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1. Introduction

The conjectured equivalence of type IIB superstring theory on AdS5 × S5 to the

boundary N = 4 supersymmetric SU(N) Yang–Mills conformal field theory [1,2,3] has

been tested by a variety of calculations at leading order in the large-N limit and at large

values of the ’t Hooft coupling, λ = g2
Y M

N/4π (g2
Y M

is the Yang–Mills coupling constant).

Many of these tests, such as those of certain two and three point correlation functions, have

relied on non-renormalisation theorems/conjectures [4] and therefore allow the meaningful

comparison of the regimes of strong and weak ’t Hooft coupling.

Clearly, the ideal way of developing the AdS/CFT correspondence beyond the lim-

ited large λ region in which it has so far been studied would be to explicitly quantize

IIB superstring theory in an AdS5 × S5 background. Unfortunately, this is a daunting

problem, even at tree level – in part because of the presence of a nonzero condensate of

R⊗R background fields associated with the nonzero F5 flux. In the absence of an explicit

construction of string amplitudes most concrete calculations have made use of known low

order terms in the expansion of the effective supergravity action in powers of the dimen-

sionless parameter α′/L2 (L is the size of the AdS5 and S5 background and α′1/2
is the

string distance scale). In fact, knowing the complete effective action for the massless fields

of string theory would be sufficient to compute the Yang-Mills correlation functions of the

relevant dual operators, but we are far from achieving this.

Nevertheless, in the following we will show how some reasonable assumptions concern-

ing the structure of the low energy expansion of type IIB string theory lead to a number

of non-renormalisation theorems in the instanton sector of certain Yang-Mills correlation

functions. To be concrete, we will consider the D-instanton contributions to the four gravi-

ton scattering amplitude and arrive at statements regarding the corresponding Yang-Mills

instanton terms in the AdS/CFT dual correlation functions of four energy-momentum ten-

sors. Similar statements also apply to any of the Yang-Mills correlations functions that

are related by supersymmetry. Specifically, what we will see is that, for certain ‘protected’

parts of the correlation functions, the ’t Hooft expansion around an instanton background

has only a finite number of perturbative terms in λ at each order in 1/N . In particular, we

will see that at leading order in N only the λ-independent semi-classical term arises. This

would account for the precise agreement (for any instanton number K, at leading order in

N) between the D-instanton contributions, at leading order in the α′ (or 1/λ) expansion [5],

with the semi-classical (small-λ) contributions of Yang–Mills instantons [6,7]. In the case
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of two and three point functions the space-time dependence is completely determined by

(super) conformal invariance. However, the matching of the string theory D-instanton and

Yang–Mills instanton contributions to the protected correlation functions involves match-

ing non-trivial functions of the space-time positions (functions of two independent cross

ratios in the case of the correlator of four stress tensors), together with specific dependence

on N , λ and the instanton number.

1.1. Overview of the Correspondence

The AdS/CFT conjecture [1] gives a relation between the parameters of the string

theory – the dimensionless AdS5 × S5 scale L2/α′, the R ⊗ R scalar field, C(0), and the

coupling constant g = eφ = τ−1
2 – and those of the Yang–Mills theory with gauge group

SU(N).

g =
g2

Y M

4π
, 2πC(0) = θ,

L4

α′2
= g2

Y M
N ≡ 4πλ, (1.1)

where θ is the constant axionic angle. This means that the constant value of the complex

coupling constant, τ ≡ τ1 + iτ2 = C(0) + ie−φ, in the AdS5 × S5 background is identified

with the complex Yang–Mills coupling,

τ =
θ

2π
+ i

4π

g2
Y M

. (1.2)

In the following, τ will always be assumed to be equal to this constant value (mostly with

τ−1
2 << 1).

According to the prescription of [2,3] the amplitudes of the bulk superstring theory

in the AdS5 × S5 background with fields propagating to specified values at points on the

boundary are equivalent to correlation functions of composite operators in the boundary

Yang–Mills theory. The boundary values of the bulk fields are interpreted as sources

coupling to the operators in the Yang–Mills theory. Collectively denoting the independent

cross ratios of the positions of the boundary fields by η, the resulting amplitude for an

n-point function in the gauge theory can be written as a finite sum over contributions of

the form

Hs
n

(

α′

L2
, τ, τ̄ , η

)

An = HY M
n (λ, N, θ, η)An. (1.3)

The right-hand side is just a rewriting in terms of the variables N , λ and θ in which it

is natural to express the correlation functions of the Yang–Mills theory. The finite sum

involves factors An which span an independent set of tensor structures consistent with
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the space-time quantum numbers and symmetries of the n-point functions. Moreover, the

An’s all have a common factor, also dictated by symmetry (a function of the space-time

separations |xi − xj | ), which carries the dimension of the correlation function. Therefore,

almost all the non-trivial information about the correlation functions really lie in the

functions Hn.

In the following, we will be exclusively concerned with the large N limit of (1.3). The

expansion of gauge theory amplitudes in 1/N translates into a small g expansion in the

left-hand side of (1.3). The ’t Hooft expansion of Yang–Mills amplitudes takes the familiar

form (for convenience, we will drop the subscript n in much that follows),

H
Y M

(λ, N, θ, η) = N2

[

H
Y M

0 (λ, η) +
1

N2
H

Y M

1 (λ, η) + . . . +
1

N2k
H

Y M

k (λ, η) + . . .

]

+ . . . .

(1.4)

Here the second ellipsis includes Yang–Mills instanton terms of the form e−2π|K|N

λ
+iKθ,

each coming with its series of fluctuations. Although these instanton terms are exponen-

tially suppressed they are uniquely specified by their phase. It is the structure of the ’t

Hooft expansion of fluctuations around a particular instanton background that we will

focus on in Sec. 2.

In the correspondence with the dual string theory, the terms in (1.4) which are powers

of 1/N arise from perturbative string contributions with k being the world sheet genus.

The instanton terms which are suppressed by powers of e−N are non-perturbative and can

be identified with D-instanton contributions [8]. Though the form of the 1/N expansion

in (1.4) was originally motivated by weakly coupled perturbation theory, the existence of

the dual string theory with the identifications (1.1) implies such a form should apply for

all λ. In particular, we will exploit the existence of a well defined expansion for large λ

that is defined by the α′ expansion of the string theory.

2. Instanton Non-renormalisation Theorems

The instanton calculations in [6,7] involved correlation functions of various combi-

nations of the superconformal currents that make up a short (256 component) N = 4

supermultiplet. However, the general structure of interest to us does not depend on which

of these correlation functions is considered so we will focus on a specific tensor structure

in the correlation function of four stress tensors.
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This particular tensor structure can be defined by its relation, via the AdS/CFT

correspondence, to the R4 term in the type IIB effective action (where R denotes the

Weyl curvature). This ten-dimensional term has the tensor structure

R4 ≡ tM1···M8tN1···N8
RN1N2

M1M2
· · ·RN7N8

M7M8
(2.1)

with t being a standard eighth-rank tensor. We wish to consider the linearization of

the four curvatures around the AdS5 × S5 background, keeping only the polarisations in

the AdS5 directions. The four-graviton scattering amplitude is expressed as a functional

of the boundary (S4) values of the graviton by attaching a spin-two bulk-to-boundary

propagator to each graviton leg in the linearized vertex. Since the boundary graviton field

is interpreted in the Yang–Mills theory as the source for the stress tensor, this procedure

defines a particular tensor contribution to the correlation function of four stress tensors

[5] which can be expressed as

L2

α′
τ

1/2
2 f

(0,0)
1 (τ, τ̄)g1(η)A4. (2.2)

The α′−1
dependence reflects the fact that the R4 term is of order α′3 relative to the

Einstein–Hilbert term. The function A4 has, in addition to the particular tensor structure

determined by the bulk-boundary correspondence described above, a factor of
∏

i<j |xi −

xj |
− 8

3 , which is fixed by conformal invariance. The residual dependence on the positions

of the boundary operators is contained in the function of the two independent cross-ratios

which has been denoted as g1(η). Explicit expressions for g1(η) in the case of closely

related four-point functions were obtained in [6,9]. The modular invariant function of the

(complex) string coupling, f
(0,0)
1 (τ, τ̄), is a nonholomorphic Eisenstein series that has the

Fourier expansion in powers of e2πiτ1 [8],

f
(0,0)
1 (τ, τ̄) ≡

∑

(m,n)6=(0,0)

τ
3/2
2

|m + nτ |3
=

∞
∑

K=−∞

F1
K(τ2)e

2πiKτ1

= 2ζ(3)τ
3

2

2 +
2π2

3
τ
− 1

2

2 + 4π

∞
∑

K=1

|K|1/2µ(K, 1)

×
(

e2πiKτ + e−2πiKτ̄
)

(

1 +
∞
∑

k=1

(4πKτ2)
−k Γ(k − 1/2)

Γ(−k − 1/2)k!

)

.

(2.3)

Here µ(K, 1) =
∑

d|K d−2. The K = 0 term contains the perturbative tree-level and one-

loop contributions while the K 6= 0 terms are D-instanton contributions. The leading
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τ2 independent term in the charge-K D-instanton sector was found to agree with a weak

coupling Yang-Mills calculation in [7] (at least for the related sixteen-dilatino correlation

function).

More generally, in the AdS5 ×S5 background there will be contributions proportional

to A4 which are of higher order in α′. These come from higher derivative terms in the

effective action and can be studied in a Taylor expansion for small α′/L2,

Hs

(

α′

L2
, τ, τ̄ , η

)

A4 =
∑

l=1

(

α′

L2

)l−2

Fl(η, τ, τ̄) A4, (2.4)

where the R4 contribution is the first (l = 1) term in the series (so that F1(η, τ, τ̄) =

g1(η)τ
1/2
2 f

(0,0)
1 (τ, τ̄)). Examples of higher derivative terms in the ten dimensional effective

action that would contribute to (2.4) include terms of the general form (in string frame)

(α′)2k−3

∫

d10x
√

G(10) e(5k−11/2)φ F 4k−4
5 R4 f

(0,0)
k (τ, τ̄). (2.5)

The modular functions f
(0,0)
k that appear here, have been conjectured to be generalised

Eisenstein functions [10,11]. In the AdS5 ×S5 background with its constant five-form field

strength F5, these terms can give contributions proportional to A4. Another class of terms

suggested in [12,13] involve derivatives acting on R4, which may also give nonzero contri-

butions ∝ A4 in the AdS5 ×S5 background. There might also be terms that contribute to

A4 that cannot be expressed in terms of a local ten-dimensional action.

What about the possibility of terms which are non-perturbative in α′, which are

exponentially suppressed in the Taylor expansion, such as e−L2/α′

? For small α′/L2, we

understand terms of this type as coming from non-trivial saddle points of the world sheet

theory, namely world-sheet instantons. But there are no topologically non-trivial two-

cycles for the world-sheet to wrap in AdS5 ×S5 so such terms cannot appear in the string

genus expansion.3 One might argue that this does not rule out e−L2/α′

contributions

associated with non-perturbative τ dependence. But this also seems unlikely since we

understand such non-perturbative terms as coming from D-instantons and again there is

no obvious origin for world-sheet instanton contributions in a D-instanton background.

We will therefore make the ansatz that (2.4) is the complete expression for the coefficient

of A4 in the correlation function of four energy-momentum tensors, at least for sufficently

3 In other instances of large N gauge theories dual to closed strings, world sheet instantons

are present and play an important role [14].
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small α′/L2. In practice, we will only need the weaker assumption that this is so for the D-

instanton contributions to (2.4) (the terms with phases e2πiKτ1, |K| ≥ 1). Our arguments

will show that this assumption is, at least, self consistent.

The SL(2, Z) duality symmetry of the IIB theory is related via the AdS/CFT corre-

spondence to the Montonen–Olive duality of N = 4 supersymmetric Yang–Mills theory.

This requires that Fl(τ, τ̄ , η) has specific modular properties which means that it has the

form,

Fl(τ, τ̄ , η) = τ
1− l

2

2 Hl(τ, τ̄ , η) (2.6)

where Hl(τ, τ̄ , η) is modular invariant (a scalar under SL(2, Z)). The explicit power of

τ
1− l

2

2 arises from the transformation in the effective action from the string to the Einstein

frame (where the metric is SL(2, Z) neutral) due to the factors of the metric appearing

with the powers of α′/L2. In terms of Yang-Mills variables, this is easy to see since the

coefficient of Hl in (2.4) is the combination (from (2.4) and (2.6))

(

α′

L2

)l−2

τ
1− l

2

2 =
1

λ
l

2
−1

g
l

2
−1

s = N− l

2
+1, (2.7)

which is inert under SL(2, Z).

Now consider the non-perturbative part of the modular function Hl(τ, τ̄ , η) coming

from BPS charge-K D-instantons. This amounts to picking out the saddle point (when

g = τ−1
2 << 1) with the exponential e2π(iKτ1−|K|τ2) dependence.4 We expect this to take

the generic form,

Hl(τ, τ̄ , η)|K = d(K, l)e−2π(|K|τ2−iKτ1)[h
(l)
0 (η) + τ−1

2 h
(l)
1 (η) + τ−2

2 h
(l)
2 (η) + . . .], (2.8)

an expression which deserves further explanation. Firstly, the successive terms in this series

are spaced in integer powers of τ2
−1 since they arise in string theory from world-sheet

configurations with increasing numbers of boundaries with Dirichlet conditions and/or

handles. The functions h
(l)
i (η) (which also depend on the instanton charge K), that appear

here, are severely constrained by the fact that Hl is a modular function. Secondly, we have

assumed that there is no τ2 = g−1 dependence in the overall factor d(K, l). Any such

4 In the charge-K sector with phase e2πiKτ1 there could be contributions from non-BPS con-

figurations of K + K′ instantons and K′ anti-instantons. These would be suppressed by an

additional factor of e−4πK′N/λ. Due to their different N dependence such terms would not enter

our considerations, even if they were present.
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dependence would have to be a power that arises from the zero mode integrations around

the D-instanton. This power should not depend on l. But we know from the l = 1 case

(2.3) that there is no such overall factor.5 This statement should also be a consequence

of supersymmetric cancellations of bosonic zero mode contributions with fermionic ones.

Therefore, this might be special to a class of correlation functions such as the ones in the

short multiplet we are concerned with.

Rewriting the amplitude in terms of N , λ and θ and summing the total contribution

to the K instanton background from all powers in the derivative expansion (all l) gives

(using (2.4),(2.6) and (2.8))

HY M |K =e−2π
|K|N

λ
+iKθ

∑

l=1

d(K, l)N1− l

2

[

h
(l)
0 (η) +

(

λ

N

)

h
(l)
1 (η) +

(

λ

N

)2

h
(l)
2 (η) + . . .

]

.
(2.9)

This can be reorganized into a ’t Hooft expansion by grouping together the powers of 1/N ,

which gives the perturbation expansion around the BPS K-instanton configuration,

HY M |K = e−2π
|K|N

λ
+iKθ

∑

m=1

N1−m

2 fm(λ, η). (2.10)

At first sight it might seem surprising that the series of fluctuations about an instanton

should have a ’t Hooft expansion in powers of N−1/2. From the string viewpoint the

spacing by half-integer powers of 1/N arises very naturally from the presence of all integer

powers of α′ in (2.4). Furthermore, this feature is confirmed directly in the Yang–Mills

theory by a saddle point analysis of the contribution of the exact zero-mode measure (as

for example in (5.7) of [7]). For general instanton number K > 1 the fluctuations around

the saddle point are in powers of N−1/2. The series of fractional powers of N therefore

arises from the K-instanton measure. Only in the case K = 1 does the series consist of

terms with integer spaced powers of 1/N (starting with N1/2).

The key point following from the structure of (2.9) is that the power of λ in the

expansion is always bounded by that of N . In other words, each function fm(λ, η) in

(2.10) is a polynomial in λ,

fm(λ, η) =

[ m−1

2
]

∑

k=0

λkh
(m−2k)
k (η). (2.11)

5 Actually, the essence of our conclusion will not be affected even if we had an overall factor

of gnl , with nl taking values over non-negative integers.
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For example,

f1(λ, η) = h
(1)
0 (η), f2(λ, η) = h

(2)
0 (η), f3(λ, η) = h

(3)
0 (η) + λh

(1)
1 (η), . . . .

(2.12)

By our initial arguments, this is the complete form of the answer for small α′ or equivalently

large λ. Barring the (unlikely) possibility of a phase transition as a function of λ, the

knowledge that fm is a polynomial in positive powers of λ at large λ allows it to be

analytically continued to weak ’t Hooft coupling.6 But then the polynomial form of fm

means that there are only a finite number of terms in the small-λ perturbation expansion

for each power of N .

Thus the very structure of the string expansion implies a sequence of non-trivial

non-renormalisation theorems for ’t Hooft perturbation theory around an instanton back-

ground. In particular, the leading large N term comes from m = 1 and that is just a

constant as far as its dependence on λ is concerned. In other words, it receives only a

semi-classical contribution. This ‘explains’ the fact that the semi-classical approximation

to the K-instanton contribution to N = 4 SU(N) Yang–Mills theory at leading order in

N (the term of order N1/2 which was evaluated in [7]) agrees precisely with the expres-

sion predicted by the AdS/CFT correspondence [5]. Moreover, from (2.12) we see that

the next to leading term should behave as N0h
(2)
0 (η) and is also independent of λ and

therefore semi-classically exact. Verifying this prediction would require knowledge of the

l = 2 term in (2.4) that contributes at order (α′)0.

Other predictions can also be tested. For instance, the structure of f3 in (2.12) requires

that the next term in the 1/N expansion has only two terms in the loop expansion. Also, in

the special case of instanton number K = 1 the semi-classical contribution was computed

in [16] for all values of N . In this case the expansion is in integer powers of 1/N , which

immediately determines that

h
(2k)
0 (η, K = 1) = 0, h

(2k−1)
0 (η, K = 1) = bkg1(η) (2.13)

where bk are the coefficients in the exact answer [16],

Γ(N − 1
2 )

Γ(N − 1)
= N

1

2

∞
∑

l=1

bkN−k+1 = N
1

2

(

1 −
5

8

1

N
−

23

128

1

N2
+ . . .

)

. (2.14)

6 Even though the orginal expansion in α′ (2.4) and g (2.8) may only be asymptotic, we

can nevertheless trust (2.11) to small λ. This is similar to the statement that though the full

perturbative expansion in gauge theories has zero radius of convergence, the planar diagram

expansion can be trusted in some finite radius [15].
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3. Comments and Conclusions

We have seen by making rather minimal assumptions that certain instanton contribu-

tions in the ’t Hooft limit of N = 4 supersymmetric SU(N) Yang–Mills theory receive only

a finite number of perturbative corrections at a given order in the 1/N expansion. More

precisely, at order N1−m

2 there are [m+1
2 ] terms in the power series in the ’t Hooft coupling,

λ, starting with λ0. It should be emphasised that, unlike with usual non-renormalisation

theorems, our statements only apply at each order in 1/N in the ’t Hooft limit whereas for

finite N perturbative terms appear at all loops. Although our arguments do not make di-

rect use of supersymmetry, this enters indirectly since the AdS/CFT correspondence does

require supersymmetry. This is similar in spirit to the way in which the mere existence

of a Lorentz invariant eleven-dimensional limit of M-theory implies non-trivial facts about

D0-brane quantum mechanics, as in the DLCQ description.

The assumptions we have made have the virtue that they can be checked by direct

evaluation of perturbative contributions in the large-N expansion of the gauge theory. In

this way one could investigate to what extent these results apply to theories with less

supersymmetry. It would, for instance, be interesting to find out how much can be said

about the conformal field field theories described in [17,18]. In such cases the dual string

theory has an S5/Γ sector which could admit world sheet instantons whose absence was

one of the important ingredients in our argument.
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