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A Dirichlet mixture of normal densities is a useful choice for a prior
distribution on densities in the problem of Bayesian density estimation.
In the recent years, efficient Markov chain Monte Carlo method for the
computation of the posterior distribution has been developed. The method
has been applied to data arising from different fields of interest. The im-
portant issue of consistency was however left open. In this paper, we settle
this issue in affirmative.

1. Introduction. Recent years have seen a surge of interest in nonpara-
metric priors on densities arising out of mixtures. These priors were intro-
duced by Lo (1984) [see also Ghorai and Rubin (1982)], who obtained ex-
pressions for the resulting posterior and predictive distributions. The mixture
model uses a kernel K(x, 0) on 2°x 0, that is, K(x, 6) is a measurable function
such that for all 6, K(-, 0) is a density (with respect to some o-finite measure)
on Z2°. If for any probability P on ©, K(x, P) = [ K(x, 6)dP(6), then, any
prior Il on the space of probability measures on © gives rise to a prior on
densities via the map P — K(-, P). The resulting model for n independent
and identically distributed (i.i.d.) observations would then be P ~ II, given
P, X, Xy,..., X, are iid. K(-, P). Another equivalent formulation, which
is convenient for Bayesian computation, is to treat 6, 0, ..., 0, as i.i.d. given
P and given the 0,’s, X, are independent with X; having density K(, 6;).

A simple kernel when 2° = R is K(x,0) = 1/h, kh < x, 6 < (k + 1)h,
k=...,—1,0,1,..., which leads to random histograms studied by Gasparini
(1992). A general choice of the kernel might be A~*K((x — 0)/h), where K is
a symmetric density around 0. The scale parameter A plays a role somewhat
similar to that of window length in density estimation problems, where it is
chosen a priori or decided empirically from the observations. In the Bayesian
context, A might be elicited a priori, and if that is not possible, then it could
be treated as a hyperparameter endowed with a prior. In the later case, the
predictive density given X;, X,,..., X, is a mixture of A1 K((x — 6;)/h),
i =1,2,...,k, k < n, and thus corresponds to a data driven choice of the
“window lengths” A.

Of special interest is the case when K is the normal density and Il is a
Dirichlet process. The base measure @« = Mg, of the Dirichlet can be elicited
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up to some parameters and a hierarchical prior can be considered for these hy-
perparameters. Yet another possibility is to start with a Dirichlet process prior
for (0, h). Ferguson (1983) studied some of these models and more recently,
West (1992) and West, Muller and Escobar (1994) have developed powerful
Markov chain Monte Carlo methods to calculate Bayes estimates and other
posterior quantities and have also used these priors very effectively in many
applications.

This paper addresses issues related to consistency of the posterior of these
mixture models and is organized as follows.

In Section 2, we give some basic definitions and state two theorems. The
first theorem, due to Schwartz (1965), is used to establish weak consistency.
Since the space under consideration is a set of densities, as argued in Bar-
ron, Schervish and Wasserman (1998), strong consistency, that is, consistency
for L;-neighborhoods, is more appropriate. Schwartz’s theorem is not use-
ful for establishing strong consistency. Our Theorem 2 is the key result to-
ward the strong consistency for densities. This theorem is in the spirit of
Theorem 1 in Barron, Schervish and Wasserman (1998) for consistency for
L-neighborhoods. They use L;-entropy with upper bracketing while we use
L-metric entropy.

Section 3 is devoted to weak consistency. We present results for general
mixture models and also for Dirichlet—normal mixture models.

In Section 4 we study strong consistency and Section 5 contains a brief
discussion of some possible extensions.

2. Consistency theorems. Let & be the set of all densities on R with
respect to Lebesgue measure. There are two natural topologies on . —the
weak topology and the norm topology. Thus if f, € %, a weak neighborhood
of f,, is a set containing a set of the form

/d’if—/(l')ifo

where ¢;’s are bounded continuous functions on R. A strong or L;-neighbor-
hood is a set containing a set of the form V = {f € .7: ||f — foll < &}, where
If = foll = [1F = fol-

Let Il be a prior on & and given [, let X, X,, ..., X, bei.i.d. with common
density f. Then for any measurable subset A of .7, the posterior probability
of A given X, Xo,..., X, is

V=1ifes:
|

<e, i=1,2,...,k},

Ja iy F(X)U(ES)
Jo Ty F(X)IES)
For a density f, let P; stand for the probability measure corresponding to £

H(AIXl’ XZ’ ceey Xn) ==

DEFINITION 1. A prior II is said to be weakly consistent at f, if with P, -
probability 1,

nu|x,, Xg,...,X,)—>1
for all weak neighborhoods U of f.
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DEFINITION 2. A prior Il is said to be strongly consistent at f, if with P, -
probability 1,

nu|x,, Xs,...,X,)—>1
for all strong neighborhoods U of f.

If u is a probability measure on a complete separable metric space 27, then
x is said to be in the support of u if every open neighborhood of x has positive
u measure. In particular, if Il is a prior on the set of all probabilities on R,
then P, is in the support of Il if every weak neighborhood of P, has positive
IT measure.

Another useful notion is that of K-L support. For any f, € %, we denote by
K (fo) the Kullback-Leibler neighborhood {f: [ fylog(f,/f) < &}. Say that
fo is in the K-L support of 11 if II(K ,(f,)) > O for all & > 0.

An early theorem on consistency due to Schwartz (1965) implies the follow-
ing.

THEOREM 1 (Schwartz). If f, is in the K-L support of 11, then the posterior
is weakly consistent at f.

Schwartz’s theorem deals with weak consistency and the following theorem
is developed to handle strong consistency. This involves conditions on the size
of the parameter space measured in terms of L;-metric entropy. We first recall
the definition of L-metric entropy.

DEFINITION 3. Let & Cc &. For § > 0, the L;-metric entropy J(6, ¥)
is defined as the logarithm of the minimum of all £ such that there exist

fif2» -, 1 in F with the property & c U {f: |If — fill < &}

THEOREM 2. Let 11 be a prior on 7. Suppose f, € F is in the K-L support
of Il and let U = {f: ||f — foll < &}. If there is a § < /4, ¢y, ¢y > 0, B < £2/8
and &, C F such that, for all n large:

D) I(Zf) < ¢y exp(—ncy), and
Gi) J(8,%,) <np,

then I(U| X, Xo, ..., X)) > Las. Py

It is worthwhile to note that the constants 8, ¢y, ¢y, B and 7, are all allowed
to depend on the fixed neighborhood, equivalently on the fixed . The proof of
the theorem is given in the Appendix.

This last theorem is very much in the spirit of Barron, Schervish and
Wasserman (1998). Their theorem is in terms of L;-entropy with upper brack-
eting. If & c &, for § > 0, the L;-entropy with upper bracketing J(8, &)
is defined as the logarithm of the minimum of all £ such that there exist

81, 89, - - - » 83, satisfying:

1. [g,<1+56;
2. For every g € 4 there exists an i such that g < g;.
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Since gf = g;/ [ g;isin 7, it is easy to see that J(26, &) < J (8, ). Hence
Theorem 2 is somewhat more general than the result of Barron, Schervish and
Wasserman (1998) and is, at least in some examples, more convenient to apply.
In general [see, e.g., van der Vaart and Wellner (1996), page 84], except for
the uniform norm, there is no inequality in the reverse direction.

3. Dirichlet mixtures: weak consistency. Returning to the mixture
model, let ¢ and ¢; denote, respectively, the standard normal density and
the normal density with mean 0 and standard deviation 4. Let ® =R and .#
be the set of probability measures on ©. If P is in .#, then ) p will stand for
the density

Fap(x) = [ d1(x— 0)dP(6).

Note that f), p is just the convolution ¢, * P.

Our model consists of a prior u for 2 and a prior Il on .#. The prior wxII
through the map (%, P) — f p induces a prior on .#. We continue to denote
this prior also by II. Thus (&, P) ~ u x Il and given (4, P), X, Xz,... X,
are i.i.d. f} p. This section describes a class of densities which are in the K-L
support of II. By Schwartz’s theorem the posterior will be weakly consistent
at these densities.

THEOREM 3. Let the true density f, be of the form fo(x) = fp, p,(x) =

f ¢, (x — 0)dPy(0). If Py is compactly supported and belongs to the support
of 11, and hy is in the support of u, then II(K .(f,)) > 0 for all ¢ > 0.

PROOF. Suppose Py[—k, k] = 1. Since P is in the weak support of II, it
follows that II{P: P[—Fk, k] > 1/2} > 0. Also it is easy to see that f;, has
moments of all orders.

For 1 > 0, choose £’ such that fx|>k max(1, |x|)fo(x)dx < 5. For h > 0, we
write [ fo log(fh p,/fn p)as the sum

(1) [ fologfhp°+/ folog f"P°+f folo ’;’;Z

Now

[ m<>1g(fh%f;>d

- f ¢p(x — 0)dPy(0)

< 1

- /—oo folx) °g< SE nlx — 6)dP(0))
dp(x+ k)

PNE: —@Pkkkodx

_r
x—log(P[~k. k) [ fo(x)dx

sfwmuﬂ@(
= [ oo 2

2k
( 72 + log 2> M,
provided P[—Z, k] > 1/2. Similarly, we get a bound for the third term in (1).
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Clearly,

c¢:= inf inf x—0)>0.
x|<k' [0 <k il )

The family of functions {¢,(x — 0): x € [—F/, k']}, viewed as a set of functions
of 6 in [—k, k], is uniformly equicontinuous. By the Arzela—Ascoli theorem,

given 6 > 0, there exist finitely many points x{, %o, ..., x,, such that for any
x € [k, k'], there exists an i with
2) sup |¢p(x —0) — p(x; — 0)| < cd.
Oe[—Fk, k]
Let

B={r ' [ d1(r; = 0)dPo(0) — [ bi(x: — 0) dP(0)

< ¢6; i=1,2,...,m}.

Since E is a weak neighborhood of P, II(E) > 0. Let P € E. Then for any x €
[—%’, k'], choosing the appropriate x; from (2) and using a simple triangulation
argument, we get

[ $ulx—6)dP(8)

T on(x = 0)dPy(6) 1‘<35
and so
/ ¢h(x—e)dPo(e>_1|< 35
T dn(x — 6)dP(6) 1-385

(provided 6 < 1/3).
Thus for any fixed & > 0, for P in a set of positive II-probability, we have

2k
3) /folog(fh,Po/fh,P)<2(ﬁ+log2>”+1_35'

Now for any A,

@ [ folog(fo/fnp)= [ folog(fo/Fr.p)+ [ folog(Fr.p,/fh ).

The first term on the right-hand side (RHS) of (4) converges to 0 as & — h,.
To see this, observe that

[ n,(x — 0)dPy(0) - sup Gp,(x —0)
[ bn(x —0)dPy(0) ~ jg=k dn(x—6)

The rest follows by an application of the dominated convergence theorem.

Now given any ¢ > 0, choose a neighborhood N of A&, (not containing 0)
such that if » € N, the first term on the RHS of (4) is less than ¢/2. Next
choose 1 and & so that for any 2 € N, the RHS of (3) is less than &/2. Since
hy is in the support of w, the result follows. O
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REMARK 1. In Theorem 4, the true density is a compact location mixture
of normals with a fixed scale. It is also possible to obtain consistency at true
densities which are (compact) location-scale mixtures of the normal, provided
we use a mixture prior for 42 as well. More precisely, if we modify the prior
so that (6, h) ~ P [a probability on R x (0, co)] and P ~ II, then consistency
holds at f, = [ ¢,(x — 0)Py(d0, dh) provided P, has compact support and
belongs to the support of II. The proof is similar to that of Theorem 3.

Theorem 3 covers the case when the true density is normal or a mixture
of normal over a compact set of locations. This theorem, however, does not
cover the case when the true density itself has compact support, like, say the
uniform. The next theorem takes care of such densities.

THEOREM 4. Let 0 be in the support of u and f, be a density in the support
of IL. Let fo ), = &y * fo. If:

(i) limy,_o [ folog(fo/fo,») = 0 and
(ii) f, has compact support, then II( K .(f,)) > 0 for all ¢ > 0.

PrROOF. Note that for each £,

[ folog(fo/fr.p) = [ folog(Fo/ fo,i) + [ Folog(Fo.u/fr. p).

Choose A such that for & < hy, [ folog(fo/fo.n) < /2 so all that is required
is to show that for all 2 > 0,

{P: [ fologtfo u/fp) < /2 = 0

if f, has support in [—£, £]. Then

Jh bax = 0)fo(0) da) ;
k X.
I dalx — 6)dP(6)

The rest of the argument proceeds on the same lines as that in the last
theorem. O

k
[ folog(fon/fre) < [ fo(x)log(

While the last two theorems are valid for general priors on .#, the next
theorem makes strong use of the properties of the Dirichlet process. For any
Pin .#, set P(x) = P(x,o0) and P(x) = P(—o0, x).

THEOREM 5. Let D, be a Dirichlet process on #. Let 11,1y, uy, us be func-
tions such that for some k > 0 for all P in a set of D -probability 1, there exists
xo (depending on P) such that

P(x)>1;(x), P(x+klogx) <uj(x) Vx>x, and
P(x) = ly(x), P(x —klog|x|) <up(x)  Vx < —x,.

(%)
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For any h > 0, define
_ | du(klog x)(ly(x) —uy(x)),  if x>0,
L = { e log o) (), i 20

and assume that Lj(x) is positive for sufficiently large |x|. Let f, be the “true”
density and fy j, = ¢}, * fo. Assume that 0 is in the support of the prior on h.
If f, is in the support of D, [equivalently, supp(f,) C supp(a)l and satisfies:

(@) limy, o [ folog(fo/fo,n) = 0;
(i1) for all h,
) 00 fo,n(x) — 0
lim [ f"(x)log(f“a ba(x — 0)fo(0) da) dx=0;
(iii) for all h,

e

fO,h(x)) d —

lim fo(x) log( L,(x)

M—o0J|x|>M
then 1I(K .(fy)) > O for all ¢ > 0.

REMARK 2. It follows from Doss and Sellke (1982) that if @« = M«, where
«g is a probability measure, then
l1(x) = exp[—2log | log a(x)| /ap(x)],
l5(x) = exp[—2log | log ay(x)[/ap(x)],

1
(®) = exp[_a_o(x + klog x)[ log @y(x — klog xﬂz}
(x)=e 1
= ex -
Uz(x p ag(x — klog|x|)|log ag(x — klog |x|)[?

satisfy the requirements of (5). For example, when «, is double exponential,
we may choose any k2 > 2 and the requirements of the theorem are satisfied
if f, has finite moment generating function in an open interval containing
[-1,1].

REMARK 3. The following argument provides a method for the verification
of Condition 1 of Theorem 4 and Theorem 5 for many densities. Suppose that
fo is continuous a.e., [ f,log f, < co and further assume that, as for unimodal
densities, there exists an interval [a, b] such that, inf{f(x): x € [a,b]} =
¢ > 0 and f} is increasing in (—oo, a) and is decreasing in (b, c0). Note that
{x: fo(x) > c} is an interval containing [a, b]. Replacing the original [a, b] by
this new interval, we may assume that f,(x) < c outside [a, b]. Choose A,
such that N(0, h,) gives probability 1/3 to (0, b—a). Let A < hy. Let ® denote
the cumulative distribution function of N(0, 1). If x € [a, b] then

Fon(0) 2 [ Fo(0)bu(x — 0)d0 2 e(@((b — x)/B) + B((x )/ ) = /3.
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If x > b, then

fon(0) 2 [ fo(0)bi(x = 0)d0 = fo(x)(§ +P((b—a)/h) = 1) = fo(x)/3.
Using a similar argument when x < a, we have that the function

_ [log(3fo(x)/c), if x € [a,b],
8(x)= {log 3, otherwise,

dominates log(fo/fo,5) for h < hy and is P, -integrable. Since fy(x)/fo, 4(x) —
1 as & — 0 whenever x is a continuity point of f, and [ fylog(fy/fo.1) = 0, an
application of (a version of) Fatou’s lemma shows that [ fylog(fo/fo.1) — O
as h — 0.

PROOF OF THEOREM 6. Let & > 0 be given and 6 > 0, to be chosen later.
First find h, so that [ folog(fo/fo.1) < €/2 for all h < hy. Fix h < hj. Choose
k1 such that

o fo, n(x)
1 2 dx < 8.
[ A Og(fk;el¢h<x—e>fo(e>d0) £

Let p = P[—kq, k] and let p, denote the corresponding value under P,. We
may assume that p, > 0. Let P* denote the conditional probability under P
given [—kq, k], thatis, P*(A) = P(AN[—kq, k1])/p (if p > 0) and P denoting
the corresponding objects for P,. Let E be the event {P: | p/p,— 1| < 8}. Since
P, is in the support of D,, D, (E) > 0. Now choose x, > k; such that:

) fH fo(x)log< zfz,hh(%)) dx < &;

(i) D,(ENF) > 0, where
P(x) > 1,(x), P(x+ klogx) <u(x)V x> x,
F=1P: and
P(x) = ly(x), P(x—klog|x]) < us(x) ¥V x < —x

By Egoroff’s theorem, it is indeed possible to meet (ii).
Consider the event

G= {P: sup

—Xo<X<Xg

(f_’*,; bn(x — e)szw)) ,
log| — <26¢.
S5, di(x — 6) dP+(6)

We shall argue that D, (ENFNG) > 0 and if P € (EN FNG) then
[ folog(fo/f1. p) < € for a suitable choice of 6.

The events ENF and G are independent under D ,, and hence, to prove the
first statement, it is enough to show that D, (G) > 0. By intersecting G with E
and using the fact that {¢,(x—0): —xy < x < x(} is uniformly equicontinuous
when 6 € [—£k, k], we can conclude that D, (G) > D, (G N E) > 0 (see the
proof of Theorem 3).
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Now,

[ folog(fo/ . p)
< [ fow)log(fox)/fou()

fo,n(x)
1 d d
# e, fote o8 ( [ e 0)fo(0)d9> ’

JH dn(x = 0)fo(6)d6
1 L d
* oz o9 °g( J5 da(x— 0)dP(o) ) i

+ fo(x)log< fo.n(%) ) dx.

|50 [ &i(x — 0)dP(0)
If Pe ENFNQG, then for x > x,,

x+k lo;
[ e=0)aPo)= [ ux - 0)dP(0)
> ¢, (klog x)[P(x) — P(x + klog x)]
and since P € F, the expression above is greater than or equal to

ép(klog x)[11(x) — u1(x)] = Lp(x).

Using a similar argument for x < —x,, we get

/\x|>x0f°(x)lo <f0 h(( ))> = x|>x0f0( x)lo < h(( ))) dx < 8.

Since P € E NG, for each x in [—x, %],

. (/ ¢h<x—e>fo<e>de> . (po M du(x— 0)dP; (0))
/M du(x — 6)dP(6) P[5 gu(x - 0)dP(6)

All these imply that if § is sufficiently small, then P € E N F N G implies
that [ folog(fo,n/fn p) <& D

A few remarks about the case when £ is fixed a priori to be, say h, are in
order. In this case, the induced prior is supported by &, = {f, p: P € 4},
and the following facts are easy to establish from Scheffe’s theorem.

1. The map P + f;  p is one-to-one, onto .7, . Further P, — P, weakly if
and only if ||fh07 fho P|| — 0.
2. %, 1s a closed subset of 7

Fact (2) shows that .7, is the support of Il and hence consistency is to be
sought only for densities of the form f, p. Theorem 3 implies consistency for
such densities. Fact (1) shows that if the interest is in the posterior distribution



152 S. GHOSAL, J. K. GHOSH AND R. V. RAMAMOORTHI

of P, then weak consistency at P, is equivalent to strong consistency of the
posterior of the density at £, p.

4. Dirichlet mixtures: strong consistency. As before, we consider the
prior which picks a random density ¢, * P, where £ is distributed according to
w and P is chosen independently of 2 according to D,,. Since we view & as cor-
responding to window length, it is only the small values of 4 that are relevant,
and hence we assume that the support of w is [0, M] for some finite M.

In this model the prior is concentrated on

7= U %
0<h<M
where .7, = {¢} x P: P eM}.

In order to apply Theorem 2, given U = {f: ||f — foll < &}, for some 6 < ¢/4,
we need to construct sieves {%,: n > 1} such that J (6, %,) < npB and 7 has
exponentially small prior probability. Since, as a,, - oo, D {P: P[—a,,a,] >
1— 6} — 1, a natural candidate for .7, is

7= U 7
h,<h<M
where %, | 0, a, increases, and %, " = {¢,, * P: P[-a,,a,] > 1 — 8}. What
is then needed is an estimate of J(§, 7,). The next theorem, whose proof is
deferred to the Appendix, provides such an estimate.

THEOREM 6. Let 7Y, s = Upop-u{fn p: P[—a,a]>1—8}. Then
a
h’

where K is a constant that depends on & and M, but not on a or h.

J(&, 7Y ) <K

The next theorem formulates the above discussion in terms of strong con-
sistency for Dirichlet-normal mixtures.

THEOREM 7. Suppose that the prior wu has support in [0, M]. If for each
8 > 0, B > 0, there exists sequences a,, h, | 0 and constants B, B; (all
depending on 8, B and M) such that:

(i) for some By, D, {P: P[—a,,a,] <1— 8} <exp(—nBy);
(i) p{h < h,} < exp(—np,);
(i) a,/h, < np,

then f, is in the K-L support of the prior implies that the posterior is strongly
consistent at f.

REMARK 4. What is involved above is a balance between a,, and 4,,. Since
8 and M are fixed, the constant K obtained in Theorem 6 does not play any
role. If « has compact support, say [—a, a], then we may trivially choose a,, = a
and so %, may be allowed to take values of the order of n~! or larger. If « is
chosen as a normal distribution and A? is given a (right truncated) inverse
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gamma prior, then the conditions of the theorem are satisfied if a,, is of the
order \/n and &, = C/./n for a suitable (large) C (depending on & and B).

5. Extensions. The methods developed in this paper towards the simple
mixture models can be used to study many of the variations used in practice.
Some of these are discussed in this section.

1. It is often sensible to let the prior depend on the sample size; see, for
instance, Roeder and Wasserman (1995). A case in point in our context
would be when the precision parameter M = «a(R) is allowed to depend on
the sample size.

If I1, is the prior at stage n, then Theorem 2 goes through if the assump-
tion II(K .(fy)) > 0 is replaced by liminf, , II, (K (f;)) > 0. This follows
from the fact that Barron’s theorem (see Appendix) goes through with a
similar change. The only stage that needs some care is an argument which
involves Fubini, but it can be handled easily.

2. Another way the Dirichlet mixtures can be extended is by including a fur-
ther mixing. Formally, let X, X,,... be observations from a density f
where f = ¢« P, P~ D, , h ~ m, 7 is a finite-dimensional mixing param-
eter which is also endowed with some prior p. Let f; be the true density.
We are interested in verifying the Schwartz condition at f;, and conditions
for strong consistency.

By Fubini’s theorem, Schwartz’s condition is satisfied for the mixture if

(6) p{r: the Schwartz condition is satisfied with a,} > 0.

(a) In particular, if f;, has compact support, then (6) reduces to
(1) p{7: supp(fy) C supp(a,)} > 0.

(b) Suppose f; is not of compact support and = = (u, o) gives a location-
scale mixture. So we have to seek for the condition so that the Schwartz
condition holds with the base measure a((- — n)/0). We report results
only for oy = a/a(R) double exponential or normal.

When «, is double exponential, a sufficient condition is that
fo(m + ox) has finite moment generating function on an open in-
terval containing [—1, 1]. When « is normal, we need the integrability
of x log |x| exp[x2/2] with respect to the density fy(u + ox). For exam-
ple, if the true density is N(uy, 0y), then the required condition will be
o < 0y, S0 we need

p{(u, 0): o < o} > 0.

We omit the proof of these statements.

(c) For strong consistency, we further assume that the support of the prior
p [for (u, o)1 is compact. For each (u, 7), find the corresponding a,(u, 7)
of Theorem 7, that is, satisfying

Da(;L, 7){P: P[_an(/“L> 7)7 an(l*l" T)] <1- 8} < exp(_nBO)
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for some B, > 0. Now choose a,, = sup, , a,(u, o). The order of a,, will
then be the same as that of the individual a,(u, )’s.

(d) In some special cases, it is also possible to allow unbounded location
mixtures. For example, when the base measure is normal, a normal
prior for the location parameter is both natural and convenient. Strong
consistency continues to hold in this case as long as ¢ has a compactly
supported prior. To see this, observe that p{|u| > /n} is exponentially
small and sup, - /z , @, (1, o) is again of the order of /n.

APPENDIX

Schwartz (1965) showed that for a set U, [I(U|X,, X,,..., X,) — 1 as.
P, if:
fo

1. II(K (fy)) > 0 for all ¢ > 0;

2. there exists a uniformly consistent sequence of tests for testing Hy: f = f
versus H;: f € U¢, that is, there exist tests ¢,(X;, X,, ..., X,) such that
as n — oo,

Ef0¢n(X1,X2,...,Xn)—>O and }}?chfd)n(XlaXZ”Xn)_)l

When U is a weak neighborhood of £, it is not hard to see that condition
(i1) of Theorem 1 holds. This immediately leads to the statement in Section 2.

Barron (1989) and LeCam (1973) show that, in general, when U is a strong
neighborhood of f;;, there does not exist a uniformly consistent sequence of
tests for testing Hy: f = f, versus H;: f € U‘. This fact renders that the
Schwartz theorem inapplicable in establishing strong consistency. Our ap-
proach to strong consistency is based on the following result of Barron (1988),
which is also discussed in Barron, Schervish and Wasserman (1998).

THEOREM 8 (Barron). Let Il be a prior on &, f, € & and U be a neighbor-
hood of f,. Assume that II(K .(f,)) > O for all € > 0. Then the following are

equivalent:
(i) There exists a B such that
P, {IU‘|X,, Xy, ..., X,) > exp(—npy) infinitely often} = 0.

(ii) There exist subsets V,, W, of ¥, positive numbers cy, cs, B1, By and a
sequence of tests {¢, (X1, Xo, ..., X,)} such that:
(@ UccCcV,Uuw,,
(b) I(W,) < c; exp(—npy),
(e Pr{d,(Xy, Xy, ..., X,)> 0 infinitely often} =0 and

flean,L Erd, =1—cyexp(—npy).

A proof may be found in Barron (1998).
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ProOF OF THEOREM 2. Let U = {f: ||f — foll < ¢}, V, = &% NnU° and
W, = 7. We will argue that the pair (V,, W) satisfies (ii) of Theorem 2.

Clearly U¢ c V, UW, and II(W,) < ¢; exp(—ncy).

Let g1, 89,..., 8 in ¥ be such that V, C Uzk=1 G; where G; = {f: |f —
gill < 6}. Let f; € V, N G;. Then for each i = 1,2,...,k, ||[fo — fill > ¢
and if f € G;, then ||f; — f|| < 28. Consequently, for each i = 1,2,..., &, if
A; = {x: fo(x) < fi(x)} then

PfO(Ai)zai and Pf,(Al)Z’yL >ai+8/2.
Hence if f € G;, then Py(A;) > vy, — 6> a; +€/2 6.
Let

12 (vi + ;)
Bi = {(xl, X95 ey xn): - Z IA,(xJ) = T :
n i3
A straightforward application of Hoeffding’s inequality shows that
P;,(B;) < exp[-n&*/8].
On the other hand, if f € G;,

P(B;) = Pf{% §IAi(xj) —Ps(A) = (0‘2;“/) +5}

Jj=1

Applying Hoeffding’s inequality to the negative of the indicator variables,
the above probability is greater than or equal to

1 — exp[—2n(g/4 — 6)?].

If we set
d)n(Xl’ X27 tre Xn) = {n.a)ilBi(Xl’ X27 cre Xn)’
then
E;d, < k exp[—n&?/8]
and

inf E 1-— -2 4 — §)?.
fl?vn FPn = exp[—2n(e/ )71

By choosing log k = J(§, ,) < nB, we have E; ¢, < exp[—n(£%/8 — B)].
Since B < £2/8, all that is left to show is

P; {¢, > 0 infinitely often} = 0.

This follows easily from an application of Borel-Cantelli and from the fact
that ¢, takes only values 0 or 1. O
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PROOF OF THEOREM 6. We prove Theorem 6 through a sequence of lem-
mas. Let %, , = {f, p: P(—a,a] = 1}. Without loss of generality, we shall
assume that ¢ > 1.

LEMMA 1. J(28, %.q) = (@% +1)(1 + log(H2)).

PROOF. For any 6; < 6,

o, n — Do, all
1
= — exp[—(x — 65)2/(2h%)] dx
T2 ey PP 012
1
e exp[—(x — 0;)%)/(2h%)] dx
o R e CRRYCle)
1
+ — exp[—(x — 0;)2/(2h%)] dx
T2 ecrsnge PP = 012
1
- exp[—(x — 65)2/(2h%)] dx
— [ R I CRARICLR)
1 (02—01)/(2h)
=4— exp[—x2/2] dx
mfo p[—x7/2]
<\/E(02—91).
Vo h

Given 8, let N be the smallest integer greater than +/8a/(/7h6). Divide
(—a, a] into N intervals. Let

E, = (—wr%_l),—wr%} i=1,2,...,N,
and let 0; be the midpoint of E,. Note that if 6, 8’ € E;, then |6 — §'| < 2a/N,
and consequently || ¢y, — ¢y 4| < 6.

Let #y = {(P1, Py, ..., Py): P; = 0,>Y, P, = 1} be the N-dimensional
probability simplex and let Z%; be a §-net in %, that is, given P € %, there
is P* = (P%, P}, ..., Py) € & such that YN | |P, — P!| < &.

Let 7* = {3V, Pidy. p: P* € #5}. We shall show that * is a 25 net in
Iha U fop=¢p*xP e, set P, =P(E;) and let P* € &; be such that
YN, |P; — P{| < &. Then

N
[ $00dP(0) = X Pt
i=1

=<

N
[ 61.0dP(0) = 3 [ 11,014, aP )| +
i=1

N N
Y Pidg =2 Pidg s
i1

i=1
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N N
< [ S I5(0)lbo, — do, al P(0) + 3| P; = P
i=1

i=1
< 286.

This shows that J(26, %, ,) < J(8, #y), and we calculate J (5, Zy) along
the lines of Barron, Schervish and Wasserman (1998) as follows.

Since |P; — P}| < 8/N for all i implies that Zfil |P; — P}| < &, an upper
bound for the cardinality of the minimal é-net of &y is given by

# cubes of length 6/N covering [0, 1]V

N
x volume of {(Pl, Py,...,PyN):P;>0, ) P; < 1+8}
i=1

1
= (N/8)N(1 + a)Nm.

So,
J(8, Zy) < Nlog N — Nlog & + Nlog(1+6)—log N!
< NlogN —Nlogé+ Nlog(1+6)— NlogN + N

=N(1—l—log%)

'8 a 1+6

22 1141 . o
5( 7ho )<'+°g 5 )

LEMMA 2. Let %, .5 = {fn p: P(—a,a] = 1 - &}. Then J(38,.F ,5) <
J(8, Fh,a)-

PROOF. Let f = ¢, *x P € %, , 5. Consider the probability measure P*
defined by P*(A) = P(AN(—a,a])/P(—a, a]. Then the density f* = ¢, x P*
clearly belongs to .7, , and further satisfies |/ — f*|| <25. O

LEMMA 3. Let M > 0 and let Z%x,a =Un<werr Tn.as- If @ > M/, then
‘%zlwaﬁ C Th,2a, 25

Proor. By Chebyshev’sinequality, if A" < M then the probability of (—a, a]
under N (0, &') is greater than 1 — 6. If f = ¢, * P, then since ¢ = ¢y, * dp-,
where h* < M, f = ¢y, * ¢p. x P and (dp- x P)(—a,a] >1—-26. O

Putting Lemma 1, Lemma 2 and Lemma 3 together, we have Theorem 6. O
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