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Abstract

We examine the Euclidean action approach, as well as that of Wald, to the entropy of
black holes in asymptotically AdS spaces. From the point of view of holography these two
approaches are somewhat complementary in spirit and it is not obvious why they should
give the same answer in the presence of arbitrary higher derivative gravity corrections. For
the case of the AdS5 Schwarzschild black hole, we explicitly study the leading correction to
the Bekenstein-Hawking entropy in the presence of a variety of higher derivative corrections
studied in the literature, including the Type IIB R4 term. We find a non-trivial agreement
between the two approaches in every case. Finally, we give a general way of understanding
the equivalence of these two approaches.

1

http://arXiv.org/abs/hep-th/0604070v2


Contents

1 Introduction 2

2 A Brief Overview of the Euclidean Method 5

3 A Brief Overview of Wald’s Approach 9

3.1 Construction of Noether charges . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Hamiltonians and Noether Charges . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Entropy as Noether charge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Correction to the entropy from higher derivative terms 13

4.1 The Gauss-Bonnet term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 The R2 Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 The R4 Term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Wald’s Approach Vs. Euclidean Approach in Asymptotically AdS Space-

time 26

5.1 Mass in asymptotically AdS spacetime . . . . . . . . . . . . . . . . . . . . . 27

5.2 Relating the Wald and Euclidean approaches . . . . . . . . . . . . . . . . . . 28

6 Conclusions 30

A Calculation of Energy 31

B Relating the Noetherian and Euclidean definitions of Mass 32

1 Introduction

The Bekenstein-Hawking entropy of black holes was one of the first clues to the holographic

nature of gravity. It indicated that any microscopic accounting of this entropy would entail

that the underlying degrees of freedom are those of a local theory in one lower dimension.

The AdS/CFT conjecture [1, 2, 3] has been a remarkable realisation of this idea, giving a

detailed dictionary between a theory of gravity and a gauge theory in one lower dimension.

Nevertheless, holography remains quite mysterious as a dynamical property of a theory

with general covariance. To gain a better understanding of the mechanism giving rise to

holography in theories of gravity, it seems worthwhile to go back to a closer examination
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Figure 1: RG flow between two holographic descriptions

of the entropy of black holes. In this context, the Noetherian (or Wald’s) approach to the

calculation of entropy in theories of gravity, with arbitrary higher derivative corrections to

the Einstein-Hilbert action, is particularly relevant [4]. For it not only provides a concrete

method to calculate systematic corrections to the area law entropy, but also gives the answer

in a form which is holographic in spirit. The entropy is given in terms of local quantities

evaluated on the so-called bifurcate horizon, which is a special codimension two surface in

the black hole spacetime.

We might therefore imagine a direct relation of this entropy to the holographic description

afforded in asymptotically anti-de Sitter spacetimes. In this case, the entropy of a black hole

in AdS space is related to the thermodynamic entropy of the boundary gauge theory at a

finite temperature (which is the same as the Hawking temperature of the black hole). Thus

there are two apparently different holographic descriptions of the entropy. One in terms of the

horizon and the other in terms of the boundary gauge theory. In a rough sense, the latter is

the UV description from the microscopic (gauge theory) point of view, while the former is the

IR description, more appropriate from the coarse grained gravity point of view. One might

therefore expect some kind of RG flow to relate the two. One of the original motivations

behind the present work was to try and make more precise this kind of relation between these

two descriptions. To that end, recall that the AdS/CFT dictionary is very naturally phrased
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in terms of a Euclidean functional integral relation between bulk and boundary quantities1.

In particular, the free energy (or entropy) of the Euclidean thermal field theory is the same

as the free energy (or entropy) of the gravity configuration as evaluated by the Euclidean

gravitational action. Therefore it is essential to understand the relation, in the presence

of higher derivative corrections to the Einstein action, between the Euclidean computation

of black hole entropy and Wald’s prescription. This would be a first step in relating the

holographic gauge description to the holographic Wald description.

If both the Euclidean and Noetherian approaches to entropy are to be sensible prescrip-

tions for obtaining the entropy in a gravity theory in AdS, then they ought to give the same

answer2. However, this is not immediately apparent. For one, the original derivation by

Wald explicitly made use of the asymptotically flat nature of the space time. No complete

proof seems to have been given yet for the similar result in asymptotically AdS space 3. On

the other hand, the Euclidean action prescription in asymptotically AdS space (going back

to Hawking and Page [5]) makes use of a nontrivial background subtraction procedure. We

will review this procedure in the next section. For now, we merely remark that due to the

fact that there is a relation between the sizes of the thermal circles of the background AdS

and the black hole, this is not just a matter of removing an infinite additive constant, but is

crucial to getting the correct finite answer.

To illustrate the non-trivial nature of the agreement between these two approaches we

present some explicit computations of the leading corrections to the entropy of a five di-

mensional AdS Schwarzschild black hole in the presence of a variety of higher derivative

gravitational corrections. The terms we consider are those that arise as α′ corrections in

string theory. The first case is the addition of a Gauss-Bonnet term to the Einstein Hilbert

action. This has been studied in detail in the literature (see for example [9] and references

therein) and we use it as a warmup example . The next case is of a genuinely higher deriva-

tive term RµνρσR
µνρσ. This was studied in [10, 11] and there is some confusion regarding

this term. In [10], disagreement was claimed between the Euclidean and Wald’s expressions

1On the bulk side the Euclidean functional integral is to be understood only in a semiclassical sense which
we can continue to use in the presence of higher derivative corrections, i.e. in an expansion about the large
N , strong ’tHooft coupling limit.

2In the case of AdS3, the Euclidean approach was combined with that of Wald for studying the effect of
Chern-Simons terms [6]. See also [7, 8].

3We have been informed by K. Skenderis (private communication) that the boundary counterterm method
employed in [14] can be generalised to the higher derivative case and be used to demonstrate Wald’s result
for asymptotically locally AdS spaces. The boundary counterterm procedure then also provides a link to the
Euclidean approach.
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even to leading order in α′. [11] obtained a different result which actually agrees with Wald’s

answer (though there is an unnecessary remark here that the agreement is only for large mass

black holes). We find complete agreement between the Euclidean and the Wald approaches,

to this order. Finally, we consider the leading R4 correction that arises in Type IIB super-

gravity, which plays an important role in the AdS/CFT context. For this term, the authors

of [12] had already studied the correction to the entropy of the planar AdS Schwarzschild

black hole in the Euclidean approach. Here we apply Wald’s prescription to this term and

find exactly the same correction as obtained by [12]. In fact, we also find agreement in the

case of the usual AdS Schwarzschild black hole (i.e. not just in the large mass or planar

limit). As we will see, in all cases, the agreement is not at all manifest from the prescriptions

themselves.

Prompted by this agreement and motivated by our desire to directly connect the two

approaches, we present an argument to understand this equivalence. We use the Noetherian

definition of mass in asymptotically AdS spaces given in [13]4 and show that the subtraction

scheme used to define the entropy in the Euclidean approach arises quite naturally in the

Wald approach. For simplicity, we restrict to static cases.

The organisation of this paper is as follows. In the next two sections we give a quick

overview of the Euclidean and the Wald methods respectively. Then we present in Section

4, the computations for the individual cases of higher derivative corrections. In section 5, we

give the argument for why the two methods should give the same results. The last section

carries some of the conclusions. In a first appendix, we illustrate the Hamiltonian definition

of mass in AdS with a specific example. In the second appendix, we argue that the the

Euclidean definition of mass must agree with the Hamiltonian one.

2 A Brief Overview of the Euclidean Method

In this section and the next we will give a quick overview of the two different approaches

to calculating the entropy of black holes in asymptotically Anti-de Sitter space. We start

with the Euclidean approach 5 where a precise form of subtraction is important in getting

the correct energy and entropy of AdS black holes. We will illustrate this procedure through

the case of the five dimensional AdS-Schwarzschild black hole.

4See relatedly, [14] where things are worked out for the two derivative Lagrangian. [15, 16] attempt to
generalise some of the considerations of [13] to a class of higher derivative Lagrangians.

5A somewhat different Euclidean prescription to compute the black hole entropy is given in [17]
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The Euclidean AdS5 metric is given by,

ds2

AdS =

(

1 +
r2

b2

)

dτ 2 +
dr2

(

1 + r2

b2

) + r2dΩ2

3. (2.1)

Here b is the radius of AdS space. In these coordinates the Euclidean time τ of the anti-de

Sitter space time can be taken to be periodic with arbitrary period β ′. This is then the

Euclidean geometry describing thermal anti-de Sitter space, with inverse temperature β ′.

In these same coordinates, the Euclidean AdS5 Schwarzschild metric is given by,

ds2

BH =

(

1 +
r2

b2
− ωM

r2

)

dτ 2 +
dr2

(

1 + r2

b2
− ωM

r2

) + r2dΩ2

3. (2.2)

Where,

ω =
16πG5

3V3

(2.3)

with V3 being the volume of the unit three sphere. This space time has a horizon at r = r+,

given by,

1 +
r2
+

b2
− ωM

r2
+

= 0. (2.4)

The apparent singularity at r = r+ is just like the singularity at the origin in the polar

coordinate system and can be removed by regarding τ as an angular variable with period,

β =
2πb2r+
2r2

+ + b2
≡ β0. (2.5)

Therefore, unlike pure AdS space where the time coordinate can have an arbitrary period,

that of the AdS black hole has a well defined periodicity, for a given mass. This is identified

with the (inverse) Hawking temperature of the black hole.

Both these metrics arise as solutions to the equation of motion

Rµν = − 4

b2
gµν (2.6)

which follows from the Einstein Hilbert action.

IEH = − 1

16πG5

∫

d5x
√−g

(

R +
12

b2

)

. (2.7)

In what follows we will consider higher derivative corrections to the Einstein-Hilbert La-

grangian. These will lead, in particular, to systematic corrections to the black hole metric,
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Eq. 2.2, which we can compute in a perturbative expansion in the coefficients of the addi-

tional terms. We are interested in the corrections to the thermodynamics of the black hole

spacetime from these terms.

Therefore, let us first discuss the thermodynamics of black holes in the Euclidean frame-

work as generally prescribed by Gibbons and Hawking [18]. The canonical partition function

is defined by a functional integral over metrics with the Euclidean time coordinate τ identified

with period β, defined above.

Z =
∫

[Dg]e−IE (2.8)

IE is the Euclidean action which could have the Einstein-Hilbert piece as well as higher

derivative corrections. In the semi-classical limit that we are considering, the dominant

contribution to the path integral comes from classical solutions to the equations of motion.

In this case,

lnZ = −IclE . (2.9)

Thus the action IclE , evaluated on solutions, is proportional to the free energy. Therefore the

energy (or mass) of the black hole is given by,

E = − ∂

∂β
lnZ =

∂IclE
∂β

(2.10)

and the entropy of the black hole is given by

S = β E − IclE . (2.11)

For asymptotically AdS black holes, the prescription needs to be modified. This is

suggested by the fact that if we calculate the action IclE on a solution to the equation of

motion, it turns out to be infinite. So we need to specify a subtraction procedure which

will give sensible answers. To get the right results one subtracts the contribution of global

AdS after a suitable regularisation. However, one has to be careful in doing this [5]. There

are two points to be kept in mind: (i) For the black hole spacetime we evaluate the action

integral only in the region r+ ≤ r ≤ R̃ where R̃ is an IR cutoff on the spacetime and r+

is the location of the horizon. Whereas in the AdS space time the region of integration is

0 ≤ r ≤ R̃. (ii) The crucial point, however, is that we do not take the black hole spacetime

and the reference AdS spacetime as having the same periodicity in the time direction. The

black hole spacetime has a fixed periodicity β (for instance given by (2.8) in the case of the

AdS-Schwarzschild metric). One adjusts the period β ′ of the globally AdS spacetime such

that the geometry at the hypersurface r = R̃ is the same in both cases [5], i.e,

β[gBHττ (r = R̃)]1/2 = β ′[gAdSττ (r = R̃)]1/2. (2.12)

7



Through this relation, the periodicity of the reference AdS spacetime depends on the pa-

rameters (such as the mass etc.) of the black hole spacetime.

Let us illustrate how this regularisation, specified above, works in the simplest case of

the Einstein-Hilbert action [5]. This will also show how the subtraction does not just remove

the divergent piece but is also important in getting the finite contributions to the mass and

entropy correct.

Evaluating the Einstein-Hilbert action on the solution Eq.2.2, we get,

IBH =
2β

3ωb2
(R̃4 − r4

+). (2.13)

As prescribed, the radial integration has been carried out from r+ to R̃, with R̃ → ∞. We

can then calculate the mass using Eq. 2.10 together with the relations Eqs.2.4 and 2.5. We

obtain 6

∂

∂β
IBH =

2

3ωb2
R̃4 +

2M

3
− 2

3ωb2
r2
+(2r2

+ + b2)2

(b2 − 2r2
+)

. (2.14)

The first term is the divergent piece while the rest are finite. We can also naively calculate

the entropy using Eq. 2.11.

S̃ = β
∂

∂β
IBH − IBH

=

(

V3r
3
+

4G5

)

4r2
+

2r2
+ − b2

. (2.15)

Note that the entropy as calculated with the above cutoff, gives a finite answer. The divergent

pieces have canceled out. But this finite piece is not the correct area entropy which one

expects for the Einstein-Hilbert action. As we will see, we obtain the right answer only after

the prescribed subtraction of the reference AdS geometry.

Similarly one can evaluate the action on the (regularised) AdS spacetime

IAdS =
2β ′

3ωb2
R̃4. (2.16)

Here the radial integration has been done from zero to R̃. β and β ′ are related by Eq. 2.12.

For large R̃ we get,

β ′ = β

(

1 − ωMb2

2R̃4
,

)

(2.17)

6Here we have chosen to write the expression in a particular combination which will be used later. The
main point to notice is that the finite part of ∂I/∂β does not give the mass of the black hole.
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where ωM is a function of r+ given by Eq. 2.4. We then find

∂

∂β
IAdS =

2

3ωb2
R̃4 − M

3
− 2

3ωb2
r2
+(2r2

+ + b2)2

(b2 − 2r2
+)

. (2.18)

Subtracting Eq.2.18 from Eq.2.14 we find that the energy of the black hole is exactly M!

Similarly, for the entropy, we evaluate

β
∂

∂β
IAdS − IAdS = −4πb2

3ωb2
r3
+(2r2

+ + b2)

b2 − 2r2
+

. (2.19)

We need to subtract Eq. 2.19 from Eq. 2.15 to get the entropy

S =

(

V3r
3
+

4G5

)

=
ABH
4G5

. (2.20)

Thus we get the expected answer from the nontrivial interplay between the actions evaluated

on the AdS Schwarzschild geometry and the background AdS spacetime.

3 A Brief Overview of Wald’s Approach

The essence of Wald’s approach consists of three steps. The first is to give a general expression

for Noether currents and charges corresponding to arbitrary diffeomorphisms. The next step

is to use this to construct Hamiltonians corresponding to these Noether charges. In special

cases, these Hamiltonians are related to the usual conserved charges such as mass, angular

momentum etc. and are given by surface integrals at infinity on a Cauchy surface. Finally,

in the case of certain killing vectors such as for time translation invariance one can relate the

variation of the Hamiltonian (corresponding to say, energy) to that of the Noether charge

evaluated on the bifurcate horizon. This relation can then be interpreted as the first law of

black hole thermodynamics with the latter quantity identified as being proportional to the

entropy. We will now give a quick review of these steps, referring the reader to the original

papers [4, 19] for more details.

3.1 Construction of Noether charges

Let L be a diffeomorphism invariant Lagrangian, in n spacetime dimensions built out of the

metric and other fields, collectively denoted by ψ 7. Under any arbitrary field variation δψ

7We will follow Wald’s convention of viewing the Lagrangian as a top form rather than a scalar density.
Similarly, other tensor densities will also be dualised and viewed as appropriate forms. To distinguish these
from the usual densities, we will denote the forms in boldface.
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the Lagrangian varies as,

δL = E(ψ)δψ + dΘ(δψ). (3.1)

The classical equations of motion are given by E = 0. The second term is a boundary

term which can depend on both δψ and its derivatives. The notation is abbreviated here so

that a sum over the tensor indices, for instance for δψ, is understood.

For instance, for a generally covariant Lagrangian which is a function of the metric and

different powers of the Riemann tensor, but not covariant derivatives of the Riemann tensor,

Θ can be chosen to be of the form

Θa(δg) = 2Eabcd
R ∇dδgbc − 2∇dE

abcd
R δgbc, (3.2)

where

Eabcd
R =

∂L

∂Rabcd
. (3.3)

We will actually be interested in diffeomorphisms, where the field variations are given

by the Lie derivative δψ = Lξψ (ξa is the infinitesimal generator of a diffeomorphism). The

resulting variation of a covariant Lagrangian is then a total derivative.

δL = LξL = d(ξ · L). (3.4)

Here the ‘·’ denotes the usual contraction of a vector field with a form.

Thus, in this case we can define a current

Jaξ = Θa(Lξψ) − ξaL. (3.5)

Or equivalently in terms of (n− 1) forms, in the dualised notation

Jξ = Θ(Lξψ) − ξ · L. (3.6)

It satisfies

dJξ = −ELξψ. (3.7)

So Jaξ is a Noether current which is conserved for any ξ when the equations of motion are

satisfied.

Now, for any conserved Jξ there (locally) exists a (n− 2) form “Noether Charge” Qξ(ψ)

constructed out of fields ψ and ξa [20], such that whenever ψ satisfies the equation of motion,

we have,

Jξ = dQξ(ψ). (3.8)

In what follows we will always take ψ to be a solution of the equations of motion.

10



3.2 Hamiltonians and Noether Charges

As mentioned above, the second step is to relate these Noether charges to Hamiltonians

generating the diffeomorphisms ξ (see also [21]). The essential point here is that the boundary

term Θ(δψ) acts as a “symplectic potential” which enables one to define a symplectic form

on the phase space of field configurations. Considering two arbitrary variations δ1ψ and δ2ψ,

we can define a symplectic current ω by

ω(δ1ψ, δ2ψ) = δ2Θ(δ1ψ) − δ1Θ(δ2ψ). (3.9)

The symplectic form (on the space of variations δψ) itself is then defined by an integral over

a Cauchy surface Σ

Ω(δ1ψ, δ2ψ) =
∫

Σ

ω(δ1ψ, δ2ψ). (3.10)

So now an arbitrary variation δψ of the Noether current can be re-expressed in terms of

the symplectic form

δJξ = δΘ(Lξψ) − ξ · δL
= ω(δψ,Lξψ) + d(ξ · Θ(δψ)). (3.11)

In the second equality, we have used the fact that ψ is a solution to the equations of motion

as well as an identity for Lie derivatives. Integrating Eq.3.11 over the Cauchy surface and

since the Hamiltonian for a vector field ξ is defined via

δHξ = Ω(δψ,Lξψ) (3.12)

we have

δHξ =
∫

Σ

δJψ −
∫

∂Σ

ξ · Θ(δψ)

=
∫

∂Σ

(δQξ − ξ ·Θ(δψ)). (3.13)

In the second equality we have evaluated the Hamiltonian on-shell, where Jψ = dQψ. Fur-

thermore, if the boundary term arises from the variation of a boundary term in the action,

Θ(δψ) = δB, (3.14)

then the above equation can be integrated to obtain a Hamiltonian Hξ. If Σ has only an

asymptotic boundary at infinity then the above Hamiltonian is expressed purely as a surface

integral at infinity. In the asymptotically flat case the Hamiltonian corresponding to an

asymptotic time translation vector field was shown to be equal to the ADM mass in the case

of the Einstein-Hilbert Lagrangian. We will discuss the asymptotically AdS case later.
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3.3 Entropy as Noether charge

We can now apply these considerations to killing vector fields. In particular, we will specialise

to killing vector fields ξaH which are null on the codimension one horizon and vanish on the

codimension two surface called the bifurcate horizon H of a black hole spacetime.

To obtain the first law of black hole thermodynamics, we first consider a variation δψ in

Eq.3.11, which satisfies the linearised equations of motion. Since we are considering a Killing

vector field, for which Lξψ = 0, we also have ω(δψ,Lξψ) = 0. We use this and integrate

both sides of Eq. 3.11 over a spatial hypersurface C of the black hole spacetime which has H
as its interior boundary (in addition to asymptotic infinity). Since δψ satisfies the equations

of motion, we have δJ = d(δQ). The integrand on both sides reduce to total derivatives.

The integral thus gets contributions from only the interior boundary and from infinity.

For instance, we might take

ξaH =
∂

∂t
(3.15)

in a static black hole background spacetime. In such a case, using Eq.3.13, the outer bound-

ary contribution gives exactly the change in the energy or mass. Thus we get a relation of

the form

δ
∫

H

dSab
√
−gQab = δE . (3.16)

It turns out to be consistent to make an identification with the entropy S via

κ

2π
δS = δ

∫

H

dSab
√−gQab, (3.17)

where κ is the surface gravity (which is constant over H) and is proportional to the temper-

ature. Therefore Eq.3.16 is the first law of black hole thermodynamics,

1

β
δS = δE . (3.18)

Moreover, from the identification with the Noether charge in Eq. 3.17, Iyer and Wald

[19] also found a simple expression for the entropy. Using the definition of the Noether charge

and with the Noether current given by Eq.3.5, they expressed the entropy in terms of the

Lagrangian as

S = −2π
∫

H

δL

δRabcd
ǫabǫcd. (3.19)

where ǫab is the binormal to the surface H. In the special case where the Lagrangian does

not depend on derivatives of the Riemann tensor, we have

S = −2π
∫

H

∂L

∂Rabcd
ǫabǫcd. (3.20)
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It is this expression that we will have occasion to use in the next section in comparing with

the Euclidean answers.

4 Correction to the entropy from higher derivative terms

In this section we will consider some explicit examples of higher derivative corrections to the

Einstein-Hilbert action (with negative cosmological constant). The examples are all ones

that arise as α′ corrections in various string theory effective actions. They include a) the

Gauss-Bonnet term, b) RµνρσR
µνρσ term and c) the Type IIB R4 or equivalently (Weyl)4

term. In all these cases we calculate the leading correction to the entropy of the black hole

geometry which is asymptotically AdS. Keeping in mind the application to holography and

the AdS/CFT conjecture, we restrict ourselves to the case of five dimensional spacetime.

The calculations are done using both the Euclidean approach as well as using Wald’s for-

mula. In the Euclidean approach this requires one to correct the leading AdS-Schwarzschild

metric and then evaluate the action and thus entropy according to the prescription outlined

in Sec.2. Similarly, in using Wald’s formula, we need to evaluate the corrections to the

area law entropy coming from the additional contributions to Eq.3.19. We find agreement

between the two separate calculations in every case, unlike the claims in the literature to

the contrary. As mentioned in the Introduction, the agreement between these very different

seeming modes of calculation is quite surprising. These explicit checks therefore gives one

mutually reinforcing confidence in both approaches.

4.1 The Gauss-Bonnet term

The Gauss-Bonnet term is a very natural correction term to the Einstein action. It has the

feature that despite being built out of terms which individually give rise to higher than two

derivative equations of motion, the full equation of motion actually has only two derivatives.

This term arises in both the heterotic and bosonic string theory low energy effective actions,

after a suitable field redefinition.

In this case exact black hole solutions are known (see for e.g. [9]). However, in keeping

with the other cases where we do not have this luxury, we will work only to leading order in

this term. The action containing the Gauss-Bonnet term is

I = − 1

16πG5

∫

d5x
√−g

(

R +
12

b2

)

− α′/4

16πG5

∫

d5x
√−gLG.B. (4.1)

13



where,

LG.B. = RµνρσR
µνρσ − 4RµνR

µν +R2. (4.2)

The particular coefficient α′/4 is chosen so that I matches with the low energy effective

action of heterotic string theory.

The equation of motion for this action is,

Rµν−
1

2
Rgµν−

6

b2
gµν =

α′

8
gµνLG.B.−

α′

2

(

RµρσδR
ρσδ
ν − 2RρσRµρνσ − 2Rρ

µRνρ +RRµν

)

, (4.3)

from which we get,

R = −20

b2
− α′

12
LG.B. (4.4)

• Correction to the Metric

We are interested in treating the Gauss-Bonnet term as a perturbation and finding the

leading correction in α′ to the AdS Schwarzschild metric. We will therefore look for a solution

of the spherically symmetric, static form

ds2 = B(r)dτ 2 + A(r)dr2 + r2dΩ2
3 (4.5)

where,

A(r) = A0(r)(1 + α′µ(r)), A0(r) =

(

1 +
r2

b2
− ωM

r2

)−1

(4.6)

and

B(r) = B0(r)(1 + α′ε(r)), B0(r) =

(

1 +
r2

b2
− ωM

r2

)

. (4.7)

We can solve the equations of motion Eq.4.3 keeping in mind that we can use the unperturbed

metric in evaluating the terms proportional to α′. We obtain

µ(r) = −A0(r)

(

r2

2b4
+
M2ω2

2r6

)

; ε(r) = −µ(r). (4.8)

So that

A(r) = B(r)−1 =

(

1 +
r2

b2
− ωM

r2
+ α′

r2

2b4
+ α′

ω2M2

2r6

)−1

. (4.9)

This solution matches with the solution found in [9]8.

8The parameter M which appears in this solution is not the mass in the presence of this correction. In
comparing with [9], this has to be kept in mind.
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• Correction to the Black Hole Temperature

The Euclidean time direction has a periodicity β fixed by requiring the geometry to be

smooth at the horizon. For a spherically symmetric metric of the form in Eq. 4.5, the inverse

temperature of the black hole is therefore

β =
4π

B′(r+)
. (4.10)

where, r+ is now the (corrected) location of the horizon of the black hole, gττ (r+) = 0.

ωM = r2

+

(

1 +
r2
+

b2
+ α′

r2
+

b4
+

α′

2r2
+

+
α′

b2

)

. (4.11)

Using Eq.4.9 we get the corrected inverse temperature,

β =
2πb2r+
2r2

+ + b2

(

1 +
α′

r2
+

)

= β0

(

1 +
α′

r2
+

)

. (4.12)

• Calculation of Entropy

Let us write the black hole action 4.1 to be,

IBH = − 1

16πG5

(I0 + I1) (4.13)

where,

I0 =
∫

d5x
√−g

(

R +
12

b2

)

, and I1 =
α′

4

∫

d5x
√−g LG.B.. (4.14)

In I0 we substitute the value of R for the perturbed solution. For this we use Eq.4.4. In

I1 we can use the unperturbed metric, to this order in α′. So that

LG.B =
120

b4
+

72ω2M2

r8
. (4.15)

We get,

I0 =
∫

d5x
√−g

(

−20

b2
+

12

b2
− α′

10

b4
− α′

6M2ω2

r8

)

= −
∫ β

0

dt
∫ R̃

0

dr
∫

dΩ3r
3

(

8

b2
+ α′

10

b4
+

6α′M2ω2

r8

)

= −βV3(R̃
4 − r4

+)

(

2

b2
+ α′

5

2b4
+

3α′M2ω2

2R̃4 r4
+

)

, (4.16)

where V3 is volume of unit 3 sphere, V3 = 2π2. I1 can be evaluated using the unperturbed

metric. So that

I1 = α′βV3(R̃
4 − r4

+)

(

15

2b4
+

9M2ω2

2R̃4 r4
+

)

. (4.17)
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Hence IBH is given by,

IBH =
βV3

(

R̃4 − r4
+

)

16πG5

(

2

b2
− α′

5

b4
− α′

3M2ω2

R̃4r4
+

)

. (4.18)

The next step is to calculate the action of the background AdS spacetime,

IAdS = − 1

16πG5

(J0 + J1) (4.19)

where,

J0 =
∫ β′

0

dt
∫ R̃

0

drr3

∫

dΩ3

(

R +
12

b2

)

and J1 =
α′

4

∫ β′

0

dt
∫ R̃

0

drr3

∫

dΩ3LGB.

Here β ′ is the periodicity of the time direction of the AdS space time. These expressions are

easily evaluated,

J0 = −β ′V3R̃
4

(

2

b2
+

5α′

2b4

)

(4.20)

and

J1 = α′
15β ′V3R̃

4

2b4
. (4.21)

To evaluate J0, we have used the perturbed AdS metric which is obtained from Eq.4.9 by

setting M = 0. As before J1 is evaluated using the leading order solution. So IAdS is given

by,

IAdS =
β ′V3R̃

4

16πG5

(

2

b2
− α′

5

b4

)

. (4.22)

The difference between the AdS-Schwarzschild action and the AdS action is

∆I = IBH − IAdS

= − V3

16πG5

[

2

b2
R̃4(β ′ − β) +

2

b2
βr4

+

+α′

(

3βM2ω2

r4
+

− 5βr4
+

b4
− 5

b4
R̃4(β ′ − β)

)]

. (4.23)

Since at the outer boundary hypersurface r = R̃, the geometry of the AdS-Schwarzschild

spacetime and AdS is the same, β and β ′ are related by Eq.2.12,

β ′

(

1 +
R̃2

b2
+ α′

R̃2

2b4

)1/2

= β

(

1 +
R̃2

b2
− ωM

R̃2
+ α′

R̃2

2b4
+ α′

ω2M2

2R̃6

)1/2

. (4.24)

In other words,

β ′ = β
(

1 − 1

2R̃4
ωMb2 + α′

ωM

4R̃4

)

. (4.25)
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Substituting β ′ in terms of β in equation 4.23 we get,

∆I = − V3

16πG5

β

[(

r4
+

b2
− r2

+

)

+ α′

(

8r2
+

b2
+

5

2

)]

. (4.26)

Using the relation Eq.4.26 one can calculate the energy of the black hole, and it comes out

to be,

E =
∂∆I

∂β

=
3V3r

2
+

16πG5

(

1 +
r2
+

b2
+

α′

2r2
+

)

= M

(

1 − α′

b2

)

. (4.27)

This relation between the energy and the parameter M agrees in comparing with those of

[9]. The entropy of the black hole is given by

S = β
∂∆I

∂β
− ∆I. (4.28)

Using equations 4.26, 4.12 and 4.27 the final corrected Euclidean entropy of the black hole

works out to be,

S =
V3r

3
+

4G5

(

1 + α′
3

r2
+

)

. (4.29)

One can now compare with the entropy using Wald’s formula. It is given for instance by

[22],

SWald =
4π

16πG5

∫

H

d3x
√
h

[

1 +
α′

2
R(h)

]

(4.30)

where h is the determinant of induced metric on the spherical horizon and R(h) = hijhklRikjl.

R can be evaluated using the unperturbed metric on the sphere

R =
6

r2
+

.

So SWald exactly matches with the Euclidean entropy. Note that b2 does not appear in the

entropy.
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4.2 The R2 Term

The second example we consider involves a correction proportional to RµνρσR
µνρσ (which

we will call the R2 term for convenience). This is the first term that one can add to the

Einstein-Hilbert action which genuinely has higher derivatives (in contrast to the Gauss-

Bonnet term) while also changing the AdS Schwarzschild solution nontrivially to leading

order. This example has been also studied in [10][11]. In [10], a discrepancy was claimed

between the Euclidean and Wald expressions for the entropy, even to leading order. Our

results here agree with [11] who also found that the two methods actually yield the same

result for the leading correction in α′ (but for arbitrary mass black holes).

We will take the action containing the R2 correction to be

I = − 1

16πG5

∫

d5x
√−g

[

(

R +
12

b2

)

+
α′

4
RµνρσR

µνρσ

]

. (4.31)

Here we have again chosen the coefficient of the higher derivative term to be α′/4 as in

section 4.1. The equation of motion is given by,

Rµν −
R

2
gµν −

6

b2
gµν = −α

′

2

[

Rρσδ
µ Rνρσδ + 22Rµν −

1

2
(∇µ∇ν + ∇ν∇µ)R

+2RρσRµρνσ − 2Rρ
µRνρ

]

+
α′

8
gµνRαγρσR

αγρσ. (4.32)

For the AdS Schwarzschild metric, this leads to a correction at order α′. In the right hand

side of Eq.4.32, we substitute the unperturbed metric to obtain

Rµν +
4

b2
gµν = −α

′

2

[

Jµν −
(

20

3b4
+

12M2ω2

r8

)

gµν

]

. (4.33)

Where Jµν is given by,

Jµν = Rρσδ
µ Rνρσδ.

evaluated on the metric 2.2. We also record for later,

R = −20

b2
− α′

(

10

3b2
+

6M2ω2

r8

)

. (4.34)

• Correction to the equation of motion

We solve the equation of motion with the spherically symmetric ansatz, Eq. 4.5,

ds2 = B(r)dτ 2 + A(r)dr2 + r2dΩ2

3. (4.35)
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Using the parametrisation Eqs.4.6,4.7 and solving for the functions ε(r) and µ(r) we find

ε(r) =
r2

6b4B0

+
M2ω2

2r6B0

, µ(r) = −ε(r). (4.36)

Hence,

B(r) = A(r)−1 = 1 +
r2

b2
− ωM

r2
+ α′

(

r2

6b4
+
M2ω2

2r6

)

. (4.37)

• Correction to the Black Hole Temperature

Using Eq. 4.10 with r+ given by the equation,

ωM = r2

+ +
r4
+

b2
+
α′

2

(

1 +
2r2

+

b2
+

4r4
+

3b4

)

(4.38)

the inverse temperature β comes out to be,

β =
2πb2r+
2r2

+ + b2

[

1 +
α′

3b2
2r4

+ + 3b4 + 6b2r2
+

r2
+(2r2

+ + b2)

]

= β0

[

1 +
α′

3b2
2r4

+ + 3b4 + 6b2r2
+

r2
+(2r2

+ + b2)

]

. (4.39)

• Calculation of Entropy

The action 4.31 can be evaluated to be

IBH = − 1

16πG5

(I0 + I1) . (4.40)

Here I0 is evaluated using the perturbed solution

I0 =
∫

d5x
√−g

(

R +
12

b2

)

= −2V3β

b2
(R̃4 − r4

+) − α′
5V3β

6b4
(R̃4 − r4

+)

+α′
3M2ω2V3β

2

(

1

R̃4
− 1

r4
+

)

. (4.41)

To calculate I1 we can use the unperturbed solution.

I1 =
α′

4

∫

d5x
√−gRµνρσR

µνρσ

= α′

[

5V3β

2b4
(R̃4 − r4

+) +
9M2ω2V3β

2

1

r4
+

]

. (4.42)

So, finally we get,

IBH = − V3β

16πG5

[

− 2

b2
(R̃4 − r4

+) + α′
5

3b4
(R̃4 − r4

+) + α′
3M2ω2

r4
+

]

. (4.43)
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Now let us similarly evaluate the background action for the AdS spacetime,

IAdS = − 1

16πG5

(J0 + J1) . (4.44)

Where,

J0 = − 2

b2
β ′V3R̃

4 − 5α′

6b4
β ′V3R̃

4

and,

J1 =
5α′

2b4
V3β

′R̃4.

So finally we get,

IAdS = − β ′V3

16πG5

[

− 2

b2
R̃4 + α′

5

3b4
R̃4

]

. (4.45)

¿From Eqs. 4.43 and 4.45,

∆I = IBH − IAdS

=
V3

16πG5

[

2

b2
R̃4(β − β ′) − β

2

b2
r4
+

−α′
5

3b4

[

R̃4(β − β ′) − βr4

+

]

− α′β
3ω2M2

r4
+

]

. (4.46)

As prescribed, we equate the boundary geometries at r = R̃ to obtain the relation between

β and β ′.

β ′

(

1 +
R̃2

b2
+ α′

R̃2

6b4

)1/2

= β

(

1 +
R̃2

b2
− ωM

R̃2
+ α′

R̃2

6b4
+ α′

M2ω2

2R̃6

)1/2

. (4.47)

Therefore,

β ′ = β

(

1 − 1

2R̃4
ωMb2 +

α′

12R̃4
ωM

)

. (4.48)

Using this relation ∆I can be written as,

∆I = − βV3

16πG5

[

r4
+

b2
− r2

+ +
α′

6b4

(

36b2r2

+ + 10r4

+ + 15b4
)

]

. (4.49)

The energy of the black hole is then given by,

E =
∂∆I

∂β

=
V3

16πG5

[

3

b2
(r4

+ + r2
+b

2) − α′

2b4
20r6

+ + 14r4
+b

2 − 6r2
+b

4 − 3b6

b2 − 2r2
+

]

= M +O(α′). (4.50)
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And the Euclidean entropy works out to be,

S =
V3r

3
+

4G5

[

1 + α′
2

b2

(

1 +
3

2

b2

r2
+

)]

. (4.51)

Note that though this is to leading order in α′, we have had to make no assumption on
r2
+

b2
.

This answer disagrees with the expression Eq. 70 of [10]. But it agrees with the expressions

found in [11].

Using Wald’s formula 3.20 the expression for the entropy is

SWald =
1

4G5

∫

Horizon
d3x

√
h

[

1 +
α′

2

(

R − 2 hij Rij + hij hklRikjl

)

]

. (4.52)

Evaluating this expression to leading order in α′ gives the same answer Eq.4.51 as the

Euclidean calculation.

4.3 The R4 Term

Since one of our motivations to study the relation between the Euclidean and Wald expres-

sions for entropy is the AdS/CFT correspondence, we should look at the corrections that

appear in the Type IIB string effective action. The first non vanishing corrections involve

eight derivatives – a term involving four powers of the Riemann tensor together with its

supersymmetric counterparts.

In the context of corrections to AdS black hole entropy, the R4 term was studied in [12] 9.

They adopted the Euclidean approach and looked at the so called planar black hole (a large

mass limit of the AdS Schwarzschild solution)10. They were able to compute the leading

order correction to the entropy. Here we will study the correction using Wald’s expression

and obtain the same result as [12]. We have also further checked agreement with the finite

mass results of [24, 25].

• Review of the Euclidean Calculation

The relevant pieces of the ten dimensional tree level type IIB superstring effective action

are,

I = − 1

16πG10

∫

d10x
√−g10

(

R − 1

4.5!
(F5)

2

)

+ I ′, (4.53)

I ′ = − γ

16πG10

∫

d10x
√−g10W, (4.54)

9[23] discusses the effects of these higher derivative terms on the extremal D3 brane solution.
10This was generalised to the finite mass case in [24][25], who also used the Euclidean approach.
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where, F5 is the self-dual five form field strength. Note that we have set the dilaton to a

constant value φ0. Here,

γ =
1

8
ζ(3)(α′)3 (4.55)

and

W = ChmnkCpmnqC
rsp
h Cq

rsk +
1

2
ChkmnCpqmnC

rsp
h Cq

rsk. (4.56)

where Cpqmn is the Weyl tensor. To put the leading R4 term in this form, one has to use the

freedom of field redefinition of the metric.

We will consider I ′ as perturbation. The leading order Type IIB supergravity solution

which we will study is the throat region of the non-extremal D3-brane.

ds2 =
r2

b2

[

−
(

1 − r4
0

r4

)

dt2 + d~x2

]

+
b2

r2

(

1 − r4
0

r4

)−1

dr2 + b2dΩ2
5 (4.57)

together with a constant self-dual five form field strength having N units of flux in the S5 as

well as the black hole spacetime. The radius b is related to the ten dimensional parameters

via,

b4 =
N
√

2G10

π2
. (4.58)

Including the eight derivative terms such as I ′, the ten dimensional solution Eq.4.57 gets

corrected. However, for the leading order correction, we only need to take into account

the term I ′. Moreover, it was argued in [12] (see also [26]) that one could compactify the

ten dimensional action Eq.4.53 on the S5 to get the effective five dimensional gravitational

action,11

I5 = − 1

16πG5

∫

d5x
√−g

[(

R5 +
12

b4

)

+ γW
]

(4.59)

where,
1

16πG5

=
V ol(S5)

16πG10

=
π3b5

16πG10

. (4.60)

For the computation of the leading correction in γ to the entropy, it suffices to consider this

effective action and its solutions. It is consistent to set the dilaton to its constant value and

take the five form to be self-dual.

11There are some caveats to be mentioned regarding the use of this five dimensional effective action. There
can be higher derivative terms involving F5 which might also contribute. See [23]. However, our point of
view here is more limited and we are simply undertaking to check the equality between the computation
of [12] done with this effective action, with Wald’s approach. We thank K. Skenderis for discussion on this
point.
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The five dimensional leading order solution12

ds2 =
r2

b2

[

−
(

1 − r4
0

r4

)

dt2 + d~x2

]

+
b2

r2

(

1 − r4
0

r4

)−1

dr2. (4.61)

can be obtained as a large mass limit of the metric Eq.2.2. The temperature is given by

T =
r0
πb2

. (4.62)

The leading entropy is

S =
V r3

0

4b3G5

=
π2

2
N2V T 3, (4.63)

where V =
∫

d3~x is the volume in the dual gauge theory.

The leading correction to the solution, Eq.4.61, from the Weyl term in Eq.4.59, is given

by [12] (in terms of the functions entering the spherically symmetric ansatz Eq.4.5),

B(r) =
r2

b2

(

1 − r4
0

r4

)[

1 − 15γ

b6
r4
0

r12
(5r8 + 5r4r4

0 − 3r8

0)

]

A(r) =
b2

r2

(

1 − r4
0

r4

)−1 [

1 +
15γ

b6
r4
0

r12
(5r8 + 5r4r4

0 − 19r8

0)

]

. (4.64)

One can then apply the Euclidean prescription as in the previous subsections. The final

result is

S = S0

(

1 +
45γ

b6

)

+ S0

(

15γ

b6

)

= S0

(

1 +
60γ

b6

)

, (4.65)

where, S0 is the Bekenstein-Hawking entropy evaluated on the area of the perturbed solution

S0 =
AreaH
4G5

=
V r3

0

4b3G5

. (4.66)

The two terms in the first line come from the Einstein-Hilbert term and the Weyl term in

the action respectively.

The correction to the temperature in the presence of the R4 term is given by,

T =
r0
πb2

(

1 +
15γ

b2

)

. (4.67)

12We will use r0 for the location of the horizon of the planar black hole in keeping with [12], and use r+

for that of the usual finite mass black hole.
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So the entropy given in Eq.4.63 is corrected to

S =
π2

2
N2V T 3

(

1 +
15γ

b6

)

. (4.68)

Since Wald’s expression gives the area term from the Einstein-Hilbert Lagrangian, we

will get S0 after using the perturbed solution. Therefore what we will do is to calculate the

correction to the entropy coming from the R4 term using Wald’s formula and show that the

sum of the two contributions matches with the above result.

• Wald’s Formula for the R4 Term

We saw in Sec. 3.3 that the Wald expression for the entropy, for a Lagrangian which depends

polynomially on the Riemann tensor, is given by

SBH = −2π
∫

H

d3x
√
h

∂L

∂Rµνρσ
ǫµνǫρσ. (4.69)

ǫµν is the binormal to the bifurcation surface, normalized such that ǫµνǫ
µν = −2. We can

take

ǫµν = ξµην − ξνηµ, (4.70)

where ξ and η are null vectors normal to the bifurcate killing horizon, with ξ · η = 1. We

will take ξ to be the killing vector field,

ξ =
∂

∂t
(4.71)

which is null at the bifurcate horizon. Then η can be taken to be

η = −f−1 ∂

∂t
− ∂

∂r
(4.72)

where f = −r2

b2

(

1 − r4
0

r4

)

. In our particular case, we are interested in the additional contri-

bution to the entropy from

∆L =
γ

16πG5

W. (4.73)

Therefore

∆S = − γ

8G5

∫

H

d3x
√
h

∂W

∂Rµνρσ
ǫµνǫρσ. (4.74)

Since W is function only of the Weyl tensor

Cabcd = Rabcd +
1

3
(gadRcb + gbcRad − gacRdb − gbdRca) +

1

12
(gacgbd − gadgcb)R, (4.75)
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we may write for ∆S,

∆S = − γ

8G5

∫

H

d3x
√
h
∂W

∂Cabcd

∂Cabcd
∂Rµνρσ

ǫµνǫρσ. (4.76)

We then have
∂W

∂Cabcd
= W abcd

1 +
1

2
W abcd

2 (4.77)

where

W abcd
1 = gli

[

Cd
skj C

lbcj Caksi + Cd
jsk C

blkcCijsa

+Cd
jksC

ajkl Cbsic + Cd
kjsC

ljkaCsbci
]

(4.78)

and

W abcd
2 = gli

[

Ca
vkj C

ivkbCjlcd + Cb
vkj C

ivka C ljcd

+Ca
jkv C

dlkv Cibcj + Cd
jkv C

lavk Cjbci
]

. (4.79)

We will denote

Mabcd =
∂Cabcd
∂Rµνρσ

(ξµ ην − ξν ηµ) (ξρ ησ − ξσ ηρ) (4.80)

where

∂Cabcd
∂Rµνρσ

= δµa δ
ν
b δ

ρ
c δ

σ
d

+
1

3
(gad g

µρ δνc δ
σ
b + gbc g

µρ δνa δ
σ
d − gac g

µρ δνd δ
σ
b − gbd g

µρ δνc δ
σ
a )

+
1

24
(gac gbd − gad gbc) (gµρ gνσ − gµσ gνρ) (4.81)

Using the unperturbed metric Eq.4.61 one can calculate,

W abcd
1 Mabcd = −232r12

0

b6r12
(4.82)

and

W abcd
2 Mabcd =

224r12
0

b6r12
(4.83)

Then the integrand in Eq. 4.76 becomes

∂W

∂Cabcd

∂Cabcd
∂Rµνρσ

ǫµνǫρσ |r=r0= −120r12
0

b6r12
|r=r0 = −120

b6
. (4.84)
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Together with the factors of
√
h =

r3
0

b3
and V in the integral we get

∆S =
V r3

0

4b3G5

(

60γ

b6

)

=
π2

2
N2V T 3

(

60γ

b6

)

(4.85)

So the total entropy is,

S = S0 + ∆S =
V r3

0

4b3G5

(

1 +
60γ

b6

)

=
π2

2
N2V T 3

(

1 +
15γ

b6

)

(4.86)

which agrees with Eqs.4.65,4.68. Note that the individual contributions from the Einstein-

Hilbert term and the Weyl term to the Euclidean entropy, given in the first line of Eq.4.65,

are different from the individual contributions from these terms to the Wald entropy.

One can also look at the corrections to the AdS-Schwarzschild metric from the action

4.59 as in [25]. The Euclidean entropy in this case has been computed in [25] to be,

S =
V3r

3
+

4G5

[

1 +
60γ

b6

(

1 +
b2

r2
+

)3 ]

. (4.87)

In the Wald approach, the Einstein-Hilbert part of the action gives,

S0 =
V3r

3
+

4G5

.

The correction to the area law comes from the R4 term. Following the same procedure as

above can calculate the integrand in Eq. 4.76 using the unperturbed AdS-Schwarzschild

metric. The final result is,

∂W

∂Cabcd

∂Cabcd
∂Rµνρσ

ǫµνǫρσ |r=r+= −120γ

b6

(

1 +
b2

r2
+

)3

. (4.88)

So the total entropy is given by Eq. 4.87 and once again the two approaches yield the same

answer for any value of the mass.

5 Wald’s Approach Vs. Euclidean Approach in Asymp-

totically AdS Spacetime

Having seen that the computations in both approaches agree non-trivially in a number of

examples, we have reason to be confident that this must generally be so. In this section,

we will attempt to gain some understanding of why this might be so. We will start with

looking at the Noetherian definition of mass in AdS spacetimes and see that it involves a

subtraction procedure very like in the Euclidean framework. We will use this then, together

with a line of argument due to Wald, made for the asymptotically flat case, to relate the

Wald expression for the entropy to the Euclidean one.
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5.1 Mass in asymptotically AdS spacetime

There are several ways to define mass in asymptotically AdS spacetimes (see [13] for a

comprehensive comparison and references). In [13] it was shown for the Einstein-Hilbert

Lagrangian, with appropriate boundary conditions, that the Hamiltonian definition of Wald

reviewed in Sec. 3.2 (see also [21]), agreed with several other definitions. In particular, we

have from Eq.3.13,

δHξ = δ
∫

R̃
dSab

√−g Qab[ξ]. (5.1)

The boundary term Θ that appears in Eq.3.13 does not contribute13. The Noether charge

appearing in the right hand side is well defined in asymptotically AdS spacetimes only after

introducing a cutoff at an outer boundary (at, say, r = R̃). The variation δ is then such that

it keeps the geometry fixed at this hypersurface.

In the case, of the Einstein-Hilbert Lagrangian, it was shown in [13] that the boundary

conditions allow for Eq.5.1 to be integrated to give a Hamiltonian Hξ. The additive constant

to the Hamiltonian is fixed by demanding that the energy is zero in pure AdS.

We will assume that the above Noetherian definition of mass continues to make sense

for higher derivative Lagrangians of interest in asymptotically AdS spacetimes (reflected in

appropriate boundary conditions). Namely, we will integrate Eq.5.1

Hξ =
[
∫

R̃
dSab

√−g Qab[ξ] −
∫

R̃
dSab

√−g Qab
AdS [ξ̃]

]

. (5.2)

Again, the additive constant has been chosen so that the Hamiltonian is zero for pure AdS

spacetime. Since it shouldn’t contribute to the variation, the boundary geometry at r = R̃

must be the same for both the spacetime and the reference AdS. This implies that the killing

vector field ξ̃ is normalised such that it agrees with that of ξ

|ξ̃|2 = |ξ|2. (5.3)

on the boundary hypersurface.

13For simplicity, we will assume in what follows that the boundary term always cancels out on subtraction
from the background. Which is why we have dropped it in Eq.5.2. This is true for the Einstein-Hilbert
Lagrangian and we have checked that it also holds for the Gauss-Bonnet case. We believe this must be a
general feature in the asymptotically AdS case. This is unlike the flat space case where the boundary term
is crucial to the Euclidean computation, being the only contribution to the mass. In any case, even if a
boundary term contributes, the argument below can be modified by including the corresponding term in the
Euclidean computation of the action as well.

27



Since Q[ξ] is linear in ξ by construction from Eq.3.6, and since the difference in normal-

isation between ξ and ξ̃ is a constant, we can write,

Qab
AdS[ξ̃] =





(

gtt
gAdStt

)
1

2





r=R̃

Qab
AdS[ξ]. (5.4)

Here we have taken ξ to be the time translation killing vector. So,

∫

R̃
dSab

√−g Qab
AdS[ξ̃] =





(

gtt
gAdStt

)
1

2





r=R̃

∫

R̃
dSab

√−g Qab
AdS[ξ]. (5.5)

The Hamiltonian which is the total energy or mass of the system is then given by

E =





∫

R̃
dSab

√−g Qab[t] −




(

gtt
gAdStt

)
1

2





r=R̃

∫

R̃
dSab

√−g Qab
AdS[t]



 . (5.6)

It is clear from the above expression that for pure AdS space time, gtt = gAdStt , and hence

Hξ = 0.

In the Appendix we explicitly calculate the energy of the AdS Schwarzschild metric

Eq.2.2 using this prescription. We see there that the subtraction plays exactly the same role

as it did in the Euclidean computation. It is necessary for correctly getting the finite answer.

5.2 Relating the Wald and Euclidean approaches

Using the above definition of mass, we can make a direct connection between the Wald and

Euclidean approaches by modifying an argument given by Wald [4] for the asymptotically

flat case.

As in Sec.3.3 we will consider ξ to be a killing vector vanishing on the bifurcate horizon.

In that case Lξψ = 0 and hence Θ(Lξψ) = 0. Therefore the Noether current simplifies to

J = −ξ · L. (5.7)

Integrating both sides of Eq.5.7 over a constant time hypersurface C of the black hole space-

time, having the interior boundary H and the outer boundary at r = R̃. We get

∫

C

dVtJ
t = −

∫

C

dVtξ
tL(gBH)

−
∫

H

dSab
√−g Qab +

∫

R̃
dSab

√−g Qab = −
∫

C

dVtξ
tL(gBH).
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Therefore
∫

H

dSab
√−g Qab[ξt] = E +

∫

C

dVtξ
tL(gBH) +





(

gBHtt
gAdStt

)
1

2





r=R̃

∫

R̃
dSab

√−g Qab
AdS[ξ

t]. (5.8)

Using the same logic as above, but now integrating over Σ a Cauchy hypersurface in global

AdS, we have
∫

R̃
dSab

√−g Qab
AdS[ξ

t] = −
∫

Σ

dVtξ
tL(gAdS), (5.9)

As a result,

∫

H

dSab
√−g Qab = E +

∫

C

dVtξ
tL(gBH) −

(

gtt
gAdStt

)
1

2 ∫

Σ

dVtξ
tLAdS . (5.10)

Since the Wald entropy of the black hole is

S = β
∫

H

dSab
√−g Qab, (5.11)

Eq.5.10 becomes

S = βE + β
∫

C

dVtξ
tL(gBH) − β

(

gtt
gAdStt

)
1

2 ∫

C

dVtξ
tL(gAdS). (5.12)

Since, we have a static background

IBH = −β
∫

Σ

dVtξ
tL(gBH) (5.13)

and

IAdS = −β
(

gtt
gAdStt

)
1

2 ∫

C

dVtξ
tL(gAdS) (5.14)

provided we assign a temperature β ′ to AdS space which is

β ′ = β

(

gtt
gAdStt

)
1

2

. (5.15)

We now see exactly the Euclidean prescription, where one subtracts the action of a

background AdS spacetime with the above identification of temperatures. In other words,

S = βE − IBH + IAdS = βE − ∆I. (5.16)

Thus starting from the Noetherian expressions for the entropy, we obtain the relation to the

Euclidean prescription with exactly the same subtraction procedure.14

Though the mass that appears above is the Noetherian definition of mass, it must be

that it agrees with the Euclidean prescription for the mass. This is because both Euclidean

and Noetherian prescriptions obey the first law. In appendix B we indicate the argument.
14[14] derives this relation for the general two derivative lagrangian in asymptotically locally AdS spaces.

See also footnote 3.
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6 Conclusions

We have studied the relation between the Euclidean and Noetherian approaches to the en-

tropy of asymptotically AdS black holes with the aim of shedding light on the two holographic

descriptions for black hole entropy. The agreement between these two approaches can be

understood, as we have described, from the general construction of Noether charges. The

explicit computations in a number of examples further bolsters the case for the equivalence

of the two approaches.

What would be nice to see is if the argument for this equivalence can be cast in a way

which makes the relation of the Wald’s formula to the gauge theory more transparent. It

would help us answer the question: What is the meaning of Wald’s formula in the dual

Gauge Theory? Given the generality of Wald’s formula, it seems likely that there is an

equally universal statement to be made in the dual gauge theory. It has presumably to

do with the behaviour of the number of degrees of freedom under RG flow in the gauge

theory. The boundary holographic description (which is related to the Euclidean approach)

is naturally an expansion about small gauge coupling, moving inwards from the UV so to

say. While the Wald expression is an expansion in inverse powers of the gauge coupling,

systematically moving outwards from the IR. In this context, perhaps a generalisation of the

entropy function of Sen [27, 28] might be a useful way to understand the interpolation.

Another point which is worth noting from the explicit results we have exhibited is the

relative computational simplicity of the Wald approach in evaluating corrections. It seems

to be less onerous than the Euclidean procedure. This is also a sign that the Wald approach

is more natural, at least for large gauge coupling.
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Appendix

A Calculation of Energy

Let us calculate the total energy for the AdS-Schwarzschild space time

ds2 = −
(

1 +
r2

b2
− ωM

r2

)

dt2 +

(

1 +
r2

b2
− ωM

r2

)−1

dr2 + r2dΩ2

3 (A.1)

with the Einstein-Hilbert Lagrangian

L =
1

16πG5

(

R +
12

b2

)

. (A.2)

For this Lagrangian,

Qab = − 1

16πG5

(

∇a ξb − ∇b ξa
)

. (A.3)

Let ξ be an asymptotic time translational vector,

ξ =
∂

∂t
, ξt = 1. (A.4)

So

Qtr =
1

16πG5

(∂rgtt) ξ
t. (A.5)

For the AdS-Schwarzschild metric,

Qtr =
2

16πG5

(

r

b2
+
ωM

r3

)

. (A.6)

The Noetherian definition of mass Eq.5.6 is

E =
[
∫

R̃
dSab

√−g Qab[t] −
∫

R̃
dSab

√−g Qab
AdS[t̃]

]

. (A.7)

Now,
∫

R̃
dSab

√−g Qab[t] =
∫

R̃
dStr Q

tr[t] (A.8)

where dSab = 1

2
(dxa

⊗

dxb − dxb
⊗

dxa)
√
h is the volume element on the boundary. So

putting every thing together we get,

∫

R̃
dSab

√−g Qab[t] =
2V

16πG5

(

R̃4

b2
+ ωM

)

=
2V

16πG5

R̃4

b2
+

2M

3
. (A.9)
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Let us calculate the contribution from the background AdS metric,

ds2

AdS = −
(

1 +
r2

b2

)

dt2 +

(

1 +
r2

b2

)−1

dr2 + r2dΩ2

3. (A.10)

Here

Qtr
AdS =

2

16πG5

r

b2
ξ̃t (A.11)

where the asymptotic time translation vector ξ̃ = ξ̃t ∂
∂t

in background AdS space is given by,

ξ̃t =

(

gtt
gAdStt

)
1

2

= 1 − ωMb2

2 R̃4
. (A.12)

Therefore

∫

R̃
dSab

√
−g Qab

AdS[ξ̃
t] =

2V

16πG5

R̃4

b2

(

1 − ωMb2

2 R̃4

)

=
2V

16πG5

R̃4

b2
− M

3
. (A.13)

This finally implies

E = M. (A.14)

B Relating the Noetherian and Euclidean definitions

of Mass

In this section we will show that the Euclidean definition of mass is the same as that given

by the Noetherian method. The Euclidean definition of mass is given by,

M =
∂∆I

∂β
(B.1)

where ∆I = IBH − IAdS,

IBH = −β
∫

C

ξ · L, IAdS = −βAdS
∫

Σ

ξ · LAdS. (B.2)

Using Eq.5.7, IBH and IAdS can be written as,

IBH = β
∫

R̃
Q[ξ] − β

∫

H

Q[ξ]

and

IAdS = β

(

gtt
gAdStt

)1/2
∫

R̃
QAdS[ξ]
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So,

∂∆I

∂β
=

∫

R̃
Q[ξ] −

(

gtt
gAdStt

)1/2
∫

R̃
QAdS [ξ] −

∂

∂β

(

β
∫

H

Q[ξ]
)

+ β
∂E
∂β

= E −
[

∂

∂β

(

β
∫

H

Q[ξ]
)

− β
∂E
∂β

]

(B.3)

In the first line (as well as to go to the second line) we have used the Noetherian definition

of mass Eq.5.6. Since the Wald’s expression for the entropy obeys the first law, the term

inside the bracket vanishes. We therefore get

∂∆I

∂β
= E . (B.4)

References

[1] J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,”

Adv. Theor. Math. Phys. 2, 231 (1998) [Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:hep-

th/9711200].

[2] S. S. Gubser, I. R. Klebanov and A. W. Peet, “Entropy and Temperature of Black

3-Branes,” Phys. Rev. D 54, 3915 (1996) [arXiv:hep-th/9602135].

[3] E. Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge

theories,” Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131].

[4] R. M. Wald, “Black hole entropy in the Noether charge,” Phys. Rev. D 48, 3427 (1993)

[arXiv:gr-qc/9307038].

[5] S. W. Hawking and D. N. Page, “Thermodynamics Of Black Holes In Anti-De Sitter

Space,” Commun. Math. Phys. 87, 577 (1983).

[6] P. Kraus and F. Larsen, “Microscopic black hole entropy in theories with higher deriva-

tives,” JHEP 0509, 034 (2005) [arXiv:hep-th/0506176].

P. Kraus and F. Larsen, “Holographic gravitational anomalies,” JHEP 0601, 022 (2006)

[arXiv:hep-th/0508218].

[7] B. Sahoo and A. Sen, “BTZ black hole with Chern-Simons and higher derivative terms,”

arXiv:hep-th/0601228.

33



[8] B. Sahoo and A. Sen, “Higher derivative corrections to non-supersymmetric extremal

black holes in N = 2 supergravity,” arXiv:hep-th/0603149.

[9] R. G. Cai, “Gauss-Bonnet black holes in AdS spaces,” Phys. Rev. D 65, 084014 (2002)

[arXiv:hep-th/0109133].

M. Cvetic, S. Nojiri and S. D. Odintsov, “Black hole thermodynamics and negative

entropy in deSitter and Nucl. Phys. B 628, 295 (2002) [arXiv:hep-th/0112045].

I. P. Neupane, “Black hole entropy in string-generated gravity models,” Phys. Rev. D

67, 061501 (2003) [arXiv:hep-th/0212092].

I. P. Neupane, “Thermodynamic and gravitational instability on hyperbolic spaces,”

Phys. Rev. D 69, 084011 (2004) [arXiv:hep-th/0302132].

[10] S. Nojiri, S. D. Odintsov and S. Ogushi, “Cosmological and black hole brane world

universes in higher derivative gravity,” Phys. Rev. D 65, 023521 (2002) [arXiv:hep-

th/0108172].

S. Nojiri and S. D. Odintsov, “Anti-de Sitter black hole thermodynamics in higher

derivative gravity and new confining-deconfining phases in dual CFT,” Phys. Lett. B

521, 87 (2001) [Erratum-ibid. B 542, 301 (2002)] [arXiv:hep-th/0109122].

[11] Y. M. Cho and I. P. Neupane, “Anti-de Sitter black holes, thermal phase transition and

holography in higher curvature gravity,” Phys. Rev. D 66, 024044 (2002) [arXiv:hep-

th/0202140].

[12] S. S. Gubser, I. R. Klebanov and A. A. Tseytlin, “Coupling constant dependence in the

thermodynamics of N = 4 supersymmetric Yang-Mills theory,” Nucl. Phys. B 534, 202

(1998) [arXiv:hep-th/9805156].

[13] S. Hollands, A. Ishibashi and D. Marolf, “Comparison between various notions of con-

served charges in asymptotically AdS-spacetimes,” Class. Quant. Grav. 22, 2881 (2005)

[arXiv:hep-th/0503045].

[14] I. Papadimitriou and K. Skenderis, “Thermodynamics of asymptotically locally AdS

spacetimes,” JHEP 0508, 004 (2005) [arXiv:hep-th/0505190].

[15] N. Okuyama and J. i. Koga, “Asymptotically anti de Sitter spacetimes and conserved

quantities in higher curvature gravitational theories,” Phys. Rev. D 71, 084009 (2005)

[arXiv:hep-th/0501044].

34



[16] J. i. Koga, “The first law of AdS black holes in higher curvature gravity,” Phys. Rev. D

72, 064010 (2005) [arXiv:hep-th/0505219].

[17] D. V. Fursaev and S. N. Solodukhin, “On one loop renormalization of black hole en-

tropy,” Phys. Lett. B 365, 51 (1996) [arXiv:hep-th/9412020].

D. V. Fursaev and S. N. Solodukhin, Phys. Rev. D 52, 2133 (1995) [arXiv:hep-

th/9501127].

V. P. Frolov, W. Israel and S. N. Solodukhin, “On One-loop Quantum Corrections to the

Thermodynamics of Charged Black Holes,” Phys. Rev. D 54, 2732 (1996) [arXiv:hep-

th/9602105].

[18] G. W. Gibbons and S. W. Hawking, “Action Integrals And Partition Functions In

Quantum Gravity,” Phys. Rev. D 15, 2752 (1977).

[19] V. Iyer and R. M. Wald, “Some properties of Noether charge and a proposal for dy-

namical black hole entropy,” Phys. Rev. D 50, 846 (1994) [arXiv:gr-qc/9403028].

[20] J. Lee and R. M. Wald, “Local Symmetries And Constraints,” J. Math. Phys. 31 (1990)

725.

[21] R. M. Wald and A. Zoupas, “A General Definition of ”Conserved Quantities” in General

Relativity and Other Theories of Gravity,” Phys. Rev. D 61, 084027 (2000) [arXiv:gr-

qc/9911095].

[22] R. C. Myers, “Black holes in higher curvature gravity,” arXiv:gr-qc/9811042.

[23] S. de Haro, A. Sinkovics and K. Skenderis, “On alpha’ corrections to D-brane solutions,”

Phys. Rev. D 68, 066001 (2003) [arXiv:hep-th/0302136].

S. de Haro, A. Sinkovics and K. Skenderis, Phys. Rev. D 67, 084010 (2003) [arXiv:hep-

th/0210080].

[24] Y. h. Gao and M. Li, “Large N strong/weak coupling phase transition and the corre-

spondence principle,” Nucl. Phys. B 551, 229 (1999) [arXiv:hep-th/9810053].

[25] K. Landsteiner, “String corrections to the Hawking-page phase transition,” Mod. Phys.

Lett. A 14, 379 (1999) [arXiv:hep-th/9901143].

[26] J. Pawelczyk and S. Theisen, “AdS(5) x S(5) black hole metric at O(alpha’**3),” JHEP

9809, 010 (1998) [arXiv:hep-th/9808126].

35



[27] A. Sen, “Entropy function for heterotic black holes,” arXiv:hep-th/0508042.

[28] A. Sen, “Black hole entropy function and the attractor mechanism in higher derivative

gravity,” JHEP 0509, 038 (2005) [arXiv:hep-th/0506177].

[29] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253

(1998) [arXiv:hep-th/9802150].

36


