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Abstract

We consider the problem of Bayesian inference about the centre of symmetry of a symmetric

density on the real line based on independent identically distributed observations. A result of

Diaconis and Freedman shows that the posterior distribution of the location parameter may

be inconsistent if (symmetrized) Dirichlet process prior is used for the unknown distribution

function. We choose a symmetrized Polya tree prior for the unknown density and independently

choose � according to a continuous and positive prior density on the real line. Suppose that

the parameters of Polya tree depend only on the level m of the tree and the common values

rm’s are such that
∑

∞

m=1
r
−1=2
m ¡∞. Then it is shown that for a large class of true symmetric

densities, including the trimodal distribution of Diaconis and Freedman, the marginal posterior

of � is consistent. c© 1999 Elsevier Science B.V. All rights reserved.

AMS classi�cations: Primary 62G20; 62F15
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1. Introduction

The starting point of this paper is a result of Diaconis and Freedman (1986a, b).

They consider the location problem Xi= � + �i, where the location parameter � has

a prior distribution � and the �i’s are independent and identically distributed with a
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symmetric distribution F , and where F itself has a symmetrized Dirichlet prior with

base measure �. They then show that, while certain choices of �, for instance when �

has a density �′ with log �′ convex, ensures the consistency of the posterior at all (�; F),

there are choices of � for which the posterior fails to be consistent at many reasonable

“true” values of the parameters. More precisely, when � is Cauchy, they exhibit a

pair (�0; P0), where P0 has a (in�nitely di�erentiable) density and for which, (�0; P0)

almost surely, the posterior distribution of � given X1; X2; : : : ; Xn does not converge

to �0. Similar phenomena was also observed by Doss (1984, 1985a,b), who in a series

of papers carried out a penetrating analysis of the behaviour of the posterior when �

is considered as the median of F , and F , independent of � has a Dirichlet like prior

concentrating on distributions with median 0. Diaconis and Freedman while contending

that discreteness of probabilities in the support of the Dirichlet may not be the main

issue, construct a class of priors supported by continuous distribution and say “: : :Now

consider the location problem; we guess this prior is consistent when the expectation

is the normal and inconsistent with the Cauchy. The real mathematical issue, it seems

to us, is to �nd computable Bayes procedures and �gure out when they are consistent

and when they are inconsistent”.

In this paper, we study consistency issues in the location problem when the prior

on the symmetric distributions is induced by a Polya tree prior. Though the Polya tree

prior is di�erent from that constructed by Diaconis and Freedman, we believe that our

calculations throws some light on the issues raised by them. Speci�cally, we consider

Polya tree priors that concentrate on symmetric densities. In Theorem 5.1 which is

stated informally below, we show that consistency obtains for a large class of true

distributions that are supported on the entire real line.

Suppose the relative entropy of the true error distribution with respect to the base

measure of the Polya tree is �nite and the parameters of the Polya tree �”1···”m grow

like rm with
∑∞

m=0 r
−1=2
m ¡∞. Further, assume that the operation of shifting locations

of the true density is continuous in the Kullback–Leibler distance. Then the posterior

is consistent.

In Theorem 5.2, we generalize the above result to remove the last hypothesis so

that the result is applicable to many more true densities including those considered by

Diaconis and Freedman (1986a, b). The main tools in our argument is a theorem of

Schwartz and re�nement of a theorem of Lavine (1994).

One lesson that emerges from the work of Diaconis and Freedman, and Doss is that

the tail free property, which is a natural tool for establishing consistency, is destroyed

by the addition of a parameter. The methods of our paper indicates that in semi-

parametric problems, the Schwartz criterion would be an appropriate tool in proving

consistency.

The results of our paper are stated in the context of location problems though many

of the results would carry through to a wider class of semiparametric problems. We

do not pursue this aspect.
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2. Consistency of the posterior

Our parameter space is �×F
s where � is the real line and F

s is the set of

all symmetric densities on R. On �×F
s, we consider a prior �×P and given

(�; f); X1; X2; : : : ; Xn are independent identically distributed with law P�;f, where P�;f
is the probability measure corresponding to the density f(x − �). We denote by

f� the density f(x − �). Given X1; X2; : : : ; Xn, we consider the posterior distribution
(�×P) (· |X1; X2; : : : ; Xn) on �×F

s given by the density
∏

f�(Xi)
∫
∏

f�(Xi) d(�×P)(�; f)
:

On {f�: (�; f)∈F
s}, we assign the topology of weak convergence. It is easy to see

that this is equivalent to assigning, on (�; f)∈F
s, the product of Euclidean and weak

topologies on R and F
s, respectively. The posterior (�×P)(· |X1; X2; : : : ; Xn) is said

to be consistent at (�0; f0) if, as n→∞; (�×P)(· |X1; X2; : : : ; Xn) converges weakly to
the degenerate measure ��0 ; f0 almost surely P�0 ; f0 . Clearly, if the posterior is consistent

at (�0; f0), the marginal distribution of (�×P)(· |X1; X2; : : : ; Xn) on � converges to ��0
almost surely P�0 ; f0 .

Consistency is also related to robustness with respect to the contamination class of

priors of Berger (1994). It is a weaker property in the following sense. Suppose a prior

P0 on the set of probabilities is inconsistent at P0. Consider a contamination class P

of priors of the form {P: P=(1 − ”)P0 + ”�P} containing P1=(1 − ”)P0 + ”�P0 ,

with respect to which we wish robustness and let � be a metric for the weak topology

on priors. Letting Pn0 and P
n
1 stand for the posterior distribution given X1; X2; : : : ; Xn

under P0 and P1, respectively, we have �(P
n
1 ; �P0)→ 0 almost surely by Schwartz’s

theorem mentioned below whereas �(Pn0 ; �P0) does not go to 0, by assumption. Clearly

�(Pn1 ;P
n
0 ) cannot tend to 0 as n→∞.

Our main tool in establishing consistency is a theorem of Schwartz (1965). The

relevance of the Schwartz theorem in the present context has been pointed out by

Barron (1986). A detailed exposition can be found in Ghosh and Ramamoorthi (1997).

Recall that if f0 and f1 are two densities then the Kullback–Leibler divergence

measure K(f0; f1) is de�ned by K(f0; f1)=
∫∞

−∞ f0(x) log(f0(x)=f1(x)) dx. We now

state Schwartz’s theorem in the form that we need.

Theorem 2.1. If for all �¿0,

(�×P){(�; f): K(f�0 ; f�)¡�}¿0; (2.1)

then the posterior (�×P)(·|X1; X2; : : : ; Xn) is consistent at (�0; f0).

Remark 2.1. The Kullback–Leibler neighbourhoods arise naturally in the study of gen-

eral consistency results for the posterior since the posterior is well de�ned in these

neighbourhoods. For instance, in the present context if {K(f�0 ; f�)¡�} is a Kullback–
Leibler neighbourhood of f�0 then the posterior is Pf�0 -unique in {K(f�0 ; f�)¡�}.
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On the other hand, when there is no location parameter present, consistency of the

posterior can be proved, at least for the standard (but not unique) posteriors for the

Dirichlet and Polya tree priors without appealing to the Schwartz theorem.

3. Polya tree priors

Some basic statistical implications of the Polya tree prior can be found in Lavine

(1992, 1994) and Mauldin et al. (1992). In this section we closely follow Lavine

(1992, 1994). Let E= {0; 1} and Em be the m-fold Cartesian product E× · · ·×E
where E0= ∅. Further, set E∗=

⋃∞
m=0 E

m. Let �0= {R} and for each m=1; 2; : : : ; let
�m= {B”: ”∈Em} be a partition of R so that sets of �m+1 are obtained from a binary

split of the sets of �m and
⋃∞
m=0 �m is a generator for the Borel sigma-�eld on R. Let

�= {�m: m=0; 1; : : :}.

De�nition 3.1. A random probability measure P on R is said to possess a Polya tree

distribution with parameters (�;A), we write P∼ PT(�;A), if there exist a collection
of nonnegative numbers A= {�”: ”∈E∗} and a collection Y= {Y”: ”∈E∗} of random
variables such that the following hold:

(i) The collection Y consists of mutually independent random variables.

(ii) For each ”∈E∗; Y” has a beta distribution with parameters �”0 and �”1.

(iii) The random probability measure P is related to Y through the relations

P(B”1 ··· ”m)=





m
∏

j=1; ”j=0

Y”1···”j−1









m
∏

j=1; ”j=1

(1− Y”1···”j−1)



; m=1; 2; : : : ;

where the factors are Y∅ or 1− Y∅ if j=1.

We restrict ourselves to partitions �= {�m: m=0; 1; : : :} that are determined by a
strictly positive continuous density � on R in the following sense: The sets in �m are

intervals of the form {x: (k − 1)=2m¡
∫ x

−∞ �(t) dt6k=2
m}; k =1; 2; : : : ; 2m. We term

the measure (corresponding to) � as the base measure because of its role similar to

the base measure of Dirichlet process. The above conditions are assumed throughout

without explicit mention.

Our next theorem re�nes Theorem 2 of Lavine (1994) by providing an explicit

expression for the parameters.

Theorem 3.1. Let f0 be a density and P denote the prior PT(�;A), where �”= rm for

all ”∈Em and ∑∞
m=1 r

−1=2
m ¡∞. Further assume that K(f0; �)¡∞. If P∼ PT(�;A),

then almost surely, P has a density f and

P{P: K(f0; f)¡�}¿0; �¿0: (3.1)

Remark 3.1. For any �¿0, the sequence rm=m
2+� su�ces for an application of

the Theorem 3.1. This sequence grows a little faster than Lavine’s choice rm=m
2.
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Whether consistency obtains under Lavine’s choice is still left open. The choice of the

parameter sequence and the base measure is likely to play a role in determining the

rate of convergence and robustness properties.

Proof of Theorem 3.1. By the results of Kraft (1964), it follows that the weaker

condition
∑∞

m=0 r
−1
m ¡∞ implies the existence of a density of the random probability

measure P. Considering the transformation x 7→
∫ x

−∞ �(t) dt, we can without loss of

generality assume that f and f0 are densities on [0; 1]. Moreover, � is then the canon-

ical binary partition. By the martingale convergence theorem, there exist a collection

of numbers {y”: ”∈E∗} from [0; 1] such that, with probability one

f0(x)= lim
m→∞





m
∏

j=1; ”j=0

2y”1···”j−1









m
∏

j=1; ”j=1

2(1− y”1···”j−1)



; (3.2)

where the limit is taken through a sequence ”1”2 : : : which corresponds to the dyadic

expansion of x. Since the density f of P exists, it similarly follows that

f(x)= lim
m→∞





m
∏

j=1; ”j=0

2Y”1···”j−1









m
∏

j=1; ”j=1

2(1− Y”1···”j−1)



 (3.3)

for almost every realization of f. Now for any N¿1,

K(f0; f)=MN + R1N − R2N ; (3.4)

where

MN =E



log





N
∏

j=1; ”j=0

(

y”1···”j−1

Y”1···”j−1

) N
∏

j=1; ”j=1

(

1− y”1···”j−1
1− Y”1···”j−1

)







; (3.5)

R1N =E



log





∞
∏

j=N+1; ”j=0

2y”1···”j−1

∞
∏

j=N+1; ”j=1

2(1− y”1···”j−1)







; (3.6)

R2N =E



log





∞
∏

j=N+1; ”j=0

2Y”1···”j−1

∞
∏

j=N+1; ”j=1

2(1− Y”1···”j−1)







; (3.7)

here E stands for the expectation with respect to the distribution of (”1; ”2; : : :) which

comes from the binary expansion of x and x is distributed according to the density f0,

for a �xed realization of the Y -values.

By the de�nition of a Polya tree, MN and R2N are independent random variables

for all N¿1. To prove Eq. (3.1), it su�ces to show that for any �¿0, there is some

N¿1 such that

P{MN¡�}¿0; (3.8)

|R1N |¡�; (3.9)

P{|R2N |¡�}¿0: (3.10)
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The set {(Y”: ”∈Em; m=0; : : : ; N−1): MN¡�} is a nonempty open set in R2
N−1; it

is open by the continuity of the relevant map while it is nonempty as (y”: ”∈Em; m=0;
: : : ; N −1) belongs to this set. Thus Eq. (3.8) follows by the nonsingularity of the beta
distribution. Relation (3.9) follows from Lemma 2 of Barron (1985). To complete the

proof, it remains to show (3.10) for some N¿1. We shall actually prove the stronger

fact

lim
N→∞

P{|R2N |¿�}=0: (3.11)

Let E stand for the expectation with respect to the prior distribution P and E, as

before, the expectation with respect to the distribution of (”1; ”2; : : :). Now

P{|R2N |¿�}
6�−1E|R2N |

6�−1EE

[

∞
∑

j=N+1; ”j=0

| log(2Y”1···”j−1)|+
∞
∑

j=N+1; ”j=1

| log(2(1− Y”1···”j−1))|
]

= �−1E

[

∞
∑

j=N+1; ”j=0

E| log(2Y”1···”j−1)|+
∞
∑

j=N+1; ”j=1

E| log(2(1− Y”1···”j−1))|
]

6�−1E

[

∞
∑

j=N+1

max {E| log(2Y”1···”j−1)|;E| log(2(1− Y”1···”j−1))|}
]

6�−1
∞
∑

j=N+1

max
(”1···”j−1)∈ Ej−1

max{E| log(2Y”1···”j−1)|;E| log(2(1− Y”1···”j−1))|}

= �−1
∞
∑

j=N+1

�(rm); (3.12)

where �(k)=E| log(2Uk)| with Uk ∼Beta(k; k). By Lemma A.1 of appendix, �(k)=
O(k−1=2) as k→∞. Since ∑∞

m=1 r
−1=2
m ¡∞ by assumption, the right-hand side (RHS)

of Eq. (3.11) is the tail of a convergent series. This completes the proof of Eq. (3.11)

and hence that of the theorem.

Remark 3.2. A minor modi�cation of the proof shows that the Kullback–Leibler neigh-

bourhoods would continue to have positive measure when the prior is modi�ed as

follows: Divide R into k + 1 intervals I1; I2; : : : ; Ik+1 and assume that (P(I1); P(I2); : : : ;

P(Ik)) have a joint density which is positive everywhere on the k-dimensional set

{(a1; : : : ; ak) : ai¿0; j=1; : : : ; k;
∑k

j=1 ai¡1}. For each Ij, the conditional distribution
given P(Ij) has a Polya tree prior satisfying the assumptions of the Theorem. We

point out that these priors are special cases of the priors constructed by Diaconis and

Freedman and consequently the consistency results proved later are also valid for this

restricted class of Diaconis–Freedman priors. Moreover, it follows from Theorem 1

of Lavine (1994) that such priors can approximate any prior belief upto any desired

degree of accuracy in a strong sense.
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Remark 3.3. It is not necessary that for each m; �”1···”m be the same for all (”1; : : : ; ”m)∈
Em. The proof goes through even when only �”1···”m−10= �”1···”m−11 for all (”1; : : : ; ”m−1)

∈Em−1; m¿1, and rm :=min{�”1···”m : (”1; : : : ; ”m)∈Em} satis�es the condition
∑∞

m=1r
−1=2
m ¡∞.

4. Symmetrization

A prior P on the set F of all densities can be used to construct a prior on the set

F
s – the space of all symmetric densities. We consider two natural ways of doing

this.

Method 1. Let P be a prior on F. The map f 7→ (f(x) + f(−x))=2 from F to F
s

induces a measure on F
s.

Method 2. Let P be a prior on F(R+) – the space of densities on R+. The map

f 7→f∗ where, f∗(x)=f∗(−x)=f(x)=2, gives rise to a measure on F
s.

Unlike the Dirichlet process, even if the partitions and �” are all symmetric, these

two methods yield di�erent probabilities on F
s. However, our consistency results hold

under both methods, as the next lemma indicates.

Lemma 4.1. Let P be a prior on F or on F(R+) satisfying (3:1). Let P∗ be the

prior obtained on F
s by method 1 or method 2. If f0 ∈F

s; then

P
∗{f∈F

s: K(f0; f)¡�}¿0; �¿0: (4.1)

Proof. For Method 1 the result follows from Jensen’s inequality and the conclusion is

immediate for method 2 since, setting g0(x)= 2f0(x) and g(x)= 2f(x) for x in R
+,

both g0; g belong to F(R+) and K(f0; f)=K(g0; g).

5. Location parameter problem

As mentioned in Section 1, our parameter space is �×F
s and given (�; f), let

X1; X2; : : : ; Xn be independent and identically distributed. f�.

De�nition 5.1. The map (�; f) 7→f� is said to be KL-continuous at (0; f0) if

K(f0; f0; �)=

∫ ∞

−∞

f0(x) log(f0(x)=f0(x − �)) dx→ 0 as �→ 0:

We would then call (0; f0) a KL-continuity point.

Let f∗
0; � be the density de�ned by f

∗
0; �(x)= (f0; �(x)+f0; �(−x))=2, the symmetriza-

tion of f0; �, where f0; �, as before, stands for f0(· − �).
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Theorem 5.1. Assume that for every su�ciently small |�|; Eq. (4:1) holds with f0
replaced by f∗

0; �. If � gives positive mass to all open sets in � and if (0; f0) is

KL-continuity point, then the posterior (�×P∗)(· |X1; X2; : : : ; Xn) is consistent at
(�0; f0) for all �0.

Proof. It su�ces to prove when �0=0. By Theorem 2.1, it is enough to verify that

�×P∗ satis�es the Schwartz condition (2:1), namely (�×P∗){(�; f): K(f0; f�)¡�}
¿0 for all �¿0. Now for any �,

K(f0; f�) =

∫ ∞

−∞

f0 log(f0=f�)=

∫ ∞

−∞

f0 log(f0=f−�)

=

∫ ∞

−∞

f0; � logf0; � −
∫ ∞

−∞

f0; � logf: (5.1)

Since
∫ ∞

−∞

f0; � logf
∗
0; �=

∫ ∞

−∞

f∗
0; � logf

∗
0; �; (5.2)

∫ ∞

−∞

f0; � logf=

∫ ∞

−∞

f∗
0; � logf; (5.3)

we have

K(f0; f�) =

∫ ∞

−∞

f0; � log(f0; �=f
∗
0; �) +

∫ ∞

−∞

f∗
0; � log(f

∗
0; �=f)

6
1

2

∫ ∞

−∞

f0; � log

(

f0; �

f0; �

)

+
1

2

∫ ∞

−∞

f0; � log

(

f0; �

f0;−�

)

+ K(f∗
0; �; f)

=
1

2
K(f0; f0;−2�) + K(f

∗
0; �; f): (5.4)

By the KL-continuity assumption there is an ” such that when |�|¡”, the �rst term
is less than �=2. For any �, since f∗

0; � is symmetric {f: K(f∗
0; �; f)¡�=2} has positive

P
∗ measure. Thus we have, for each �∈ [−”; ”]; {f: K(f∗

0; �; f)¡�=2} is contained in
{f: K(f0; f�)¡�}. This completes the proof.

The previous theorem establishes the consistency for (�0; f0) when (0; f0) is a KL-

continuity point. This requirement fails when f0 has support in a �nite interval [−a; a].
However, the next theorem shows that consistency continues to hold even when f0 has

support in a �nite interval, provided f0 is continuous. We show this by approximating

f0 by a f1 satisfying conditions of Theorem 5.1. The next lemma indicates the kind

of approximation that is needed. The proof is deferred to the appendix.

Lemma 5.1. Let f0 and f1 be densities so that f06Cf1. Then for any f,

K(f0; f)6(C + 1) logC + C[K(f1; f) +
√

K(f1; f)]:
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Theorem 5.2. Assume that for every su�ciently small |�|; Eq. (4:1) holds with f0
replaced by f∗

0; � and � gives positive mass to all open sets in �. If f0 is con-

tinuous and has support in a �nite interval [−a; a]; and log �(x) is integrable with
respect to N (�; �2) for all (�; �); then the posterior P(· |X1; X2; : : : ; Xn) is consistent at
(�; f0) for all �.

Proof. We consider two cases.

Case 1. inf [−a; a] f0(x)= �¿0.

Let

f1(x)=











(1− �)f0(x) for − a¡x¡a;
f1(x)= (�=2)�−a; �2 for x6−a;
f1(x)= (�=2)�a; �2 for x¿a;

(5.5)

where �−a; �2 and �a; �2 are, respectively, the densities of N (−a; �2) and N (a; �2) and
�2 is chosen to ensure that f1 is continuous at a.

We �rst show that f1 is KL-continuous, i.e.,

lim
�→0

∫ ∞

−∞

f1 log(f1=f1; �)=

∫ ∞

−∞

lim
�→0

f1 log(f1=f1; �)= 0: (5.6)

It is enough to establish that for some ”¿0, the family {log(f1=f1; �) : |�|¡”} is uni-
formly integrable with respect to f1. This follows since for any M ,

sup
|�|¡”

sup
|x|¡M

| log(f1(x)=f1; �(x))|¡CM (say)

and when M is large, for |x|¿M; f1; �(x)= (�=2)(�
√
2�)−1 exp[−(x − a− �)2=(2�2)]

for all |�|¡”, implying

sup
|�|¡”

∫

|x|¿M

f1(x) log(f1(x)=f1; �(x)) dx→ 0 as M→∞:

It now follows from Lemma 5.1 that, by setting C =(1 − �)−1 and choosing �

close to 1 so that (C + 1) logC¡�=2, we can choose a �∗ such that K(f1; f)¡�
∗

implies K(f0; f)¡�; consequently {(�; f): K(f1; f�)¡�∗}⊂{(�; f): K(f0; f�)¡�}.
Theorem 5.1 shows that the set on the left hand side has positive �×P∗ measure.

Case 2. inf [−a; a] f0(x)= 0.

By the continuity of f0, we can, given any �¿0, choose a C such that
∫ a

−a (f0 ∨C)=
1 + �, where a∨ b=max (a; b). Set f1=(1 + �)−1(f0 ∨C). Then f06(1 + �)f1 and
using Lemma 5.1, we can choose � and �∗ small such that {f: K(f1; f)¡�∗}⊂{f: K
(f0; f)¡�}. Since f1 is covered by case 1, the theorem follows.

Remark 5.1. The above consistency theorem notwithstanding, computation of the pos-

terior for � for the Diaconis–Freedman density shows that convergence for Cauchy

base measure is very slow. Even for n=500, one notices the tendency to converge to
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a wrong value as in the case of the Dirichlet prior with Cauchy base measure. Rapid

convergence to the right value does occur in the normal case.

Remark 5.2. While we have discussed consistency issues, it would be interesting to

explore how the robustness calculations in Section 4 of Lavine (1994) can be made in

the context of a location parameter.

Remark 5.3. Lemma 5.1 and the Schwartz theorem can be used to yield an analogue

of Theorem 5.1 for general semiparametric models. Let (�; f) 7→�(�; f), where �(�; f)

is a density on R. Suppose a prior �×P on (�;F) satis�es
(i) � gives positive mass to every neighbourhood of �0.

(ii) For all su�ciently small |�− �0|, and all ”¿0,

P{f: K(�(�; f0); �(�; f))¡”}¿0:

Then if (�0; f0) is a point such that

(a)
�(�0; f0)

�(�; f0)
6C(�), where C(�)→ 1 as �→ �0,

(b) lim�→�0
K(�(�; f0); �(�; f))=K(�(�0; f0); �(�0; f)) for all f,

then the posterior is consistent at (�0; f0).

For a proof, take �(�0; f0) and �(�; f0) as f0 and f1 respectively in Lemma 5.1.

Then for each � close to �0; {f: K(�(�0; f0); �(�; f))¡”} will contain a set of the
form {f: K(�(�; f0); �(�; f))¡”′}, and this set has positive measure by assumptions
(i), (ii) and (b) above.
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Appendix A

Lemma A.1. If Uk ∼Beta(k; k); then E| log(2Uk)|=O(k−1=2) as k→∞.

Proof. The proof uses Laplace’s method. Let �k =E| log(2Uk)|. In other words

�k =
1

B(k; k)

∫ 1

0

| log(2u)|uk−1(1− u)k−1 du; (A.1)

implying that

�k =
1

B(k; k)

∫ 1

0

| log(2(1− u))|uk−1(1− u)k−1 du: (A.2)
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Adding (A:1) and (A:2) and observing that log(2u) and log(2(1 − u)) are always of
the opposite sign, we obtain

2�k =
1

B(k; k)

∫ 1

0

| log(u=(1− u))|uk−1(1− u)k−1 du: (A.3)

This implies by Jensen’s inequality that

4�2k 6
1

B(k; k)

∫ 1

0

(log(u=(1− u)))2uk−1(1− u)k−1 du

=
1

B(k; k)

∫ 1

0

{1 + (log(u=(1− u)))2}uk−1(1− u)k−1 du− 1: (A.4)

Now

{1 + (log(u=(1− u)))2}uk−1(1− u)k−1= exp(gk(u)); (A.5)

where

gk(u)= (k − 1) log u+ (k − 1) log(1− u) + h(u);

h(u)= log{1 + (log(u=(1− u)))2}:

It is easily observed that gk(1=2)=−2(k−1) log 2; g′k(1=2)=0 and g′k(u) is decreasing
in u so that gk(u) has a unique maximum at 1=2. Fix �¿0 and let �=sup {h′′(u) : |u−
1=2|¡�}. Thus on u∈ ( 1

2
− �; 1

2
+ �), we have

gk(u)6−2(k − 1) log 2− 1
2
(u− 1

2
)2(8(k − 1)− �): (A.6)

Thus

4�2k 6
1

B(k; k)

∫ 1=2+�

1=2−�

exp

[

−2(k − 1) log 2− 4(k − 1)

(

1− �

8(k − 1)

)(

u− 1

2

)2
]

du

+
1

B(k; k)

∫

|u−
1
2
|¿�

{1 + (log(u=(1− u)))2}uk−1(1− u)k−1 du− 1

6
�(2k)

(�(k))2
2−2(k−1)

∫ ∞

−∞

exp

[

−4(k − 1)
(

1− �

8(k − 1)

)(

u− 1

2

)2
]

du

+
1

B(k; k)

∫

|u−
1
2
|¿�

{1 + (log(u=(1− u)))2}uk−1(1− u)k−1 du− 1:

(A.7)
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Note that the function u(1−u){1+(log(u=(1−u))2} is bounded on (0; 1) by M (say).

Hence the second term on the RHS of Eq. (A.7) is dominated by

M

B(k; k)

∫

|u−1=2|¿�

uk−2(1− u)k−2 du

=M
(2k − 1)(2k − 2)

(k − 1)2 P

{∣

∣

∣

∣

Uk−1 −
1

2

∣

∣

∣

∣

¿�

}

6
M

�2
(2k − 1)(2k − 2)

(k − 1)2 E

∣

∣

∣

∣

Uk−1 −
1

2

∣

∣

∣

∣

2

=O(k−1): (A.8)

The �rst term on the RHS of Eq. (A.7) is

�(2k)

(�(k))2
2−2k+2(2�)1=2(8(k − 1)− �)−1=2; (A.9)

which, by an application of Stirling’s inequalities (Whittaker and Watson, 1927),

(p. 253), can be dominated by

(2k)2k−1=2e−2k(2�)1=2 exp[(24k)−1]

(kk−1=2e−k(2�)1=2)2
2−2k+2(2�)1=2

×2−3=2(k − 1)−1=2
(

1− �

8(k − 1)

)−1=2

=

(

k

k − 1

)1=2

exp[(24k)−1]

(

1− �

8(k − 1)

)−1=2

=1 + O(k−1): (A.10)

Thus �2k =O(k
−1), completing the proof.

Proof of Lemma 5.1. We begin with the following inequality which is found in Hannan

(1960). If f0 and f1 are densities

∫

f0[log(f0=f1)]
−=

∫

f0[log(f1=f0)]
+
6

∫

f0

(

f1

f0
− 1

)+

=
‖f0 − f1‖

2
:

(A.11)

Hence if f06Cf1,
∫

f0 log(f0=f)=

∫

f6f1

f0 log(f0=f) +

∫

f¿f1

f0 log(f0=f)= (I)+(II) (say);

(A.12)

where we have

(I)6C

∫

f1 logC + C

∫

f6f1

f1 log(f1=f)
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6C logC + C[K(f1; f)−
∫

f¿f1

f1 log(f1=f)

= C logC + C

[

K(f1; f) +
‖f0 − f1‖

2

]

; (A.13)

(II)6

∫

f0 log(Cf0=f0)6 logC; (A.14)

consequently

K(f0; f)6C logC + logC + C[K(f1; f) +
1
2
‖f1 − f‖]: (A.15)

Since (Hannan, 1960) K(f1; f)¿‖f1 − f‖2=4, the lemma follows.
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