where h0 > 0 is suitably chosen to ensure that

max(|f1(0)|, |f1(1)|) < �/12. (10)

Using continuity of f1 we can find a � > 0 such that

sup
|t−s|<�

|f1(t) − f1(s)| < �/12. (11)

Take h > 0 such that∫ �

−�
�h(x) dx�1 − �/(12M), (12)

where M = supt∈I |f1(t)| < ∞. Take f2 = f1 ∗ �h. Then for any t ∈ I ,

|f1(t) − f2(t)| =
∣∣∣∣f1(t) −

∫ 1

0
f1(x)�h(t − x) dx

∣∣∣∣
=
∣∣∣∣f1(t) −

∫ 1

0
f1(t)�h(t − x) dx +

∫ 1

0
(f1(t) − f1(x))�h(t − x) dx

∣∣∣∣
� |f1(t)|

(
1 −

∫ 1

0
�h(t − x) dx

)
+
∫ 1

0
|f1(t) − f1(x)|�h(t − x) dx

� |f1(t)|
(

1 −
∫ 1

0
�h(t − x) dx

)

+
∫

I∩[t−�,t+�]
|f1(t) − f1(x)|�h(t − x) dx

+
∫

I∩[t−�,t+�]c
|f1(t) − f1(x)|�h(t − x) dx (13)

The first term of (13) is smaller than �/6 by (10) for t ∈ [0, �) ∪ (1 − �, 1] and by (12) for t ∈ [�, 1 − �]. The second
and the third terms of (13) are always less than �/6 by (11) and (12), respectively. From this the result follows. �

Theorem 4.5. Suppose d > 1, support(H) = (R+)d and

�0(t, s) = �(1)
0 (t1, s1)�

(2)
0 (t2, s2) · · · �(d)

0 (td , sd) (14)

for some functions �(i)
0 (t, s), 1� i�d , on [0, 1]×[0, 1]. Assume Ā�(i)

0 ,Hi
=C[0, 1] for each i where Hi is the marginal

distribution of �i under H . Then Ā�0,H = C(I).

Proof. By Stone–Weierstrass theorem, the collection of functions

B =
{

f (t1, . . . , td ) =
n∑

k=1

gk1(t1)gk2(t2) · · · gkd(td) : n�1, gki ∈ C[0, 1]
}

(15)

forms a dense set in C(I). But, since support(H) = (R+)d , A�0,H itself is a dense subset of B and hence the result
follows. �

Remark. It is claimed in Lenk (1988) that for any Z ∼ GPI (0, �) and any integrable function g on I , Pr(‖Z −
g‖1 < �) > 0 for all � > 0. Our results in this section suggest that this is not true in general but holds for many commonly
used covariance kernels.
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A lot can be gained whenever the sup-norm support of W is identified as C(I). The following theorem implies
that for any such logistic Gaussian process prior �, any continuous density function f0 belongs to the KL support. In
particular, this covers the case when f0 = Beta(a, b) with a, b�1. The proof needs Theorem 4.1 in its full force since
the representation (4) may not always apply.

Theorem 4.6. Suppose �0 satisfies the assumptions (A1)–(A3) and that Ā=C(I). Also assume that �(·) is continuous.
Then any continuous density function f0 on I satisfies f0 ∈ KL(�).

Proof. For any � > 0 take � > 0 such that log(1 + �) < �/2. Define f1 as

f1(t) = f0(t) + �

1 + �
, t ∈ I .

Then f1 is continuous and strictly positive on I . Therefore, w1(·) = log f1(·) − �(·) ∈ Ā. Observe that,

K(f0, f�+W) =
∫

I

f0(t) log
f0(t)

f1(t)
+
∫

I

f0(t) log
f1(t)

f�+W(t)
dt

=
∫

I

f0(t) log
f0(t)

f0(t) + �
+ log(1 + �) +

∫
I

f0(t) log
f�+w1(t)

f�+W(t)
dt � �

2
+
∥∥∥∥log

f�+w1

f�+W

∥∥∥∥
∞

.

Therefore, by Theorem 4.1,

Pr(K(f0, f�+W) < �)� Pr

(∥∥∥∥log
f�+w1

f�+W

∥∥∥∥
∞

<
�

2

)
� Pr

(
‖W − w1‖∞ <

�

4

)
> 0

since w1 ∈ Ā. This proves the result as � > 0 is arbitrary. �

Remark. A similar result can be proved when f0 is a uniform density on some compact subinterval K of I . Here
again, for any � > 0, we construct a strictly positive continuous density f1 on I for which K(f0, f1) < �/2. But the
construction is a little more involved and uses Urysohn’s lemma to obtain an intermediate f̃0 that is continuous and
close to f0.

Remark. The above two results can be extended to the case when f0 is a finite mixture of densities that are either
continuous on I or uniform on a subinterval. Such finite mixtures cover the large class of piecewise continuous densities
on I when d = 1.

5. Strong consistency of logistic Gaussian process priors

For strong consistency results, we simply produce Fn’s that satisfy the regularity condition of Theorem 3.2. When
d = 1, we would use Fn = {f�+W : W ∈ Sn} where,

Sn =
{

w : sup
|s−t |<1/n

|w(s) − w(t)| < �/12

}

That such Fn’s satisfy the requirements of Theorem 3.2 can be assessed using the following result.

Theorem 5.1. Let �0 satisfy the assumptions (A1)–(A3) and suppose Pr(� > nq/2) < exp(−cn) for all large n for some
fixed c > 0. Then J (�, Fn, ‖ · ‖1) < nb and �(F c

n ) < A exp(−na) for some A, a, b.

Proof. A simple calculation along the line of Theorem 4.1 shows that ‖w1 − w2‖∞ < �/4 ⇒ ‖f�+w1 − f�+w2‖1 < �
for small enough � > 0. Therefore, J (�, Fn, ‖ · ‖1)�J (�/4, Sn, ‖ · ‖∞).

Fix an n�1 and let tj = j/n, 0�j �n. Define,

An = {m = (m0, . . . , mn) ∈ Zn+1 : m0 = 0, |mj+1 − mj |�1, j �0}
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and let Cn denote the set of w such that w(0) = 0, w(tj ) = mj �/12 for 1�j �n for some m ∈ An and w is
linear in every [tj , tj+1]. A standard argument produces that Cn forms an �/4-net of Sn. From this we conclude
J (�/4, Sn, ‖ · ‖∞)� log(#Cn) = log(#An) = n log 3. Note that the constant log 3 could be changed to any constant b

by redefining Fn with a suitable scaling on n.
To prove the other statement, note that it suffices to bound the probability of Fc

n uniformly over � < nq/2. It can be
argued using Borell’s inequality (also see Van der Vaart and Wellner, 1996, Proposition A.27) that for any � < nq/2,

Pr

(
sup

|s−t |<1/n

|W(s) − W(t)| > �/12|�
)

�A exp(−a′/�2
n)

from some constants A, a′ where

�2
n := sup

|s−t |<1/n

E(W(s) − W(t)�)2 �(c�/n)2 �c2/n.

From this the result follows easily. �

Remark. For d > 1 the sieve Sn defined above fails as its entropy shoots up to nd . But one can construct a smaller
sieve with large probability using existence of higher order derivatives of W . We briefly overview the structure of these
sieves as presented in Ghosal et al. (2003). Suppose there are numbers �n, Mn → ∞ and a positive integer 
 such that,

Pr

(
max

j
� > �n

)
< e−cn for some c > 0,

M2
n�−2


n �b1n and M
d/

n = o(n) for some b1 > 0

and for each t ∈ I , the function �0(t, ·) admits continuous partial derivatives up to order 2
 + 2. Define,

Sn = {w̃ : ‖Dq(w)‖∞ < Mn, |q| < 
},
where for q ∈ {0, 1, 2, . . . }d , |q|=∑ qj and Dq(w) stands for the partial derivative (�|q|/�q1 t1 · · · �qd td)w(t!, . . . , td ).
Then Sn satisfies,

J (�1, Sn, ‖ · ‖∞)�KMd/

n �−d/


1 , Pr(W̃ /∈ Sn)�Ae−bn (16)

for some K, A, b.
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Appendix A

A plausibility argument for the if part of Theorem 4.2: To keep the argument simple we only consider the case w0 ∈ A.
Note that one can write such a w0 as w0 =∑k

i=1 ai��0
(t∗i , ·) for some k�1, ai ∈ R, t∗i ∈ I and �0 ∈ support(H). It

follows from the representation (3), the assumption (A2) on �0 and the fact that �0 ∈ support(H), that it is enough to
prove Pr(‖W − w0‖∞ < �|�0) > 0.

First, choose a fine grid {t1, . . . , tm} covering I that includes the points t∗i . The prior probability of W and w0 differing
by less than � at these grid points is positive by (A3).

The conditional distribution of W given Wm=(W(t1), . . . , W(tm)) is a Gaussian process with covariance free of Wm.
Let �Wm

denote the mean of this conditional process. Then, for a fine grid, the oscillations of the centered conditional
process W − �Wm

can be suitably bounded. This makes the conditional process put positive mass on sample paths
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which are within � distance of �Wm
. The proof of this is somewhat technical, drawing upon the theory of a.s. continuity

and boundedness of sample paths for a GP (see Adler, 1990 and Van der Vaart and Wellner, 1996, Corollary 2.2.8).
It remains to handle the conditional mean �Wm

when the vector Wm is close to w0,m = (w0(t1), . . . , w0(tm)). If this
function is Lipschitz, then the condition |W(t) − w0(t)| < � at the grid points and the fineness of the grid would ensure
‖�Wm

− w0‖∞ < �. Unfortunately, the Lipschitz property is hard to show since the conditional mean involves inverse
of a high dimensional matrix. It is at this point that the assumption w0 ∈ A comes handy. An easy direct calculation
shows that

�w0,m
(·) = w0(·) (A.1)

and hence its Lipschitz property follows from that of w0 (which is Lipschitz by (A2), (A3)). A little more work shows
that �Wm

is Lipschitz when maxj |W(tj ) − w0(tj )| < �.
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