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Abstract

We consider the problem of Bayesian inference about the centre of symmetry of a symmetric
density on the real line based on independent identically distributed observations. A result of
Diaconis and Freedman shows that the posterior distribution of the location parameter may
be inconsistent if (symmetrized) Dirichlet process prior is used for the unknown distribution
function. We choose a symmetrized Polya tree prior for the unknown density and independently
choose 0 according to a continuous and positive prior density on the real line. Suppose that
the parameters of Polya tree depend only on the level m of the tree and the common values
rm’s are such that Z;o:l rm ' <oo. Then it is shown that for a large class of true symmetric
densities, including the trimodal distribution of Diaconis and Freedman, the marginal posterior

of 0 is consistent. ©) 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The starting point of this paper is a result of Diaconis and Freedman (1986a, b).
They consider the location problem X; =6 + ¢;, where the location parameter 6 has
a prior distribution u and the ¢;’s are independent and identically distributed with a

* Corresponding author. E-mail: ramamoorthi@stt.msu.edu.
I Research supported by NSF grant number 9307727.
2 Research supported by NIH grant number 1 ROl GM49374.

0378-3758/99/$ — see front matter (©) 1999 Elsevier Science B.V. All rights reserved.
PII: S0378-3758(98)00192-X



182 S. Ghosal et al. | Journal of Statistical Planning and Inference 77 (1999) 181-193

symmetric distribution F, and where F itself has a symmetrized Dirichlet prior with
base measure o. They then show that, while certain choices of «, for instance when «
has a density o’ with log o’ convex, ensures the consistency of the posterior at all (0, F'),
there are choices of « for which the posterior fails to be consistent at many reasonable
“true” values of the parameters. More precisely, when o is Cauchy, they exhibit a
pair (0o, Py), where Py has a (infinitely differentiable) density and for which, (6, Py)
almost surely, the posterior distribution of 6 given Xj,X>,...,X, does not converge
to 0. Similar phenomena was also observed by Doss (1984, 1985a,b), who in a series
of papers carried out a penetrating analysis of the behaviour of the posterior when 0
is considered as the median of F, and F, independent of € has a Dirichlet like prior
concentrating on distributions with median 0. Diaconis and Freedman while contending
that discreteness of probabilities in the support of the Dirichlet may not be the main
issue, construct a class of priors supported by continuous distribution and say “...Now
consider the location problem; we guess this prior is consistent when the expectation
is the normal and inconsistent with the Cauchy. The real mathematical issue, it seems
to us, is to find computable Bayes procedures and figure out when they are consistent
and when they are inconsistent”.

In this paper, we study consistency issues in the location problem when the prior
on the symmetric distributions is induced by a Polya tree prior. Though the Polya tree
prior is different from that constructed by Diaconis and Freedman, we believe that our
calculations throws some light on the issues raised by them. Specifically, we consider
Polya tree priors that concentrate on symmetric densities. In Theorem 5.1 which is
stated informally below, we show that consistency obtains for a large class of true
distributions that are supported on the entire real line.

Suppose the relative entropy of the true error distribution with respect to the base
measure of the Polya tree is finite and the parameters of the Polya tree a.,...., grow
like ry with 307 rm 12 < . Further, assume that the operation of shifting locations
of the true density is continuous in the Kullback—Leibler distance. Then the posterior
Is consistent.

In Theorem 5.2, we generalize the above result to remove the last hypothesis so
that the result is applicable to many more true densities including those considered by
Diaconis and Freedman (1986a, b). The main tools in our argument is a theorem of
Schwartz and refinement of a theorem of Lavine (1994).

One lesson that emerges from the work of Diaconis and Freedman, and Doss is that
the tail free property, which is a natural tool for establishing consistency, is destroyed
by the addition of a parameter. The methods of our paper indicates that in semi-
parametric problems, the Schwartz criterion would be an appropriate tool in proving
consistency.

The results of our paper are stated in the context of location problems though many
of the results would carry through to a wider class of semiparametric problems. We
do not pursue this aspect.
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2. Consistency of the posterior

Our parameter space is @ X #° where O is the real line and Z° is the set of
all symmetric densities on R. On @ x #°, we consider a prior ux P and given
0, 1), X1,X,,...,X, are independent identically distributed with law Py s, where Py s
is the probability measure corresponding to the density f(x — 0). We denote by
fo the density f(x — 0). Given X1,X>,...,X,, we consider the posterior distribution
(L x P) (- |X1,X,...,X,) on @ x Z* given by the density

[T fo(X)
JTI fo(Xi)d(u x PY(O, f)

On {fg:(0, /)€ Z*}, we assign the topology of weak convergence. It is easy to see
that this is equivalent to assigning, on (0, f') € #°, the product of Euclidean and weak
topologies on R and #°*, respectively. The posterior (u x P)(-|X1,X2,...,X,) is said
to be consistent at (0o, fo) if, as n— oo, (ux P)(-|X1,X2,...,X,) converges weakly to
the degenerate measure dy,, 5, almost surely Py, 5. Clearly, if the posterior is consistent
at (0o, fo), the marginal distribution of (u x P)(- |X1,Xa,...,X,) on @ converges to Jy,
almost surely Py, .

Consistency is also related to robustness with respect to the contamination class of
priors of Berger (1994). It is a weaker property in the following sense. Suppose a prior
P, on the set of probabilities is inconsistent at Py. Consider a contamination class
of priors of the form {P: P=(1 — )Py + €dp} containing P, =(1 — )Py + 0p,,
with respect to which we wish robustness and let p be a metric for the weak topology
on priors. Letting Py and Py stand for the posterior distribution given X, X>,...,X,
under Py and P, respectively, we have p(P],0p,) — 0 almost surely by Schwartz’s
theorem mentioned below whereas p(P{,dp,) does not go to 0, by assumption. Clearly
p(P{,Py) cannot tend to 0 as n— oo.

Our main tool in establishing consistency is a theorem of Schwartz (1965). The
relevance of the Schwartz theorem in the present context has been pointed out by
Barron (1986). A detailed exposition can be found in Ghosh and Ramamoorthi (1997).

Recall that if f, and f; are two densities then the Kullback—Leibler divergence

measure K(fo, /1) is defined by K(fo. /1)= ["._ fo(x)log(fo(x)/f1(x))dx. We now
state Schwartz’s theorem in the form that we need.

Theorem 2.1. If for all >0,

(ux PY{(O, f): K(fop5 f0)<d}>0, (2.1)
then the posterior (ux P)(:|X1,Xa,...,X,) is consistent at (0o, fo).

Remark 2.1. The Kullback—Leibler neighbourhoods arise naturally in the study of gen-
eral consistency results for the posterior since the posterior is well defined in these
neighbourhoods. For instance, in the present context if {K(fy,, fo) <0} is a Kullback—
Leibler neighbourhood of fy, then the posterior is Py, -unique in {K(f,, f9) <0}
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On the other hand, when there is no location parameter present, consistency of the
posterior can be proved, at least for the standard (but not unique) posteriors for the
Dirichlet and Polya tree priors without appealing to the Schwartz theorem.

3. Polya tree priors

Some basic statistical implications of the Polya tree prior can be found in Lavine
(1992, 1994) and Mauldin et al. (1992). In this section we closely follow Lavine
(1992, 1994). Let E={0,1} and E™ be the m-fold Cartesian product E X --- X E
where E°=(. Further, set E* =U,~E™. Let np={R} and for each m=1,2,..., let
m={B:: € € E™} be a partition of R so that sets of m,,,; are obtained from a binary
split of the sets of 7, and |J -, 7, is a generator for the Borel sigma-field on R. Let
In={n,: m=0,1,...}.

Definition 3.1. A random probability measure P on R is said to possess a Polya tree
distribution with parameters (I1,./), we write P ~ PT(I1,.e7), if there exist a collection
of nonnegative numbers .7 = {o.: ¢ € E*} and a collection % = {Y.: ¢ € E*} of random
variables such that the following hold:
(1) The collection % consists of mutually independent random variables.
(i1) For each e € E*, Y. has a beta distribution with parameters oo and o.;.
(ii1) The random probability measure P is related to % through the relations

PB.,..)=| [] Yoo, I a-v ] m=12..,

J=L¢gj=0 Jj=ligj=

where the factors are Yy or 1 — Yp if j=1.

We restrict ourselves to partitions IT={m,: m=0,1,...} that are determined by a
strictly positive continuous density « on R in the following sense: The sets in 7, are
intervals of the form {x: (k — 1)/2" < ffoo a(t)dt<k/2"}, k=1,2,...,2™. We term
the measure (corresponding to) o as the base measure because of its role similar to
the base measure of Dirichlet process. The above conditions are assumed throughout
without explicit mention.

Our next theorem refines Theorem 2 of Lavine (1994) by providing an explicit
expression for the parameters.

Theorem 3.1. Let fy be a density and P denote the prior PT(I1,.</), where a. =r,, for
all e € E™ and ", ¥ /2 <00, Further assume that K(fo,0)<oo. If P~PT(Il,.</),
then almost surely, P has a density [ and

P{P: K(fo, f)<5}>0, &>0. (3.1)

2

Remark 3.1. For any 6>0, the sequence r, =m?>"° suffices for an application of
2

the Theorem 3.1. This sequence grows a little faster than Lavine’s choice r,, =m~".
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Whether consistency obtains under Lavine’s choice is still left open. The choice of the
parameter sequence and the base measure is likely to play a role in determining the
rate of convergence and robustness properties.

Proof of Theorem 3.1. By the results of Kraft (1964), it follows that the weaker
condition > 7 r, ! <oco implies the existence of a density of the random probability
measure P. Considering the transformation x +— f _ o ) dt, we can without loss of
generality assume that f and f( are densities on [0, 1]. Moreover, I is then the canon-
ical binary partition. By the martingale convergence theorem, there exist a collection
of numbers {y.: e € E*} from [0, 1] such that, with probability one

fo(x)= lim IT 2y IT 20—y (3.2)

j=1€;=0 j=1g;=1
where the limit is taken through a sequence €;¢,... which corresponds to the dyadic
expansion of x. Since the density f of P exists, it similarly follows that

m

f(x)= lim ﬁ 2Yee, I] 20-v.,..) (3.3)

j=lej=0 Jj=lgj=1

for almost every realization of f. Now for any N>1,

K(fo, f)=Mn + Riy — Roy, (3.4)
where
A ol y _
o E1 " €j—1 €1 €j—1
My=E llog| ] ( ) 11 <1 - ) , (3.5)
j=ligj=o Jj=lej= |
Riy=Ellog| J] 2vewe ] 20=yaece ]| (3.6)
| Jj=N+1;¢ej=0 J=N+1;ej— ]
Roy =E |log IT 2o JI 20-Y0 || (3.7)
B j:N+1;6j:0 j:N-'rl;Ej:] |

here E stands for the expectation with respect to the distribution of (¢i,e5,...) which
comes from the binary expansion of x and x is distributed according to the density fo,
for a fixed realization of the Y-values.

By the definition of a Polya tree, My and R,y are independent random variables
for all N >1. To prove Eq. (3.1), it suffices to show that for any 0 >0, there is some
N =1 such that

P{My <0} >0, (3.8)
|Rin| <6, (3.9)
P{|Ryy| <3} >0. (3.10)
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The set {(Y.: e €E™, m=0,...,N—1): My <} is a nonempty open set in R2" 1. it
is open by the continuity of the relevant map while it is nonempty as (y.: e € E",m =0,
...,N —1) belongs to this set. Thus Eq. (3.8) follows by the nonsingularity of the beta
distribution. Relation (3.9) follows from Lemma 2 of Barron (1985). To complete the
proof, it remains to show (3.10) for some N >1. We shall actually prove the stronger
fact

lim P{|R|>6} =0. (3.11)

Let E stand for the expectation with respect to the prior distribution P and E, as
before, the expectation with respect to the distribution of (e1,¢5,...). Now

P{|Ro| >0}
<6 'E|Ryy|
<5_1EE Z |10g(2Y51"'5j71)‘ + Z ]10g(2(1 - Y61~~-sj1))|]
Jj=N+1;¢gj=0 J=N+16/-1
. >, Ellog2Y...._ )|+ > E[log(2(1 — Ygl...gj_l))|]
[/=N+1gj-0 J=N+1gj-
<67'E| Y max {E|log(2Y.,....,_ )|, E|log(2(1 = Ye\..c,_ )|}
[j=N+1
SCEEDY max  max{E|log(2Y,....,_ )|, E[log(2(1 = Y¢...., )}
j=N+1(e1gj—1) EE/T!
=57 3 n(rm)s (3.12)
j=N+1

where n(k)=E|log(2U;)| with Uy ~Beta(k,k). By Lemma A.l of appendix, (k)=
O(k—'?) as k — oo. Since S r,;l/z < oo by assumption, the right-hand side (RHS)
of Eq. (3.11) is the tail of a convergent series. This completes the proof of Eq. (3.11)
and hence that of the theorem. [J

Remark 3.2. A minor modification of the proof shows that the Kullback—Leibler neigh-
bourhoods would continue to have positive measure when the prior is modified as
follows: Divide R into k& + 1 intervals Iy, /,,...,I;+; and assume that (P(l,),P(L),...,
P(I;)) have a joint density which is positive everywhere on the k-dimensional set
{(ar,...,ar):a;>0, j=1,... .k, ij:l a;<1}. For each [;, the conditional distribution
given P(l;) has a Polya tree prior satisfying the assumptions of the Theorem. We
point out that these priors are special cases of the priors constructed by Diaconis and
Freedman and consequently the consistency results proved later are also valid for this
restricted class of Diaconis—Freedman priors. Moreover, it follows from Theorem 1
of Lavine (1994) that such priors can approximate any prior belief upto any desired
degree of accuracy in a strong sense.
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Remark 3.3. It is not necessary that for each m, a.,...., be the same for all (gq,...,6,) €

E™. The proof goes through even when only o.,...., ,0=0,...,_,1 for all (e1,...,em_1)

cE™ !, m>=1, and r,:=min{o., .. . : (c1,...,em) EE™} satisfies the condition
co _—1/)2

Yoy tm <00,

4. Symmetrization

A prior P on the set % of all densities can be used to construct a prior on the set
Z* — the space of all symmetric densities. We consider two natural ways of doing
this.

Method 1. Let P be a prior on %. The map f— (f(x)+ f(—x))/2 from F to F*°
induces a measure on Z°.

Method 2. Let P be a prior on .#(R") — the space of densities on R*. The map
f— f* where, f*(x)=f*"(—x)= f(x)/2, gives rise to a measure on .F°.

Unlike the Dirichlet process, even if the partitions and o. are all symmetric, these
two methods yield different probabilities on .%#°. However, our consistency results hold
under both methods, as the next lemma indicates.

Lemma 4.1. Let P be a prior on F or on F(R") satisfying (3.1). Let P* be the
prior obtained on F* by method 1 or method 2. If fo€ F*, then

P{fe7°: K(fo,[f)<0}>0, 06>0. (4.1)

Proof. For Method 1 the result follows from Jensen’s inequality and the conclusion is
immediate for method 2 since, setting go(x)=2fo(x) and g(x)=2f(x) for x in RT,
both go,g belong to Z#(R") and K( fo, /)=K(go,g). O

5. Location parameter problem

As mentioned in Section 1, our parameter space is @ x Z#° and given (0, 1), let
X1,X2,...,X, be independent and identically distributed. fj.

Definition 5.1. The map (0, /) +— fy is said to be KL-continuous at (0, fy) if
K(fonfon)= [ fo)log fox)/ fulx — 0))dx 0 as 00
We would then call (0, fo) a KL-continuity point.

Let fgy be the density defined by f,(x) = (fo,0(x) + fo,0(—x))/2, the symmetriza-
tion of fy 9, where fo 9, as before, stands for fo(- — 0).
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Theorem 5.1. Assume that for every sufficiently small |0|, Eq. (4.1) holds with f
replaced by fgy. If p gives positive mass to all open sets in @ and if (0, fo) is
KL-continuity point, then the posterior (pux P*)(-|X1,Xa,...,X,) is consistent at

(0o, fo) for all 0.

Proof. It suffices to prove when 0y =0. By Theorem 2.1, it is enough to verify that
u x P* satisfies the Schwartz condition (2.1), namely (u x P*){(0, f): K( fo, f9) <0}
>( for all 6>0. Now for any 0,

mmﬁh[,mmﬁmhl_ﬂmmwm

:/ f0,010gf0,0—/ fo,0log f. (5.1)
Since
| fotoestio= [ fivtoefin (5.2)
/ fo,elogfz/ foolog f, (5.3)
we have

K(fo,fe)Z/ fo,elog(fo,e/ff)k,e)'i‘/ fo.olog( fo.0/f)

u/ﬁmghﬁ /LMMQM)MUWﬁ

= EK(anfO,fZH)‘f’K(fE)k,va)- (5.4)

By the KL-continuity assumption there is an € such that when |0]| <e, the first term
is less than /2. For any 0, since f7, is symmetric {f: K(f§ /) <J/2} has positive
P* measure. Thus we have, for each 0 €[—¢,e],{f: K( f(’)‘,o,f)<6/2} is contained in
{f: K(fo, fo)<0}. This completes the proof. [J

The previous theorem establishes the consistency for (0, fo) when (0, fy) is a KL-
continuity point. This requirement fails when f{ has support in a finite interval [—a, a].
However, the next theorem shows that consistency continues to hold even when f, has
support in a finite interval, provided f is continuous. We show this by approximating
fo by a f; satistying conditions of Theorem 5.1. The next lemma indicates the kind
of approximation that is needed. The proof is deferred to the appendix.

Lemma 5.1. Let fy and f1 be densities so that fo<Cfi. Then for any f,

K(fo, f)<(C+ Dlog C + CIK(f1, /) + VK(f1, )]
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Theorem 5.2. Assume that for every sufficiently small |0|, Eq. (4.1) holds with f
replaced by fg, and p gives positive mass to all open sets in ©. If fo is con-
tinuous and has support in a finite interval [—a,a], and logo(x) is integrable with
respect to N(u,c?) for all (p, o), then the posterior P(-|X1,Xa,...,X,) is consistent at

(0, fo) for all 0.

Proof. We consider two cases.
Case 1. inf(_, ,; fo(x)=0a>0.
Let

(I —n)fo(x) for —a<x<a,
fix)=q [ilx)=m/2)p_4 for x<—a, (5.5)
fl(x):(n/z)(pa,oz for xz=a,

where ¢_, ,» and ¢, are, respectively, the densities of N(—a, ¢?) and N(a,c?) and
o? is chosen to ensure that f; is continuous at a.

We first show that f} is KL-continuous, i.e.,

gg[mﬁmamnmzﬁmgymmﬁmm:o (5.6)

It is enough to establish that for some >0, the family {log( f1/f1.0):|0|<e} is uni-
formly integrable with respect to f}. This follows since for any M,

sup sup |log(f1(x)/f1,0(x))|<Cuy (say)

0] <€ |x| <M
and when M is large, for |x|>M, f19(x)=(1/2)(cv2n)" " exp[—(x — a — 0)?/(26%)]
for all 0] <e, implying

sp [ A0 log( /i) dx 0 as M - .
0] <e J |x| >M

It now follows from Lemma 5.1 that, by setting C=(1 — #)~' and choosing 7
close to 1 so that (C + 1)logC <0/2, we can choose a 0* such that K( f1, f)<o*
implies K( fo, /) <0; consequently {(0, /): K(f1,f0)<6"} C{(0,f): K(fo,f0) <6}

Theorem 5.1 shows that the set on the left hand side has positive u x P* measure.

Case 2. inf_, ,; fo(x)=0.

By the continuity of fj, we can, given any 1>0, choose a C such that [* aa (fovC)=
1 +#n, where aVb=max (a,b). Set f1=(1+n)"'(foVC). Then fo<(1+1#)f, and
using Lemma 5.1, we can choose # and 6* small such that {/: K( f, f)<o*}C{f: K
(fo, f)<9}. Since f) is covered by case 1, the theorem follows. [J

Remark 5.1. The above consistency theorem notwithstanding, computation of the pos-
terior for 6 for the Diaconis—Freedman density shows that convergence for Cauchy
base measure is very slow. Even for n =500, one notices the tendency to converge to
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a wrong value as in the case of the Dirichlet prior with Cauchy base measure. Rapid
convergence to the right value does occur in the normal case.

Remark 5.2. While we have discussed consistency issues, it would be interesting to
explore how the robustness calculations in Section 4 of Lavine (1994) can be made in
the context of a location parameter.

Remark 5.3. Lemma 5.1 and the Schwartz theorem can be used to yield an analogue
of Theorem 5.1 for general semiparametric models. Let (0, /) +— ¢(0, ), where ¢(0, 1)
is a density on R. Suppose a prior u x P on (O, %) satisfies

(1) p gives positive mass to every neighbourhood of 6.

(ii) For all sufficiently small |6 — 6|, and all £>0,

P{f K(¢(9af0)v¢(0=f))<€}>0

Then if (0o, fo) is a point such that

(a) % < C(0), where C(0)—1 as 0 — 0y,
» Jo
(b) limy_q K(¢4(0, f0), ¢(0, /) =K(¢(bo, f0), p(0o, f)) for all f,

then the posterior is consistent at (60, fo).

For a proof, take ¢(0,, fo) and ¢(0, fy) as fo and f; respectively in Lemma 5.1.
Then for each 0 close to 0y, {f: K(¢(0o, f0), (0, f))<e} will contain a set of the
form {f: K(¢(0, fo), $(0, f))<e'}, and this set has positive measure by assumptions
(1), (i1) and (b) above.

Acknowledgements

Research of the first author was carried out at the Indian Statistical Institute,
Calcutta, and was supported by a post doctoral grant from the National Board of
Higher Mathematics, Bombay, India.
Appendix A
Lemma A.l1. If U, ~Beta(k, k), then E|log(2U;)| =O0(k~"?) as k — cc.

Proof. The proof uses Laplace’s method. Let 1, = E|log(2Uy)|. In other words

1
~ Bk, k)

1
i [ og@ulut 11— (A1)
0

implying that

1 1
Ne = k)/o |Tog(2(1 — u))|u* (1 — u)* ! du. (A.2)

B(k
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Adding (A.1) and (A.2) and observing that log(2u) and log(2(1 — u)) are always of
the opposite sign, we obtain

1
20 = /0 |log(u/(1 — u))|u* ' (1 — u)* ! du. (A3)

B(k, k)

This implies by Jensen’s inequality that

e I R
= 5 k)/ {1+ (log(u/(1 — u))* " =11 — )~V du — 1. (A.4)
Now
{1+ (log(u/(1 — u))*u* (1 — u)*~' = exp(gi(u)), (A.S)
where

gr(u)=(k — 1)logu + (k — 1)log(1 — u) + h(u),
h(u) = log{1 + (log(u/(1 — u)))*}.

It is easily observed that g;(1/2)=—2(k—1)log2, g;(1/2)=0 and g;(u) is decreasing
in u so that g;(u) has a unique maximum at 1/2. Fix 6>0 and let A =sup {A"(u): |u—
1/2|<é}. Thus on ue(— — 9,4 5 +0), we have

91(1) < —2(k — 1)log2 = 3(u = 3'(8(k = 1) = 2). (A6)
Thus
1/2490
B(k 0 Jias 0 [—Z(k —1)log2 —4(k — 1)
A 1\?
<1_ 8(k—1)) <”—5) ] du
B(]: k) Jju=31>0 {1+ (log(/(1 —u)))*}u* ' (1 —u)* ' du — 1
L@k ey [T i o ) ( ) 1)2
< (F(k))22 /_OO exp [ 4(k—1) (] =) " : du
: 21 k-1 k—1
B(k k) |”*—|>(>{1 + (log(u/(1 — u)))P Y1 (1 — u) " du — 1

(A7)
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Note that the function u(1 —u){1+ (log(u/(1 —u))*} is bounded on (0,1) by M (say).
Hence the second term on the RHS of Eq. (A.7) is dominated by

M
B(k,k) Jyju—1)2]>s
2k —1)2k —2 1
_ k= D2k )P{‘Uk—l__

5 >5}

u* =21 — )2 du

(k—1)
M (2k — 1)(2k — 2) 17
S8 (k- 1) E‘U’”_E
=0(k™ . (A.8)

The first term on the RHS of Eq. (A.7) is

I(2k)

TOR k))zz—%“(zn)l/z(g(k -1 =)' (A.9)

which, by an application of Stirling’s inequalities (Whittaker and Watson, 1927),
(p. 253), can be dominated by

(2k)*~12e= 2k (2m)!/2 eXp[(24k)_1]2—2k+2
(kk=12¢=k(2m)l/2 )2

, 12
$2732 — 1)y~ 12 (1 = 2 /
8k — 1)

k 1/2 » 1 —1/2
“(r5) oo (1 gty

=14+0k™"). (A.10)

(2m)'?

Thus 77 =O(k~ "), completing the proof. [

Proof of Lemma 5.1. We begin with the following inequality which is found in Hannan
(1960). If fo and f; are densities

+ J—
[ ptoecsui o = [ sitost ptron< [ o (5 -1) =1L

(A.11)

Hence if fo <Cf1,

ﬂb%Wﬂ+/ Folog(fo/ f)=(D+(D) (say).

/hbghﬁﬁz
>N

f<h
(A.12)

where we have

(D<C/ﬁbyﬂ%7ffﬂbaﬁﬁ)
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< ClogC+ CK(fif) = | filoe(fi/)
:ClogC+C{K(f1,f)+M1, (A.13)
()< [ folog(Chi/fo) < log C: (A14)
consequently
K(f0,/)<ClogC +1log C + CIK(f1, /) + 5ll./1 = [l (A.15)

Since (Hannan, 1960) K( 11, )= |f1 — f||*/4, the lemma follows. [J
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