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A Dirichlet mixture of normal densities is a useful choice for a prior

distribution on densities in the problem of Bayesian density estimation.

In the recent years, efficient Markov chain Monte Carlo method for the

computation of the posterior distribution has been developed. The method

has been applied to data arising from different fields of interest. The im-

portant issue of consistency was however left open. In this paper, we settle

this issue in affirmative.

1. Introduction. Recent years have seen a surge of interest in nonpara-

metric priors on densities arising out of mixtures. These priors were intro-

duced by Lo (1984) [see also Ghorai and Rubin (1982)], who obtained ex-

pressions for the resulting posterior and predictive distributions. The mixture

model uses a kernelK�x� θ� on � ×�, that is,K�x� θ� is a measurable function

such that for all θ, K�·� θ� is a density (with respect to some σ-finite measure)

on � . If for any probability P on �, K�x�P� =
∫

K�x� θ�dP�θ�, then, any

prior 	 on the space of probability measures on � gives rise to a prior on

densities via the map P �→ K�·�P�. The resulting model for n independent

and identically distributed (i.i.d.) observations would then be P ∼ 	, given

P, X1�X2� � � � �Xn are i.i.d. K�·�P�. Another equivalent formulation, which

is convenient for Bayesian computation, is to treat θ1� θ2� � � � � θk as i.i.d. given

P and given the θi’s, Xi are independent with Xi having density K�·� θi�.
A simple kernel when � = R is K�x� θ� = 1/h, kh < x, θ < �k + 1�h,

k = � � � �−1�0�1� � � � � which leads to random histograms studied by Gasparini

(1992). A general choice of the kernel might be h−1K��x− θ�/h�, where K is

a symmetric density around 0. The scale parameter h plays a role somewhat

similar to that of window length in density estimation problems, where it is

chosen a priori or decided empirically from the observations. In the Bayesian

context, h might be elicited a priori, and if that is not possible, then it could

be treated as a hyperparameter endowed with a prior. In the later case, the

predictive density given X1�X2� � � � �Xn is a mixture of h−1K��x − θi�/h�,
i = 1�2� � � � � k, k ≤ n, and thus corresponds to a data driven choice of the

“window lengths” h.

Of special interest is the case when K is the normal density and 	 is a

Dirichlet process. The base measure α =Mα0 of the Dirichlet can be elicited
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up to some parameters and a hierarchical prior can be considered for these hy-

perparameters. Yet another possibility is to start with a Dirichlet process prior

for �θ� h�. Ferguson (1983) studied some of these models and more recently,

West (1992) and West, Muller and Escobar (1994) have developed powerful

Markov chain Monte Carlo methods to calculate Bayes estimates and other

posterior quantities and have also used these priors very effectively in many

applications.

This paper addresses issues related to consistency of the posterior of these

mixture models and is organized as follows.

In Section 2, we give some basic definitions and state two theorems. The

first theorem, due to Schwartz (1965), is used to establish weak consistency.

Since the space under consideration is a set of densities, as argued in Bar-

ron, Schervish and Wasserman (1998), strong consistency, that is, consistency

for L1-neighborhoods, is more appropriate. Schwartz’s theorem is not use-

ful for establishing strong consistency. Our Theorem 2 is the key result to-

ward the strong consistency for densities. This theorem is in the spirit of

Theorem 1 in Barron, Schervish and Wasserman (1998) for consistency for

L1-neighborhoods. They use L1-entropy with upper bracketing while we use

L1-metric entropy.

Section 3 is devoted to weak consistency. We present results for general

mixture models and also for Dirichlet–normal mixture models.

In Section 4 we study strong consistency and Section 5 contains a brief

discussion of some possible extensions.

2. Consistency theorems. Let � be the set of all densities on R with

respect to Lebesgue measure. There are two natural topologies on � —the

weak topology and the norm topology. Thus if f0 ∈ � , a weak neighborhood

of f0 is a set containing a set of the form

V =
{

f ∈ � 

∣

∣

∣

∣

∫

φif−
∫

φif0

∣

∣

∣

∣

< ε� i = 1�2� � � � � k

}

�

where φi’s are bounded continuous functions on R. A strong or L1-neighbor-

hood is a set containing a set of the form V = �f ∈ � 
 �f − f0� < ε�, where

�f− f0� =
∫

�f− f0�.
Let 	 be a prior on � and given f, let X1�X2� � � � �Xn be i.i.d. with common

density f. Then for any measurable subset A of � , the posterior probability

of A given X1�X2� � � � �Xn is

	�A�X1�X2� � � � �Xn� =
∫

A

∏n
i=1 f�Xi�	�df�

∫

�

∏n
i=1 f�Xi�	�df�

�

For a density f, let Pf stand for the probability measure corresponding to f.

Definition 1. A prior 	 is said to be weakly consistent at f0, if with Pf0
-

probability 1,

	�U�X1�X2� � � � �Xn� → 1

for all weak neighborhoods U of f0.



CONSISTENCY OF DIRICHLET MIXTURES 145

Definition 2. A prior 	 is said to be strongly consistent at f0 if with Pf0
-

probability 1,

	�U�X1�X2� � � � �Xn� → 1

for all strong neighborhoods U of f0.

If µ is a probability measure on a complete separable metric space � , then

x is said to be in the support of µ if every open neighborhood of x has positive

µ measure. In particular, if 	 is a prior on the set of all probabilities on R,

then P0 is in the support of 	 if every weak neighborhood of P0 has positive

	 measure.

Another useful notion is that of K–L support. For any f0 ∈ � , we denote by

Kε�f0� the Kullback–Leibler neighborhood �f

∫

f0 log�f0/f� < ε�. Say that

f0 is in the K–L support of 	 if 	�Kε�f0�� > 0 for all ε > 0.

An early theorem on consistency due to Schwartz (1965) implies the follow-

ing.

Theorem 1 (Schwartz). If f0 is in the K–L support of 	, then the posterior

is weakly consistent at f0.

Schwartz’s theorem deals with weak consistency and the following theorem

is developed to handle strong consistency. This involves conditions on the size

of the parameter space measured in terms of L1-metric entropy. We first recall

the definition of L1-metric entropy.

Definition 3. Let � ⊂ � . For δ > 0, the L1-metric entropy J�δ�� �
is defined as the logarithm of the minimum of all k such that there exist

f1� f2� � � � � fk in � with the property � ⊂ ⋃k
i=1�f
 �f− fi� < δ�.

Theorem 2. Let 	 be a prior on � . Suppose f0 ∈ � is in the K–L support

of 	 and let U = �f
 �f − f0� < ε�. If there is a δ < ε/4, c1� c2 > 0, β < ε2/8
and �n ⊂ � such that, for all n large:

(i) 	�� c
n � < c1 exp�−nc2�, and

(ii) J�δ��n� < nβ,

then 	�U�X1�X2� � � � �Xn� → 1 a.s. Pf0
.

It is worthwhile to note that the constants δ� c1� c2� β and �n are all allowed

to depend on the fixed neighborhood, equivalently on the fixed ε. The proof of

the theorem is given in the Appendix.

This last theorem is very much in the spirit of Barron, Schervish and

Wasserman (1998). Their theorem is in terms of L1-entropy with upper brack-

eting. If � ⊂ � , for δ > 0, the L1-entropy with upper bracketing J1�δ�� �
is defined as the logarithm of the minimum of all k such that there exist

g1� g2� � � � � gk satisfying:

1.
∫

gi ≤ 1+ δ;

2. For every g ∈ � there exists an i such that g ≤ gi.
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Since g∗i = gi/
∫

gi is in � , it is easy to see that J�2δ�� � ≤ J1�δ�� �. Hence
Theorem 2 is somewhat more general than the result of Barron, Schervish and
Wasserman (1998) and is, at least in some examples, more convenient to apply.
In general [see, e.g., van der Vaart and Wellner (1996), page 84], except for
the uniform norm, there is no inequality in the reverse direction.

3. Dirichlet mixtures: weak consistency. Returning to the mixture
model, let φ and φh denote, respectively, the standard normal density and
the normal density with mean 0 and standard deviation h. Let � =R and �

be the set of probability measures on �. If P is in � , then fh�P will stand for
the density

fh�P�x� =
∫

φh�x− θ�dP�θ��

Note that fh�P is just the convolution φh ∗P.
Our model consists of a prior µ for h and a prior 	 on � . The prior µ×	

through the map �h�P� �→ fh�P induces a prior on � . We continue to denote
this prior also by 	. Thus �h�P� ∼ µ × 	 and given �h�P�, X1�X2� � � � �Xn

are i.i.d. fh�P. This section describes a class of densities which are in the K–L
support of 	. By Schwartz’s theorem the posterior will be weakly consistent
at these densities.

Theorem 3. Let the true density f0 be of the form f0�x� = fh0�P0
�x� =

∫

φh0
�x − θ�dP0�θ�. If P0 is compactly supported and belongs to the support

of 	, and h0 is in the support of µ, then 	�Kε�f0�� > 0 for all ε > 0.

Proof. Suppose P0�−k� k� = 1. Since P0 is in the weak support of 	, it
follows that 	�P
 P�−k� k� > 1/2� > 0. Also it is easy to see that f0 has
moments of all orders.

For η > 0, choose k′ such that
∫

�x�>k′ max�1� �x��f0�x�dx < η. For h > 0, we
write

∫∞
−∞ f0 log�fh�P0

/fh�P� as the sum

∫ −k′

−∞
f0 log

fh�P0

fh�P
+
∫ k′

−k′
f0 log

fh�P0

fh�P
+
∫ ∞

k′
f0 log

fh�P0

fh�P
�(1)

Now
∫ −k′

−∞
f0�x� log

(

fh�P0
�x�

fh�P�x�

)

dx

≤
∫ −k′

−∞
f0�x� log

(

∫ k

−kφh�x− θ�dP0�θ�
∫ k

−kφh�x− θ�dP�θ�

)

dx

≤
∫ −k′

−∞
f0�x� log

(

φh�x+ k�
φh�x− k�P�−k� k�

)

dx

=
∫ −k′

−∞
f0�x�

2k�x�
h2

dx− log�P�−k� k��
∫ −k′

−∞
f0�x�dx

<

(

2k

h2
+ log 2

)

η�

provided P�−k� k� > 1/2. Similarly, we get a bound for the third term in (1).
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Clearly,

c 
= inf
�x�≤k′

inf
�θ�≤k

φh�x− θ� > 0�

The family of functions �φh�x− θ�
 x ∈ �−k′� k′��, viewed as a set of functions

of θ in �−k� k�, is uniformly equicontinuous. By the Arzela–Ascoli theorem,

given δ > 0, there exist finitely many points x1� x2� � � � � xm such that for any

x ∈ �−k′� k′�� there exists an i with

sup
θ∈�−k� k�

�φh�x− θ� −φh�xi − θ�� < cδ�(2)

Let

E =
{

P

∣

∣

∣

∣

∫

φh�xi − θ�dP0�θ� −
∫

φh�xi − θ�dP�θ�
∣

∣

∣

∣

< cδ� i = 1�2� � � � �m

}

�

Since E is a weak neighborhood of P0, 	�E� > 0. Let P ∈ E. Then for any x ∈
�−k′� k′�, choosing the appropriate xi from (2) and using a simple triangulation

argument, we get
∣

∣

∣

∣

∫

φh�x− θ�dP�θ�
∫

φh�x− θ�dP0�θ�
− 1

∣

∣

∣

∣

< 3δ

and so
∣

∣

∣

∣

∫

φh�x− θ�dP0�θ�
∫

φh�x− θ�dP�θ�
− 1

∣

∣

∣

∣

<
3δ

1− 3δ

(provided δ < 1/3).

Thus for any fixed h > 0, for P in a set of positive 	-probability, we have

∫

f0 log�fh�P0
/fh�P� < 2

(

2k

h2
+ log 2

)

η+ 3δ

1− 3δ
�(3)

Now for any h,

∫

f0 log�f0/fh�P� =
∫

f0 log�f0/fh�P0
� +

∫

f0 log�fh�P0
/fh�P��(4)

The first term on the right-hand side (RHS) of (4) converges to 0 as h→ h0.

To see this, observe that
∫

φh0
�x− θ�dP0�θ�

∫

φh�x− θ�dP0�θ�
≤ sup

�θ�≤k

φh0
�x− θ�

φh�x− θ�
�

The rest follows by an application of the dominated convergence theorem.

Now given any ε > 0, choose a neighborhood N of h0 (not containing 0)

such that if h ∈ N, the first term on the RHS of (4) is less than ε/2. Next

choose η and δ so that for any h ∈ N, the RHS of (3) is less than ε/2. Since

h0 is in the support of µ, the result follows. �
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Remark 1. In Theorem 4, the true density is a compact location mixture

of normals with a fixed scale. It is also possible to obtain consistency at true

densities which are (compact) location-scale mixtures of the normal, provided

we use a mixture prior for h as well. More precisely, if we modify the prior

so that �θ� h� ∼ P [a probability on R × �0�∞�] and P ∼ 	, then consistency

holds at f0 =
∫

φh�x − θ�P0�dθ�dh� provided P0 has compact support and

belongs to the support of 	. The proof is similar to that of Theorem 3.

Theorem 3 covers the case when the true density is normal or a mixture

of normal over a compact set of locations. This theorem, however, does not

cover the case when the true density itself has compact support, like, say the

uniform. The next theorem takes care of such densities.

Theorem 4. Let 0 be in the support of µ and f0 be a density in the support

of 	. Let f0� h = φh ∗ f0. If:

(i) limh→0

∫

f0 log�f0/f0� h� = 0 and

(ii) f0 has compact support, then 	�Kε�f0�� > 0 for all ε > 0.

Proof. Note that for each h,
∫

f0 log�f0/fh�P� =
∫

f0 log�f0/f0� h� +
∫

f0 log�f0� h/fh�P��

Choose h0 such that for h < h0,
∫

f0 log�f0/f0� h� < ε/2 so all that is required

is to show that for all h > 0,

	

{

P

∫

f0 log�f0� h/fh�P� < ε/2

}

> 0

if f0 has support in �−k� k�. Then

∫

f0 log�f0� h/fh�P� ≤
∫ k

−k
f0�x� log

(

∫ k

−kφh�x− θ�f0�θ�dθ
∫ k

−kφh�x− θ�dP�θ�

)

dx�

The rest of the argument proceeds on the same lines as that in the last

theorem. �

While the last two theorems are valid for general priors on � , the next

theorem makes strong use of the properties of the Dirichlet process. For any

P in � , set P�x� = P�x�∞� and P�x� = P�−∞� x�.

Theorem 5. Let Dα be a Dirichlet process on � . Let l1� l2� u1� u2 be func-

tions such that for some k > 0 for all P in a set of Dα-probability 1, there exists

x0 (depending on P) such that

P�x� ≥ l1�x�� P̄�x+ k log x� ≤ u1�x� ∀x > x0 and

P�x� ≥ l2�x�� P�x− k log �x�� ≤ u2�x� ∀x < −x0�
(5)
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For any h > 0, define

Lh�x� =
{

φh�k log x��l1�x� − u1�x��� if x > 0�

φh�k log �x���l2�x� − u2�x��� if x < 0�

and assume that Lh�x� is positive for sufficiently large �x�. Let f0 be the “true”

density and f0� h = φh ∗ f0. Assume that 0 is in the support of the prior on h.

If f0 is in the support of Dα [equivalently, supp�f0� ⊂ supp�α�] and satisfies:

(i) limh↓0

∫

f0 log�f0/f0� h� = 0;

(ii) for all h,

lim
a↑∞

∫ ∞

−∞
f0�x� log

(

f0� h�x�
∫ a

−aφh�x− θ�f0�θ�dθ

)

dx = 0�

(iii) for all h,

lim
M→∞

∫

�x�>M
f0�x� log

(

f0� h�x�
Lh�x�

)

dx = 0�

then 	�Kε�f0�� > 0 for all ε > 0.

Remark 2. It follows from Doss and Sellke (1982) that if α =Mα0, where

α0 is a probability measure, then

l1�x� = exp�−2 log � log α0�x��/α0�x���
l2�x� = exp�−2 log � log α0�x��/α0�x���

u1�x� = exp

[

− 1

α0�x+ k log x�� log α0�x− k log x��2
]

�

u2�x� = exp

[

− 1

α0�x− k log �x��� log α0�x− k log �x���2
]

satisfy the requirements of (5). For example, when α0 is double exponential,

we may choose any k > 2 and the requirements of the theorem are satisfied

if f0 has finite moment generating function in an open interval containing

�−1�1�.

Remark 3. The following argument provides a method for the verification

of Condition 1 of Theorem 4 and Theorem 5 for many densities. Suppose that

f0 is continuous a.e.,
∫

f0 log f0 <∞ and further assume that, as for unimodal

densities, there exists an interval �a� b� such that, inf�f�x�
 x ∈ �a� b�� =
c > 0 and f0 is increasing in �−∞� a� and is decreasing in �b�∞�. Note that

�x
 f0�x� ≥ c� is an interval containing �a� b�. Replacing the original �a� b� by

this new interval, we may assume that f0�x� ≤ c outside �a� b�. Choose h0

such that N�0� h0� gives probability 1/3 to �0� b−a�. Let h < h0. Let + denote

the cumulative distribution function of N�0�1�. If x ∈ �a� b� then

f0� h�θ� ≥
∫ b

a
f0�θ�φh�x− θ�dθ ≥ c�+��b− x�/h� ++��x− a�/h� ≥ c/3�
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If x > b, then

f0� h�θ� ≥
∫ x

a
f0�θ�φh�x− θ�dθ ≥ f0�x�

(

1
2
++��b− a�/h� − 1

)

≥ f0�x�/3�

Using a similar argument when x < a, we have that the function

g�x� =
{

log�3f0�x�/c�� if x ∈ �a� b��
log 3� otherwise,

dominates log�f0/f0� h� for h<h0 and is Pf0
-integrable. Since f0�x�/f0� h�x�→

1 as h→ 0 whenever x is a continuity point of f0 and
∫

f0 log�f0/f0� h� ≥ 0, an

application of (a version of) Fatou’s lemma shows that
∫

f0 log�f0/f0� h� → 0

as h→ 0.

Proof of Theorem 6. Let ε > 0 be given and δ > 0, to be chosen later.

First find h0 so that
∫

f0 log�f0/f0� h� < ε/2 for all h < h0. Fix h < h0. Choose

k1 such that

∫ ∞

−∞
f0�x� log

(

f0� h�x�
∫ k1

−k1
φh�x− θ�f0�θ�dθ

)

dx < δ�

Let p = P�−k1� k1� and let p0 denote the corresponding value under P0. We

may assume that p0 > 0. Let P∗ denote the conditional probability under P

given �−k1� k1�, that is, P∗�A� = P�A∩�−k1� k1��/p (if p > 0) and P∗
0 denoting

the corresponding objects for P0. Let E be the event �P
 �p/p0−1� < δ�. Since

P0 is in the support of Dα, Dα�E� > 0. Now choose x0 > k1 such that:

(i)
∫

�x�>x0

f0�x� log

(

f0� h�x�
Lh�x�

)

dx < δ;

(ii) Dα�E ∩F� > 0, where

F =















P

P�x� ≥ l1�x�� P�x+ k log x� ≤ u1�x� ∀ x > x0

and

P�x� ≥ l2�x�� P�x− k log �x�� ≤ u2�x� ∀ x < −x0















�

By Egoroff ’s theorem, it is indeed possible to meet (ii).

Consider the event

G =
{

P
 sup
−x0<x<x0

log

(∫ k1

−k1
φh�x− θ�dP∗

0�θ�
∫ k1

−k1
φh�x− θ�dP∗�θ�

)

< 2δ

}

�

We shall argue that Dα�E ∩ F ∩ G� > 0 and if P ∈ �E ∩ F ∩ G� then
∫

f0 log�f0/fh�P� < ε for a suitable choice of δ.

The events E∩F and G are independent under Dα, and hence, to prove the

first statement, it is enough to show that Dα�G� > 0. By intersecting G with E

and using the fact that �φh�x−θ�
 −x0 ≤ x ≤ x0� is uniformly equicontinuous

when θ ∈ �−k1� k1�, we can conclude that Dα�G� ≥ Dα�G ∩ E� > 0 (see the

proof of Theorem 3).
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Now,
∫

f0 log�f0/fh�P�

≤
∫ ∞

−∞
f0�x� log�f0�x�/f0� h�x��dx

+
∫

�x�≤x0

f0�x� log

(

f0� h�x�
∫ k1

−k1
φh�x− θ�f0�θ�dθ

)

dx

+
∫

�x�≤x0

f0�x� log

(∫ k1

−k1
φh�x− θ�f0�θ�dθ

∫ k1

−k1
φh�x− θ�dP�θ�

)

dx

+
∫

�x�>x0

f0�x� log

(

f0� h�x�
∫

φh�x− θ�dP�θ�

)

dx�

If P ∈ E ∩F ∩G, then for x > x0,

∫ ∞

−∞
φh�x− θ�dP�θ� ≥

∫ x+k log x

x
φh�x− θ�dP�θ�

≥ φh�k log x��P�x� −P�x+ k log x��
and since P ∈ F, the expression above is greater than or equal to

φh�k log x��l1�x� − u1�x�� = Lh�x��
Using a similar argument for x < −x0, we get

∫

�x�>x0

f0�x� log

(

f0� h�x�
fh�P�x�

)

dx ≤
∫

�x�>x0

f0�x� log

(

f0� h�x�
Lh�x�

)

dx < δ�

Since P ∈ E ∩G, for each x in �−x0� x0�,

log

(∫ k1

−k1
φh�x− θ�f0�θ�dθ

∫ k1

−k1
φh�x− θ�dP�θ�

)

= log

(

p0

p

∫ k1

−k1
φh�x− θ�dP∗

0�θ�
∫ k1

−k1
φh�x− θ�dP∗�θ�

)

< 3δ�

All these imply that if δ is sufficiently small, then P ∈ E ∩F ∩G implies

that
∫

f0 log�f0� h/fh�P� < ε. �

A few remarks about the case when h is fixed a priori to be, say h0, are in

order. In this case, the induced prior is supported by �h0
= �fh0�P


 P ∈ � �,
and the following facts are easy to establish from Scheffe’s theorem.

1. The map P �→ fh0�P
is one-to-one, onto �h0

. Further Pn → P0 weakly if

and only if �fh0�Pn
− fh0�P

� → 0.

2. �h0
is a closed subset of � .

Fact (2) shows that �h0
is the support of 	 and hence consistency is to be

sought only for densities of the form fh0�P
. Theorem 3 implies consistency for

such densities. Fact (1) shows that if the interest is in the posterior distribution
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of P, then weak consistency at P0 is equivalent to strong consistency of the
posterior of the density at fh0�P

.

4. Dirichlet mixtures: strong consistency. As before, we consider the
prior which picks a random density φh ∗P, where h is distributed according to
µ and P is chosen independently of h according to Dα. Since we view h as cor-
responding to window length, it is only the small values of h that are relevant,
and hence we assume that the support of µ is �0�M� for some finite M.

In this model the prior is concentrated on

� =
⋃

0<h<M

�h�

where �h = �φh ∗P
 P ∈M�.
In order to apply Theorem 2, given U = �f
 �f−f0� < ε�, for some δ < ε/4,

we need to construct sieves ��n
 n ≥ 1� such that J�δ��n� ≤ nβ and �
c
n has

exponentially small prior probability. Since, as an →∞, Dα�P
 P�−an� an� >
1− δ� → 1, a natural candidate for �n is

�n =
⋃

hn<h<M

�
an
h

where hn ↓ 0 , an increases, and �
an
h = �φh ∗ P
 P�−an� an� > 1 − δ�. What

is then needed is an estimate of J�δ��n�. The next theorem, whose proof is
deferred to the Appendix, provides such an estimate.

Theorem 6. Let � M
h�a� δ =

⋃

h<h′<M�fh�P
 P�−a� a� ≥ 1− δ�. Then

J�δ�� M
h�a� δ� ≤K

a

h
�

where K is a constant that depends on δ and M, but not on a or h.

The next theorem formulates the above discussion in terms of strong con-
sistency for Dirichlet-normal mixtures.

Theorem 7. Suppose that the prior µ has support in �0�M�. If for each
δ > 0, β > 0, there exists sequences an, hn ↓ 0 and constants β0� β1 (all
depending on δ, β and M) such that:

(i) for some β0, Dα�P
 P�−an� an� < 1− δ� < exp�−nβ0�;
(ii) µ�h < hn� ≤ exp�−nβ1�;

(iii) an/hn < nβ,

then f0 is in the K–L support of the prior implies that the posterior is strongly
consistent at f0.

Remark 4. What is involved above is a balance between an and hn. Since
δ and M are fixed, the constant K obtained in Theorem 6 does not play any
role. If α has compact support, say �−a� a�, then we may trivially choose an = a
and so hn may be allowed to take values of the order of n−1 or larger. If α is
chosen as a normal distribution and h2 is given a (right truncated) inverse
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gamma prior, then the conditions of the theorem are satisfied if an is of the

order
√
n and hn = C/

√
n for a suitable (large) C (depending on δ and β).

5. Extensions. The methods developed in this paper towards the simple

mixture models can be used to study many of the variations used in practice.

Some of these are discussed in this section.

1. It is often sensible to let the prior depend on the sample size; see, for

instance, Roeder and Wasserman (1995). A case in point in our context

would be when the precision parameter M = α�R� is allowed to depend on

the sample size.

If 	n is the prior at stage n, then Theorem 2 goes through if the assump-

tion 	�Kε�f0�� > 0 is replaced by lim infn→∞	n�Kε�f0�� > 0. This follows

from the fact that Barron’s theorem (see Appendix) goes through with a

similar change. The only stage that needs some care is an argument which

involves Fubini, but it can be handled easily.

2. Another way the Dirichlet mixtures can be extended is by including a fur-

ther mixing. Formally, let X1�X2� � � � be observations from a density f

where f = φh ∗P, P ∼ Dατ
, h ∼ π, τ is a finite-dimensional mixing param-

eter which is also endowed with some prior ρ. Let f0 be the true density.

We are interested in verifying the Schwartz condition at f0 and conditions

for strong consistency.

By Fubini’s theorem, Schwartz’s condition is satisfied for the mixture if

ρ
{

τ
 the Schwartz condition is satisfied with ατ
}

> 0�(6)

(a) In particular, if f0 has compact support, then (6) reduces to

ρ
{

τ
 supp�f0� ⊂ supp�ατ�
}

> 0�(7)

(b) Suppose f0 is not of compact support and τ = �µ�σ� gives a location-

scale mixture. So we have to seek for the condition so that the Schwartz

condition holds with the base measure α��· − µ�/σ�. We report results

only for α0 = α/α�R� double exponential or normal.

When α0 is double exponential, a sufficient condition is that

f0�µ + σx� has finite moment generating function on an open in-

terval containing �−1�1�. When α is normal, we need the integrability

of x log �x� exp�x2/2� with respect to the density f0�µ+ σx�. For exam-

ple, if the true density is N�µ0� σ0�, then the required condition will be

σ < σ0, so we need

ρ
{

�µ�σ�
 σ < σ0

}

> 0�

We omit the proof of these statements.

(c) For strong consistency, we further assume that the support of the prior

ρ [for �µ�σ�] is compact. For each �µ� τ�, find the corresponding an�µ� τ�
of Theorem 7, that is, satisfying

Dα�µ� τ�
{

P
 P�−an�µ� τ�� an�µ� τ�� < 1− δ
}

< exp�−nβ0�
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for some β0 > 0. Now choose an = supµ�σ an�µ�σ�. The order of an will

then be the same as that of the individual an�µ�σ�’s.

(d) In some special cases, it is also possible to allow unbounded location

mixtures. For example, when the base measure is normal, a normal

prior for the location parameter is both natural and convenient. Strong

consistency continues to hold in this case as long as σ has a compactly

supported prior. To see this, observe that ρ��µ� > √
n� is exponentially

small and sup�µ�≤√n�σ an�µ�σ� is again of the order of
√
n.

APPENDIX

Schwartz (1965) showed that for a set U, 	�U�X1�X2� � � � �Xn� → 1 a.s.

Pf0
if:

1. 	�Kε�f0�� > 0 for all ε > 0;

2. there exists a uniformly consistent sequence of tests for testing H0
 f = f0

versus H1
 f ∈ Uc, that is, there exist tests φn�X1�X2� � � � �Xn� such that

as n→∞,

Ef0
φn�X1�X2� � � � �Xn� → 0 and inf

f∈Uc
Efφn�X1�X2� � � � �Xn� → 1�

When U is a weak neighborhood of f0, it is not hard to see that condition

(ii) of Theorem 1 holds. This immediately leads to the statement in Section 2.

Barron (1989) and LeCam (1973) show that, in general, when U is a strong

neighborhood of f0, there does not exist a uniformly consistent sequence of

tests for testing H0
 f = f0 versus H1
 f ∈ Uc. This fact renders that the

Schwartz theorem inapplicable in establishing strong consistency. Our ap-

proach to strong consistency is based on the following result of Barron (1988),

which is also discussed in Barron, Schervish and Wasserman (1998).

Theorem 8 (Barron). Let 	 be a prior on � , f0 ∈ � and U be a neighbor-

hood of f0. Assume that 	�Kε�f0�� > 0 for all ε > 0. Then the following are

equivalent:

(i) There exists a β0 such that

Pf0

{

	�Uc�X1�X2� � � � �Xn� > exp�−nβ0� infinitely often
}

= 0�

(ii) There exist subsets Vn�Wn of � , positive numbers c1� c2� β1� β2 and a

sequence of tests �φn�X1�X2� � � � �Xn�� such that:

(a) Uc ⊂ Vn ∪Wn,

(b) 	�Wn� ≤ c1 exp�−nβ1�,
(c) Pf0

�φn�X1�X2� � � � �Xn�>0 infinitely often�=0 and

inf
f∈Vn

Efφn ≥ 1− c2 exp�−nβ2��

A proof may be found in Barron (1998).
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Proof of Theorem 2. Let U = �f
 �f − f0� < ε�, Vn = �n ∩ Uc and

Wn = �
c
n . We will argue that the pair �Vn�Wn� satisfies (ii) of Theorem 2.

Clearly Uc ⊂ Vn ∪Wn and 	�Wn� < c1 exp�−nc2�.
Let g1� g2� � � � � gk in � be such that Vn ⊂

⋃k
i=1Gi where Gi = �f
 �f −

gi� < δ�. Let fi ∈ Vn ∩ Gi. Then for each i = 1�2� � � � � k, �f0 − fi� > ε

and if f ∈ Gi, then �fi − f� < 2δ. Consequently, for each i = 1�2� � � � � k, if

Ai = �x
 f0�x� < fi�x�� then

Pf0
�Ai� = αi and Pfi

�Ai� = γi > αi + ε/2�

Hence if f ∈ Gi, then Pf�Ai� > γi − δ > αi + ε/2− δ.

Let

Bi =
{

�x1� x2� � � � � xn�

1

n

n
∑

j=1

IAi
�xj� ≥

�γi + αi�
2

}

�

A straightforward application of Hoeffding’s inequality shows that

Pf0
�Bi� ≤ exp�−nε2/8��

On the other hand, if f ∈ Gi,

Pf�Bi� ≥ Pf

{

1

n

n
∑

j=1

IAi
�xj� −Pf�Ai� ≥

�αi − γi�
2

+ δ
}

≥ Pf

{

n−1
n
∑

j=1

IAi
�xj� −Pf�Ai� ≥ −ε

4
+ δ

}

�

(8)

Applying Hoeffding’s inequality to the negative of the indicator variables,

the above probability is greater than or equal to

1− exp�−2n�ε/4− δ�2��

If we set

φn�X1�X2� � � � �Xn� = max
1≤i≤k

IBi
�X1�X2� � � � �Xn��

then

Ef0
φn ≤ k exp�−nε2/8�

and

inf
f∈Vn

Efφn ≥ 1− exp�−2n�ε/4− δ�2��

By choosing log k = J�δ��n� < nβ, we have Ef0
φn ≤ exp�−n�ε2/8 − β��.

Since β < ε2/8, all that is left to show is

Pf0

{

φn > 0 infinitely often
}

= 0�

This follows easily from an application of Borel–Cantelli and from the fact

that φn takes only values 0 or 1. �
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Proof of Theorem 6. We prove Theorem 6 through a sequence of lem-

mas. Let �h�a = �fh�P
 P�−a� a� = 1�. Without loss of generality, we shall

assume that a ≥ 1.

Lemma 1. J�2δ��h�a� ≤ �
√

8
π

a
hδ
+ 1��1+ log� 1+δ

δ
��.

Proof. For any θ1 < θ2,

�φθ1� h
−φθ2� h

�

= 1√
2πh

∫

x>�θ1+θ2�/2
exp�−�x− θ2�2/�2h2��dx

− 1√
2πh

∫

x>�θ1+θ2�/2
exp�−�x− θ1�2�/�2h2��dx

+ 1√
2πh

∫

x<�θ1+θ2�/2
exp�−�x− θ1�2/�2h2��dx

− 1√
2πh

∫

x<�θ1+θ2�/2
exp�−�x− θ2�2/�2h2��dx

= 4
1√
2π

∫ �θ2−θ1�/�2h�

0
exp�−x2/2�dx

≤
√

2

π

�θ2 − θ1�
h

�

Given δ, let N be the smallest integer greater than
√

8a/�√πhδ�. Divide

�−a� a� into N intervals. Let

Ei =
(

−a+ 2a�i− 1�
N

�−a+ 2ai

N

]


 i = 1�2� � � � �N�

and let θi be the midpoint of Ei. Note that if θ� θ′ ∈ Ei, then �θ− θ′� < 2a/N,

and consequently �φθ� h −φθ′� h� < δ.

Let �N = ��P1�P2� � � � �PN�
 Pi ≥ 0�
∑N
i=1Pi = 1� be the N-dimensional

probability simplex and let �
∗
N be a δ-net in �N, that is, given P ∈ �N, there

is P∗ = �P∗
1�P

∗
2� � � � �P

∗
N� ∈ �

∗
N such that

∑N
i=1 �Pi −P∗

i � < δ.

Let �
∗ = �∑N

i=1P
∗
iφθi� h
 P

∗ ∈ �
∗
N�. We shall show that �

∗ is a 2δ net in

�h�a. If fh�P = φh ∗ P ∈ �h�a, set Pi = P�Ei� and let P∗ ∈ �
∗
N be such that

∑N
i=1 �Pi −P∗

i � < δ. Then

∥

∥

∥

∥

∫

φθ� h dP�θ� −
N
∑

i=1

P∗
iφθi� h

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

φθ� h dP�θ� −
N
∑

i=1

∫

IEi
�θ�φθi� h dP�θ�

∥

∥

∥

∥

+
∥

∥

∥

∥

N
∑

i=1

Piφθi� h −
N
∑

i=1

P∗
iφθi� h

∥

∥

∥

∥
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≤
∫ N
∑

i=1

IEi
�θ��φθ� h −φθi� h�dP�θ� +

N
∑

i=1

�Pi −P∗
i �

≤ 2δ�

This shows that J�2δ��h�a� ≤ J�δ��N�, and we calculate J�δ��N� along

the lines of Barron, Schervish and Wasserman (1998) as follows.

Since �Pi − P∗
i � < δ/N for all i implies that

∑N
i=1 �Pi − P∗

i � < δ, an upper

bound for the cardinality of the minimal δ-net of �N is given by

# cubes of length δ/N covering �0�1�N

× volume of

{

�P1�P2� � � � �PN�
 Pi ≥ 0�
N
∑

i=1

Pi ≤ 1+ δ
}

= �N/δ�N�1+ δ�N 1

N!
�

So,

J�δ��N� ≤N logN−N log δ+N log�1+ δ� − logN!

≤N logN−N log δ+N log�1+ δ� −N logN+N

=N

(

1+ log 1+δ
δ

)

≤
(

√

8

π

a

hδ
+ 1

)(

1+ log
1+ δ
δ

)

� �

Lemma 2. Let �h�a� δ = �fh�P
 P�−a� a� ≥ 1 − δ�. Then J�3δ��h�a� δ� ≤
J�δ��h�a�.

Proof. Let f = φh ∗ P ∈ �h�a� δ. Consider the probability measure P∗

defined by P∗�A� = P�A ∩ �−a� a��/P�−a� a�. Then the density f∗ = φh ∗P∗

clearly belongs to �h�a and further satisfies �f− f∗� < 2δ. �

Lemma 3. Let M > 0 and let � M
h�a� δ =

⋃

h<h′<M�h′� a� δ. If a > M/
√
δ, then

�
M
h�a� δ ⊂ �h�2a�2δ�

Proof. By Chebyshev’s inequality, if h′ <M then the probability of �−a� a�
under N�0� h′� is greater than 1− δ. If f = φh′ ∗P, then since φh′ = φh ∗φh∗ ,
where h∗ <M, f = φh ∗φh∗ ∗P and �φh∗ ∗P��−a� a� > 1− 2δ. �

Putting Lemma 1, Lemma 2 and Lemma 3 together, we have Theorem 6. �
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