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Abstract: Non-relativistic versions of the AdS/CFT conjecture have recently been

investigated in some detail. These have primarily been in the context of the

Schrodinger symmetry group. Here we initiate a study based on a different non-

relativistic conformal symmetry: one obtained by a parametric contraction of the

relativistic conformal group. The resulting Galilean conformal symmetry has the

same number of generators as the relativistic symmetry group and thus is different

from the Schrodinger group (which has fewer). One of the interesting features of

the Galilean Conformal Algebra is that it admits an extension to an infinite dimen-

sional symmetry algebra (which can potentially be dynamically realised). The latter

contains a Virasoro-Kac-Moody subalgebra. We comment on realisations of this ex-

tended symmetry in a boundary field theory. We also propose a somewhat unusual

geometric structure for the bulk gravity dual to any realisation of this symmetry.

This involves taking a Newton-Cartan like limit of Einstein’s equations in anti de

Sitter space which singles out an AdS2 comprising of the time and radial direction.

The infinite dimensional Virasoro extension is identified with the asymptotic isome-

tries of this AdS2.
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1. Introduction

Even after more than a decade, the AdS-CFT conjecture [1] continues to throw up

rich, new avenues of investigation. One such recent direction has been to consider

extensions of the conjecture from its original relativistic setting to a non-relativistic

context. This opens the door to potential applications of the spirit of gauge-gravity

duality to a variety of real-life strongly interacting systems. It was pointed out in [2]

that the Schrodinger symmetry group [3, 4], a non-relativistic version of conformal

symmetry, is relevant to the study of cold atoms. A gravity dual possessing these

symmetries was then proposed in [7, 8] (see also [9, 10] for a somewhat different bulk

realisation). Further developments along this line can be found in [11] –[38].

Instead of the Schrodinger group, in this paper, we will consider an alternative

non-relativistic realisation of conformal symmetry and begin a study of its conse-

quences and realisations in the context of the AdS/CFT conjecture. This symmetry
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will be obtained by considering the nonrelativistic group contraction of the relativis-

tic conformal group SO(d + 1, 2) in d + 1 space-time dimensions. 1 The process of

group contraction leads, in d = 3, for instance, to a fifteen parameter group (like the

parent SO(4, 2) group) which contains the ten parameter Galilean subgroup. This

Galilean conformal group is to be contrasted with the twelve parameter Schrodinger

group (plus central extension) with which it has in common only the Galilean sub-

group. The Galilean conformal group is, in fact, different from the Schrodinger group

in some crucial respects, which we will describe in more detail later. For instance,

the dilatation generator D̃ in the Schrodinger group scales space and time differ-

ently xi → λxi, t → λ2t. Whereas the corresponding generator D in the Galilean

Conformal Algebra (GCA) scales space and time in the same way xi → λxi, t → λt.

Relatedly, the GCA does not admit a mass term as a central extension. Thus, in

some sense, this symmetry describes ”massless” or ”gapless” non-relativistic theories,

like the parent relativistic group but unlike the Schrodinger group.

However, the most interesting feature of the GCA seems to be its natural exten-

sion to an infinite dimensional symmetry algebra (which we will also often denote

as GCA when there is no risk of confusion). This is somewhat analogous, as we will

see, to the way in which the finite conformal algebra of SL(2, C) in two dimensions

extends to two copies of the Virasoro algebra. We will see that it is natural to expect

this extended symmetry to be dynamically realised (perhaps partially) in actual sys-

tems possesing the finite dimensional Galilean conformal symmetry. Indeed, it has

been known (see [47] and references therein) that there is a notion of a ”Galilean

isometry” which encompasses the so-called Coriolis group of arbitrary time depen-

dent (but spatially homogeneous) rotations and translations. In this language, our

infinite dimensional algebra is that of ”Galilean conformal isometries”. As we will

see, it contains one copy of a Virasoro together with an SO(d) current algebra (on

adding the appropriate central extension).

In addition to possible applications to non-relativistic systems, one of the moti-

vations for studying the contracted SO(d+1, 2) conformal algebra is to examine the

possibility of a new tractable limit of the parent AdS/CFT conjecture. In fact, the

BMN limit [46] of the AdS/CFT conjecture is an instance where, as result of taking

a particular scaling limit, one obtains a contraction of the original SO(4, 2)×SO(6)

1The process of group contraction is, of course, standard and may have been applied by many

people to the relativistic conformal group. To the best of our knowledge, [39] is a recent reference

with the explicit results of this contraction of the relativistic conformal group. This reference goes

on to study a realisation of the 2 + 1 dimensional case, which has some special features.
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(bosonic) global symmetry 2. In our case, the non-relativistic contraction is obtained

by taking a similar scaling limit on the parent theory. Like in the BMN case, tak-

ing this limit would isolate a closed subsector of the full theory. The presence of

an enhanced symmetry in our scaling limit raises interesting possibilities about the

solvability of this subsector. We defer the detailed study of this aspect for later.

There are, however, some important differences here from a BMN type limit

which have to do with the nature of taking the scaling. Normally the BMN type

scaling leads to a Penrose limit of the geometry in the vicinity of some null geodesic.

These are typically pp-wave like geometries whose isometry is the same as that of the

contracted symmetry group on the boundary. The non-relativistic scaling limit that

leads to the GCA on the boundary is at first sight more puzzling to implement in the

bulk. This is because, under the corresponding scaling, the bulk metric degenerates

in the spatial directions xi. Thus one might think one has some kind of singular

limit in the bulk description. However, this degeneration is a feature common to all

non-relativistic limits. It arises, for instance, in taking the Newtonian gravity limit

of Einstein’s equations in asymptotically flat space. However, in this case, there

is a well defined geometric description of the limit despite the degeneration of the

metric. This description, originally due to Cartan, and studied fairly thoroughly by

geometers describes Newtonian gravity in terms of a non-dynamical metric but with

a dynamical non-metric connection3. The Einstein’s equations reduce to equations

determining the curvature of this connection in terms of the matter density. These

are nothing but the Poisson equations for the Newtonian gravitational potential. In

geometric terms the spacetime takes the form of a vector bundle with fibres as the

spatial Rd over a base R which is time, together with an affine connection related to

the gradient of the Newtonian potential.

We propose a similar limiting description for the bulk geometry in our case.

The main difference is that the time and the radial direction together constitute an

AdS2 with a non-degenerate metric. Thus one has a geometry with an AdS2 base

and the spatial Rd fibred over it. Once again there is no overall spacetime metric.

The dynamical variables are affine connections determined by the limiting form of

Einstein’s equations. As a check of this proposal, we will see that the infinite dimen-

2An algebraically equivalent contraction to ours, of the isometries of AdS5 × S5, was studied in

[53] as an example of a non-relativistic string theory. However, the embedding of this contraction

in AdS5 is not manifestly such that it corresponds to a non-relativistic CFT on the boundary. We

will comment further on this at a later stage.
3See the textbook [59] Chap.12 for a basic discussion. We thank T. Padmanabhan for bringing

this to our attention.
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sional GCA symmetries are realised in this bulk geometry as asymptotic isometries.

In fact the Virasoro generators of the GCA are precisely the familiar generators of

asymptotic global isometries of AdS2. These generators will also be seen to reduce

to the generators of the GCA on the boundary.

The paper is organised as follows. In the next section we first review the

Schrodinger symmetry algebra in order to set notation and contrast it with the

Galilean Conformal Algebra, which we obtain through group contraction on SO(d+

1, 2). In Sec. 3 we describe the infinite dimensional extension of this algebra and its

physical significance. Sec. 4 moves onto the bulk realisation of the non-relativistic

contraction. We propose a geometric description of the bulk physics analogous to

the Newton-Cartan theory. In Sec. 5 we lend support to this proposal by finding

the vector fields corresponding to the GCA and its infinite dimensional extension as

well as their action on the bulk AdS. In Sec. 6 we close with a laundry list of things

left undone. In two appendices we elaborate on a couple of points of the main text.

2. Non-Relativistic Conformal Symmetries

2.1 Schrodinger Symmetry

The Schrodinger symmetry group in (d + 1) dimensional spacetime (which we will

denote as Sch(d, 1)) has been studied as a non-relativistic analogue of conformal sym-

metry. It’s name arises from being the group of symmetries of the free Schrodinger

wave operator in (d + 1) dimensions. In other words, it is generated by those trans-

formations that commute with the operator S = i∂t +
1

2m
∂2

i . However, this symmetry

is also believed to be realised in interacting systems, most recently in cold atoms at

criticality.

The symmetry group contains the usual Galilean group (denoted as G(d, 1)) with

its central extension.

[Jij , Jrs] = so(d)

[Jij , Br] = −(Biδjr − Bjδir)

[Jij , Pr] = −(Piδjr − Pjδir), [Jij, H ] = 0

[Bi, Bj ] = 0, [Pi, Pj] = 0, [Bi, Pj] = mδij

[H, Pi] = 0, [H, Bi] = −Pi. (2.1)

Here Jij (i, j = 1 . . . d) are the usual SO(d) generators of spatial rotations. Pr are

the d generators of spatial translations and Bj those of boosts in these directions.

Finally H is the generator of time translations. The parameter m is the central
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extension and has the interpretation as the non-relativistic mass (which also appears

in the Schrodinger operator S).

As vector fields on the Galilean spacetime Rd,1, they have the realisation (in the

absence of the central term)

Jij = −(xi∂j − xj∂i) H = −∂t

Pi = ∂i Bi = t∂i (2.2)

In addition to these Galilean generators there are two more generators which we

will denote by K̃, D̃. D̃ is a dilatation operator, which unlike the relativistic case,

scales time and space differently. As a vector field D̃ = −(2t∂t + xi∂i) so that

xi → λxi, t → λ2t. (2.3)

K̃ acts something like the time component of special conformal transformations. It

has the form K̃ = −(txi∂i+t2∂t) and generates the finite transformations (parametrised

by µ)

xi →
xi

(1 + µt)
, t →

t

(1 + µt)
. (2.4)

These two additional generators have non-zero commutators

[K̃, Pi] = Bi, [K̃, Bi] = 0, [D̃, Bi] = −Bi

[D̃, K̃] = −2K̃, [K̃, H ] = −D̃, [D̃, H ] = 2H. (2.5)

The generators K̃, D̃ are invariant under the spatial rotations Jij . We also see from

the last line that H, K̃, D̃ together form an SL(2, R) algebra. The central extension

term of the Galilean algebra is compatible with all the extra commutation relations.

Note that there is no analogue in the Schrodinger algebra of the spatial com-

ponents Ki of special conformal transformations. Thus we have a smaller group

compared to the relativistic conformal group. In (3 + 1) dimensions the Schrodinger

algebra has twelve generators (ten being those of the Galilean algebra) and the addi-

tional central term. Whereas the relativistic conformal group has fifteen generators.

In the next subsection we will discuss how to get a nonrelativistic conformal group

through group contraction. In the process of group contraction one does not lose any

generators and hence the Galilean Conformal Algebra we find will have the same

number of generators as the group SO(d + 1, 2).

2.2 Contraction of the Relativistic Conformal Group

We know that the Galilean algebra G(d, 1) arises as a contraction of the Poincare

algebra ISO(d, 1). Physically this comes from taking the non-relativistic scaling

t → ǫrt xi → ǫr+1xi (2.6)
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with ǫ → 0. This is equivalent to taking the velocities vi ∼ ǫ to zero (in units where

c = 1). We have allowed for a certain freedom of scaling through the parameter

r, since we might have other scales in the theory with respect to which we would

have to take the above nonrelativistic limit. We will later consider the example of

nonrelativistic fluid mechanics, in which we have a scale set by the temperature. In

this case the natural scaling corresponds to r = −2. However, for the process of

group contraction the parameter r will play no role apart from modifying an over all

factor which is unimportant. Hence we will mostly take r = 0.

Starting with the expressions for the Poincare generators (µ, ν = 0, 1 . . . d)

Jµν = −(xµ∂ν − xν∂µ) Pµ = ∂µ, (2.7)

the above scaling gives us the Galilean vector field generators of (2.2)

Jij = −(xi∂j − xj∂i) P0 = H = −∂t

Pi = ∂i J0i = Bi = t∂i. (2.8)

They obey the commutation relations (without central extension) of (2.1). This

should be contrasted with the Poincare commutators

[Jij, Jrs] = so(d)

[Jij , Br] = −(Biδjr − Bjδir)

[Jij, Pr] = −(Piδjr − Pjδir), [Jij, H ] = 0

[Bi, Bj ] = −Jij , [Pi, Pj] = 0, [Bi, Pj] = δijH

[H, Pi] = 0, [H, Bi] = −Pi (2.9)

To obtain the Galilean Conformal Algebra, we simply extend the scaling (2.6)

to the rest of the generators of the conformal group SO(d + 1, 2). Namely to

D = −(x · ∂) Kµ = −(2xµ(x · ∂) − (x · x)∂µ) (2.10)

where D is the relativistic dilatation generator and Kµ are those of special conformal

transformations. The non-relativistic scaling in (2.6) now gives (see also [39])

D = −(xi∂i + t∂t)

K = K0 = −(2txi∂i + t2∂t)

Ki = t2∂i. (2.11)

Note that the dilatation generator D = −(xi∂i + t∂t) is the same as in the

relativistic theory. It scales space and time in the same way xi → λxi, t → λt.
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Therefore it is different from the dilatation generator D̃ = −(2t∂t + xi∂i) of the

Schrodinger group. Similarly, the temporal special conformal generator K in (2.11)

is different from K̃ = −(txi∂i + t2∂t). Finally, we now have spatial special conformal

transformations Ki which were not present in the Schrodinger algebra. Thus the

generators of the Galilean Conformal Algebra are (Jij, Pi, H, Bi, D, K, Ki).

Since the usual Galilean algebra G(d, 1) for the generators (Jij , Pi, H, Bi) is a

subalgebra of the GCA, we will not write down their commutators. The other non-

trivial commutators of the GCA are [39]

[K, Ki] = 0, [K, Bi] = Ki, [K, Pi] = 2Bi

[Jij, Kr] = −(Kiδjr − Kjδir), [Jij , K] = 0, [Jij, D] = 0

[Ki, Kj] = 0, [Ki, Bj] = 0, [Ki, Pj ] = 0, [H, Ki] = −2Bi,

[D, Ki] = −Ki, [D, Bi] = 0, [D, Pi] = Pi,

[D, H ] = H, [H, K] = −2D, [D, K] = −K. (2.12)

This can again be contrasted with commutators of the corresponding relativistic

generators

[K, Ki] = 0, [K, Bi] = Ki, [K, Pi] = 2Bi

[Jij , Kr] = −(Kiδjr − Kjδir), [Jij , K] = 0, [Jij , D] = 0

[Ki, Kj] = 0, [Ki, Bj] = δijK, [Ki, Pj] = 2Jij + 2δijD

[H, Ki] = −2Bi, [D, Ki] = −Ki, [D, Bi] = 0, [D, Pi] = Pi,

[D, H ] = H, [H, K] = −2D, [D, K] = −K. (2.13)

We can also compare the relevant commutators in (2.12) with those of (2.5) and

we notice that they too are different. Thus the Schrodinger algebra and the GCA

only share a common Galilean subgroup and are otherwise different. In fact, one can

verify using the Jacobi identities for (D, Bi, Pj) that the Galilean central extension in

[Bi, Pj] is not admissible in the GCA. This is another difference from the Schrodinger

algebra, which as mentioned above, does allow for the central extension. Thus in

some sense, the GCA is the symmetry of a ”massless” (or gapless) nonrelativistic

system. We will discuss some possible realisations in the next section. It should be

pointed out that the GCA does admit a different central extension of the form

[Ki, Pj] = Nδij (2.14)

where N commutes with all the other generators of the GCA. The exact interpreta-

tion of this term in general is not clear. It will, in fact, turn out to be absent when

one considers the infinite dimensional extension of the GCA in the next section.
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3. The Infinite Dimensional Extended GCA

The most interesting feature of the GCA is that it admits a very natural extension

to an infinite dimensional algebra of the Virasoro-Kac-Moody type4. To see this we

denote

L(−1) = H, L(0) = D, L(+1) = K,

M
(−1)
i = Pi, M

(0)
i = Bi, M

(+1)
i = Ki. (3.1)

The finite dimensional GCA which we had in the previous section can now be recast

as

[Jij , L
(n)] = 0, [L(m), M

(n)
i ] = (m − n)M

(m+n)
i

[Jij , M
(m)
k ] = −(M

(m)
i δjk − M

(m)
j δik), [M

(m)
i , M

(n)
j ] = 0,

[L(m), L(n)] = (m − n)L(m+n). (3.2)

The indices m, n = 0,±1 We have made manifest the SL(2, R) subalgebra with the

generators L(0), L(±1). In fact, we can define the vector fields

L(n) = −(n + 1)tnxi∂i − tn+1∂t

M
(n)
i = tn+1∂i (3.3)

with n = 0,±1. These (together with Jij) are then exactly the vector fields in (2.2)

and (2.11) which generate the GCA (without central extension).

If we now consider the vector fields of (3.3) for arbitrary integer n, and also

define

J (n)
a ≡ J

(n)
ij = −tn(xi∂j − xj∂i) (3.4)

then we find that this collection obeys the current algebra

[L(m), L(n)] = (m − n)L(m+n) [L(m), J (n)
a ] = −nJ (m+n)

a

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c [L(m), M

(n)
i ] = (m − n)M

(m+n)
i . (3.5)

The index a labels the generators of the spatial rotation group SO(d) and fabc are

the corresponding structure constants. We see that the vector fields generate a

SO(d) Kac-Moody algebra without any central terms. In addition to the Virasoro

and current generators we also have the commuting generators M
(n)
i which function

like generators of a global symmetry. We can, for instance, consistently set these

4After obtaining these results we came to learn of a similar Virasoro extension of the Schrodinger

group[5]. The actual algebra is different from the one described here.
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generators to zero. The presence of these generators therefore do not spoil the

ability of the Virasoro-Kac-Moody generators to admit the usual central terms in

their commutators.

What is the meaning of this infinite dimensional extension? Do these additional

vector fields generate symmetries?

There is a relatively simple interpretation for the generators M
(n)
i , L(n), J

(n)
a . We

know that Pi = M
(−1)
i , Bi = M

(0)
i , Ki = M

(1)
i generate uniform spatial translations,

velocity boosts and accelerations respectively. In fact, it is simple to see from (3.3)

that the M
(n)
i generate arbitrary time dependent (but spatially independent) accel-

erations.

xi → xi + bi(t). (3.6)

Similarly the J
(n)
ij in (3.4) generate arbitrary time dependent rotations (once again

space independent)

xi → Rij(t)xj (3.7)

These two set of generators together generate what is sometimes called the Coriolis

group: the biggest group of ”isometries” of ”flat” Galilean spacetime [47].

Recall that in the absence of gravity Galilean spacetime is characterised by a

degenerate metric. The time intervals are much larger than any space-like intervals

in the nonrelativistic scaling limit (2.6). We thus have an absolute time t and spa-

tial sections with a flat Euclidean metric. We can, in a precise sense, describe the

analogue of the isometries in this Galilean spacetime. The Coriolis group by virtue

of preserving the spatial slices (at any given time) are the maximal set of isome-

tries. See appendix A for more details. This realisation of the current algebra in our

context is a bit like the occurence of a loop group.

The generators L(n) have a more interesting action in acting both on time as well

as space. We can read this off from (3.3)

t → f(t), xi →
df

dt
xi. (3.8)

Thus it amounts to a reparametrisation of the absolute time t. Under this reparametri-

sation the spatial coordinates xi act as vectors (on the worldline t). It seems as if this

is some kind of ”conformal isometry” of the Galilean spacetime, rescaling coordinates

by the arbitrary time dependent factor df

dt
.

With this interpretation of the infinite extension of the GCA, one might expect

that it ought to be partially or fully dynamically realised in physical systems where

the finite GCA is (partially or fully) realised. We will see below an example which
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lends support to this idea. We will also see in Sec. 5 that the bulk geometry which

we propose as the dual has the extended GCA among its asymptotic isometries. An

analogy might be two dimensional conformal invariance where the Virasoro algebra

is often a symmetry when the finite conformal symmetry of SL(2, C) is realised.

And the (two copies of the) Virasoro generators are reflected in the bulk AdS3 as

asymptotic isometries.

Given that the Galilean limit can be obtained by taking a definite scaling limit

within a relativistic theory, we expect to see the GCA (and perhaps its extension) as

a symmetry of some subsector within every relativistic conformal field theory. For

instance, in the best studied case of N = 4 Yang-Mills theory, we ought to be able

to isolate a sector with this symmetry. One clue is the presence of the SL(2, R)

symmetry together with the preservation of spatial rotational invariance. One might

naively think this should be via some kind of conformal quantum mechanics obtained

by considering only the spatially independent modes of the field theory. But this is

probably not totally correct for the indirect reasons explained in the next paragraph.

Recently, the nonrelativistic limit of the relativistic conformal hydrodynamics,

which describes the small fluctuations from thermal equilibrium, have been studied

[40, 41, 42]. One recovers the non-relativistic incompressible Navier-Stokes equation

in this limit. The symmetries of this equation were then studied by [41] (see also

[42]). One finds that all the generators of the finite GCA are indeed symmetries5

except for the dilatation operator D 6. In particular it has the Ki as symmetries. It is

not surprising that the choice of a temperature should break the scaling symmetry of

D 7. The interesting point is that the arbitrary accelerations M
(n)
i are also actually a

symmetry [43] (generating what is sometimes called the Milne group [47]). Thus we

have a part of the extended GCA as a symmetry of the non-relativistic Navier-stokes

equation which should presumably describe the hydrodynamics in every nonrela-

tivistic field theory. In particular, the closed non-relativistic subsector within every

relativistic conformal field theory should have a hydrodynamic description governed

by the Navier-Stokes equation. This might seem to suggest that this sector ought to

have more than just the degrees of freedom of a conformal quantum mechanics.

Coming back to the Navier-Stokes equation, if the viscosity is set to zero, one

5For a realisation of the Schrodinger symmetry in the context of the Navier-Stokes equation see

[44, 45].
6The generator K acts trivially.
7However, one can define an action of the D̃ as in (2.3) to be a symmetry.
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gets the incompressible Euler equations

∂tvi(x, t) + vj∂jvi(x, t) = −∂ip(x, t) (3.9)

In this case one has the entire finite dimensional GCA being a symmetry since D

is now also a symmetry. It is the viscous term which breaks the symmetry under

equal scaling of space and time. This shows that one can readily realise ”gapless”

non-relativistic systems in which space and time scale in the same way! 8

4. The Bulk Dual

Given a particular instance of an AdS/CFT duality, we should be able parametrically

to take the non-relativistic scaling limit on both sides of the duality. On the field

theory side, as we have discussed, the relativistic conformal invariance reduces to

the GCA with a possible infinite dimensional dynamical extension. On the string

theory side it should be possible to take a similar scaling limit along the lines of the

non-relativistic limit studied in [51, 52, 53]. Below we will only consider features of

this scaling limit when the parent bulk theory is well described by gravity. This will

already involve some novel features. This has to with the fact that the usual pseudo-

riemannian metric degenerates when one takes a non-relativistic limit. Nevertheless,

there is a well defined, albeit somewhat unfamiliar, geometric description of gravity

in such a limit [59]. In the (asymptotically) flat space case this is known as the

Newton-Cartan theory of gravity which captures Newtonian gravity in a geometric

setting. This is a non-metric gravitational theory. The dynamical variables are affine

connections. Einstein’s equations reduce to equations for the curvature of these non-

metric connections. One can generalise this to the case of a negative cosmological

constant as well. A variant of this is what we propose below as the right framework

for the gravity dual of systems with the GCA. In the next subsection we will briefly

review features of the Newton-Cartan theory and then go onto describe the case with

a negative cosmological constant.

4.1 Newton-Cartan Theory of Gravity

In the Newton-Cartan description of gravity, the (d + 1) dimensional spacetime M

has a time function t on it which foliates the spacetime into d dimensional spatial

8Inonu and Wigner [49] have considered representations of the Galilean group without the mass

extension and concluded that a particle interpretation of states of the irreducible representations

is subtle. In particular such states are not localisable. Just as in the case of relativistic conformal

group it is likely that observables such as the S-matrix are ill-defined. We thank Sean Hartnoll for

bringing this reference to our attention.
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slices. Stated more precisely (see for example [60]): one defines a contravariant

tensor γ = γµν∂µ ⊗ ∂ν (µ, ν = 0 . . . d) such there is a time 1-form τ = τµdxµ which is

orthogonal to γ in the sense that γµντµ = 0. The metric γ, which has three positive

eigenvalues and one zero eigenvalue, will be the non-dynamical spatial metric on

slices orthogonal to the worldlines defined by τ . There is no metric on the spacetime

as a whole. In fact, its geometric structure is that of a fibre bundle with a one

dimensional base (time) and the d dimensional spatial slices as fibres.

The dynamics is encoded in a torsion free affine connection Γµ
νλ on M . We will

demand that this connection is compatible with both γ and τ i.e.

∇ργ
µν = 0 ∇ρτν = 0. (4.1)

This enables one to define a time function t (”absolute time”) since we have τµ = ∇µt.

Unlike the Christoffel connections which are determined by the spacetime metric in

Einstein’s theory, this Newton-Cartan connection is not fixed by just these conditions.

One has to impose some additional relations. Defining R
µν
λσ = γναR

µ
λασ, one can define

a Newtonian connection as one which obeys the additional condition R
µν
λσ = R

νµ
σλ.9

In the presence of matter sources specified by a contravariant second rank stress

tensor T µν , which is additionally required to be covariantly conserved ∇µT µν = 0,

we can write down the field equations which determine the connection in terms of

the sources. This is best done by introducing a ”time” like metric gµν = τµτν which

is orthogonal to the spatial metric γµν . The field equations are then familiar in form

Rµν = 8πG(Tµν −
1

2
gµνT ) (4.2)

where Tµν = gµαgνβT αβ and T = gαβT αβ. Note that to define the Ricci tensor Rµν

(unlike the Ricci scalar R) one does not need a metric, only the affine connection.

When one chooses coordinates such that γ = δij∂i ⊗ ∂j (i, j = 1 . . . d), τ =

dt, the non-zero components of the Newtonian connection take the form (imposing

appropriate boundary conditions at infinity) Γi
00 = ∂iΦ. The field equations then

reduce to Poisson’s equations with Φ being the Newtonian gravitational potential

and the source being the matter density ρ = T 00.

This is, of course, an intrinsic characterisation of Newtonian gravity. Not unsur-

prisingly, this geometric structure has also been shown to arise in the degenerating

limit of a usual Einsteinian geometry [54]. Namely, one can study a one parameter

9In Einstein gravity with the Christoffel connection and γ being the nondegenerate spacetime

metric, this relation is identically satisfied but here it has to be imposed additionally.
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(ǫ) family of usual Lorentzian signature metrics, with the non-relativistic limit ǫ → 0

leading to a degenerate metric. The condition that this limiting geometry be a New-

tonian spacetime is satisfied under fairly mild conditions on the ǫ dependence of the

Lorentzian metric (and therefore the associated geometric objects such as the co-

variant derivative, curvature tensor etc.). This shows that the nonrelativistic scaling

limit is a sensible one to take of a generic Einsteinian geometry.

4.2 Newtonian limit of Gravity on AdSd+2

We would like to parametrically carry out the non-relativistic scaling on the bulk

AdSd+2 which would capture the physics of the nonrelativistic limit in the (d + 1)

dimensional boundary theory. In the next section we will describe the bulk scaling

in more detail. Here we will simply motivate its qualitative features and give the

resulting Newton-Cartan like description of the bulk geometry.

We know that the boundary metric degenerates in the nonrelativistic limit with

the d spatial directions scaling as xi ∝ ǫ while t ∝ ǫ0. We expect this feature to be

shared by the bulk metric. One expects that the geometry on constant radial sections

to have such a scaling. Since the radial direction of the AdSd+2 is an additional

dimension, we have to fix its scaling. The radial direction is a measure of the energy

scales in the boundary theory via the holographic correspondence. We therefore

expect it to also scale like time i.e. as ǫ0. This means that in the bulk the time and

radial directions of the metric both survive when performing the scaling. Together

these constitute an AdS2 sitting inside the original AdSd+2.

What this implies for the dynamics is that we should have a Newton-Cartan

like description but with the special role of time being replaced by an AdS2. The

geometric structure, in analogy with that of the previous section, is that of a fibre

bundle with AdS2 base and the d dimensional spatial slices as fibres.

Accordingly, we will consider a (”spatial”) metric γ = γµν∂µ⊗∂ν (µ, ν = 0 . . . d+

1) which now has two zero eigenvalues corresponding to the time and radial directions.

(In a canonical choice of coordinates these directions will correspond to µ = 0, d+1).

Mathematically the two null eigenvectors will be taken to span the space of left

invariant 1-forms of AdS2. These will also define the AdS2 metric gαβ in the usual

way (This is the analogue of the time metric defined in the previous subsection).

We will once again have dynamical, torsion free affine connections Γµ
νλ which are

compatible with both the spatial and AdS2 metrics

∇ργ
µν = 0 ∇ρgαβ = 0. (4.3)
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There will also be Christoffel connections from the AdS2 and spatial metrics which

will not be dynamical if we do not allow these metrics, specifically gµν , to fluctuate.

We will also impose the condition below (4.1) on the Riemann tensor.

In standard Poincare coordinates where γ = z2δij∂i ⊗ ∂j (i, j = 1 . . . d) and

gαβdxαdxβ = 1
z2 (dt2 − dz2), the non-zero components of the dynamical connection

can be taken to be Γi
ab(t, z, xi) = ∂iΦab(t, z, xi) (with a, b = 0, d + 1). There will be

Christoffel components from γ and g as mentioned above.

The field equations are the expected modification of (4.2)

Rµν − Λgµν = 8πG(Tµν −
1

2
gµνT ) (4.4)

where Tµν = gµαgνβT αβ and T = gαβT αβ and Λ is the cosmological constant. These

are dynamical equations for the fields Φab(t, z, xi) once the stress tensor T ab(t, z, xi)

in the AdS2 directions is specified.

5. GCA in the Bulk

In this section we will carry out the non-relativistic scaling limit on the AdS5 piece

of the bulk. We will also do this for the SO(4, 2) isometries of AdS5 and obtain the

same contracted algebra as in Sec.310. We will then see how the infinite dimensional

extension of this algebra is realised in the bulk. They will have the interpretation as

being the generators of asymptotic isometries of the bulk Newton-Cartan like geome-

try described in the previous section. Since asymptotic isometries, under appropriate

circumstances, act on the physical hilbert space of the theory, one finds support for

the assertion that the infinite extension can be dynamically realised.

Consider the metric of AdS5 in Poincare coordinates

ds2 =
1

z′2
(ηµνdxµdxν − dz′2) =

1

z′2
(dt′2 − dz′2 − dx2

i ) (5.1)

The nonrelativistic scaling limit that we will be considering is, as motivated in the

previous section

t′, z′ → ǫ0t′, ǫ0z′ xi → ǫ1xi. (5.2)

10As mentioned earlier, an algebraically equivalent contraction of the bulk isometries was carried

out in [53](see also [50]). However the actual embedding of this contracted algebra in AdS is not

manifestly that of a nonrelativistic CFT on the boundary. In particular, their foliation of the bulk

corresponds to a boundary geometry which is a time dependent AdS2 × S2. This is natural from

the point of view of considering the worldvolume of a half BPS string. By considering Poincare

coordinates and foliating the bulk in terms of R3,1 slices, it is plausible that their limit will be

related directly to ours. We thank Jaume Gomis for helpful communication in this regard.
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In this limit we see that only the components of the metric in the (t′, z′) directions

survive to give the metric on an AdS2. The d dimensional spatial slices parametrised

by the xi are fibred over this AdS2. The Poincare patch has a horizon at z′ = ∞

and to extend the coordinates beyond this we will choose to follow an infalling null

geodesic, in an analogue of the Eddington-Finkelstein coordinates. Therefore define

z = z′ and t = t′ + z′. In these coordinates

ds2 =
1

z2
(−2dtdz + dt2) =

dt

z2
(dt − 2dz). (5.3)

5.1 Contraction of the Bulk Isometries

In the infalling Eddington-Finkelstein coordinates, the Killing vectors of AdS5 read

as

Pi = ∂i, Bi = (t − z)∂i − xi∂t

Ki = (t2 − 2tz − x2
j )∂i + 2txi∂t + 2zxi∂z + 2xixj∂j

Jij = −(xi∂j − xj∂i)

H = −∂t, D = −t∂t − z∂z − xi∂i

K = −(t2 + x2
i )∂t − 2z(t − z)∂z − 2(t − z)xi∂i (5.4)

Here we have used the same labelling for the bulk generators as on the boundary to

facilitate easy comparison. Some additional details are given in Appendix B.

Carrying out the scaling (5.2) we obtain the contracted Killing vectors

Pi = ∂i, Bi = (t − z)∂i, Ki = (t2 − 2tz)∂i, Jij = −(xi∂j − xj∂i)

H = −∂t, D = −t∂t − z∂z − xi∂i, K = −t2∂t − 2(t − z)(z∂z + xi∂i) (5.5)

We see that at the boundary z = 0 these reduce to the contracted Killing vectors of

the relativistic conformal algebra. It can also be checked that these obey the same

algebra as (2.1) and (2.12) or equivalently (3.2) after the relabelling of (3.1).

The interpretation of most of the generators is straightforward. We note that the

H, K, D are scalars under the spatial SO(d−1) and generate, as before, an SL(2, R).

We identify this as the isometry group of the AdS2 base of our Newton-Cartan theory.

We can again define an infinite family of vector fields in the bulk

M
(m)
i = (tm+1 − (m + 1)ztm)∂i

J
(n)
ij = −tn(xi∂j − xj∂i)

L(n) = −tn+1∂t − (n + 1)(tn − nztn−1)(xi∂i + z∂z) (5.6)

These vector fields reduce on the boundary to (3.3) and (3.4).
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It is rather remarkable that these vector fields also obey the commutation rela-

tions of the Virasoro-Kac-Moody algebra, the same as in the boundary theory

[L(m), L(n)] = (m − n)L(m+n) [L(m), J (n)
a ] = −nJ (m+n)

a

[J (n)
a , J

(m)
b ] = fabcJ

(n+m)
c [L(m), M

(n)
i ] = (m − n)M

(m+n)
i . (5.7)

How do we interpret all these additional vector fields from the point of view of

the bulk? Firstly, notice that the vector fields M
(n)
i and J

(n)
a only act on the spatial

coordinates xi (with t, z dependent coefficents). From the viewpoint of the fibre

bundle structure, these are simply rotations and translations on the spatial slices

which happen to be dependent on time as well as z. These are the isometries of the

spatial metric γ of the previous section. They are also trivially isometries of the AdS2

metric since they do not act on those coordinates. In general, these transformations

will have a non-trivial effect on the dynamical connection coefficient (though trivial

action on the non-dynamical christoffel coefficients). This is not unusual since it is

only the vacuum configuration of the bulk theory (in which the dynamical connections

vanish) which preserves the full symmetry.

Now we come to the action of the Virasoro generators, L(n) which act non-

trivially on all coordinates. We have under its action (with infinitesimal parameter

an)

z → z̃ = z[1 + an(n + 1)(tn − nztn−1)]

t → t̃ = t[1 + antn]

xi → x̃i = xi[1 + an(n + 1)(tn − nztn−1)]. (5.8)

In other words,

dz → d̃z = dz[1 + an(n + 1)(tn − nztn−1)]

+ zann(n + 1)tn−2[(t − (n − 1)z)dt − tdz]

dt → d̃t = dt[1 + (n + 1)antn]

dxi → d̃xi = dxi[1 + an(n + 1)(tn − nztn−1)]

+ n(n + 1)anxit
n−2[(t − (n − 1)z)dt − tdz]. (5.9)

To see how this acts on the Newton-Cartan structure, consider first the above ac-

tion on the original Poincare metric on AdS5 but transformed to the Eddington-

Finkelstein coordinates (5.3). Only after that do we take the scaling limit (5.2). We

find

ds2 =
1

z2
(−2dtdz + dt2 + dx2

i ) →
1

z2
(−2dtdz + dt2 + dx2

i )
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+ 2n(n2 − 1)ant
n−2dt2 − 2

ann(n + 1)

z2
xidxi[(t − (n − 1)z)dt − tdz]. (5.10)

We now see that on taking the scaling limit (5.2) we have

ds2 =
1

z2
(−2dtdz + dt2) →

1

z2
(−2dtdz + dt2 + 2n(n2 − 1)anz

2tn−2dt2). (5.11)

As expected the SL(2, R) subgroup L(0), L(±1) are exact isometries. The other L(n)

are not exact isometries. However, they are asymptotic isometries (See [55] and

references therein). Near the boundary z = 0 the diffeomorphisms generated by

these vector fields leave the metric unchanged upto a factor which has a falloff like

z2. Thus these do not affect the non-normalizable mode of the metric.

One expects that when the charges for these asymptotic isometries are con-

structed, then just as in the Brown-Henneaux construction for AdS3 [55](and recent

generalisations to AdS2 [56]), there will actually be a central term due to boundary

contributions. Thus the Virasoro algebra will presumably act in a faithful way on

the physical Hilbert space.

We also notice from the action of the L(n) (5.10) on the spatial metric that on

the slices of constant t, z, the action is again an isometry. Thus the L(n), J
(n)
a , M

(N)
i

together generate (asymptotic) isometries of the spatial and AdS2 metrics γij and

gab. Therefore it seems natural to consider the action of these generators on the

Newton-Cartan like geometry

6. Concluding Remarks

We have seen that the nonrelativistic conformal symmetry obtained as a scaling

limit of the relativistic conformal symmetry has several novel features which make

it a potentially interesting case for further study. The GCA, we have argued, is

different from the Schrodinger group which has been studied recently. It also has

the advantage of being embedded within the relativistic theory. Hence we ought to

have realisations of the GCA in every interacting relativistic conformal field theory.

The obvious question is to understand this sector in a particular case such as N = 4

Super Yang-Mills theory. And to see whether the infinite dimensional extension

can be dynamically realised (and its central charge computed). We have provided

indications why this might be the case generically.

Relatedly, in the bulk gravity dual to such a system one ought to be able to inde-

pendently compute the central term in the Virasoro algebra a la Brown-Henneaux. In

such cases one should be able to use the more general Kac-Moody algebra to constrain
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the theory and its correlation functions much more. A straightforward generalisation

of our results would be to a supersymmetric extension of the Kac-Moody algebra.

These and related questions are currently under investigation.

The bulk description in terms of a Newton-Cartan like geometry is somewhat

unfamiliar and it would be good to understand it better. In particular, one needs a

precise bulk-boundary dictionary to characterise the duality. At least implicitly this

is determined by taking the parametric limit of the relativistic duality.

Then there is the question of how such non-metric theories lift to string theories.

This is something we have not touched upon at all in this note. One might hope to

get some guidance from previous studies of nonrelativistic string theories, though in

all these cases one had additional fields like the two form Bµν turned on which made

the sigma model well defined. It is therefore not completely clear how to define a

string theory on these Newton-Cartan like geometries11.

In the case of the Schrodinger symmetry the dual gravity theory is proposed to

live in two higher dimensions than the field theory. This also provided the route

for embedding the dual geometry in string theory. It is interesting to ask if there is

something analogous in our case, whereby the GCA is realised as a standard isometry

of a higher dimensional geometry (e.g. (d + 3) dimensional for a (d + 1) dimensional

field theory).

Coming back to the boundary theory, it is interesting to ask whether there are

intrinsically non-relativistic realisations of the GCA, perhaps in a real life system.

It is encouraging in this context that the incompressible Euler equations concretely

realise the GCA, providing an example of a gapless non-relativistic system.

Note added: It has been brought to our attention that closely related infinite

dimensional algebras have been studied in the context of statistical mechanical sys-

tems in [61]. It would be interesting to study the precise connection as well as the

potential realisations in statistical mechanics further.
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Appendices

A. Galilean Isometries

In the Newton-Cartan spacetime described in sec. 4, we do not have a spacetime

metric. Therefore the usual notion of an isometry as generated by a Killing vector

field of the metric is not applicable. There is consequently some ambiguity in the

definition of an isometry. We will paraphrase here some of the different possibilities

as outlined in [47].

1. Galilei Algebra: This consists of all vector fields X satisfying

LXγµν = 0 LXτ = 0 LXΓα
µν = 0. (A.1)

This gives rise to the usual set of vector fields which generate the finite dimen-

sional Galilean algebra of uniform translations (in space and time), uniform

velocity boosts and spatial rotations.

2. Milne Algebra: This consists of all vector fields X satisfying

LXγµν = 0 LXτ = 0 LXΓνα
µ = 0 (A.2)

where Γνα
µ = γβνΓα

µβ . The set of vector fields X satisfying this condition is an

infinite dimensional extension of the Galilean algebra, now involving arbitrary

time dependent boosts/accelerations.

3. Coriolis Algebra: This consists of all vector fields X satisfying

LXγµν = 0 LXτ = 0 LXΓµνα = 0 (A.3)

where Γµνα = γρµγβνΓα
ρβ. The set of vector fields X satisfying this condition

is a further infinite dimensional extension of the Milne algebra, now involving

in addition to the arbitrary boosts or accelerations, arbitrary time dependent

rotations as well.
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B. Killing vectors of AdSd+2 and Bulk Contraction

Here we list the killing vectors of AdSd+2 in the d + 3 dimensional Minkowskian

embedding space and then rewrite them in intrinsic AdS coordinates. For taking the

contraction, we will work in Poincare coordinates.

We denote flat d + 1-dimensional space with co-ordinates ya with a = 1, .., d+ 1.

Embedding equation:

uv + ηaby
ayb = 1 (B.1)

ds2 = dudv + ηabdyadyb (B.2)

where ηab has a form diag(1,−1,−1, . . . − 1). Also note that we have rescaled the

AdSd+2 radius to 1.

We wish to write in explicit SO(d + 1, 2) notation. So we choose u = y0 + yd+2

and v = y0 − yd+2. Now we would be interested in the co-ordinates on the Poincare

patch.

z = v−1 = (y0 − yd+2)
−1 (B.3)

t = v−1y1 = (y0 − yd+2)
−1y1 (B.4)

xi = v−1yi = (y0 − yd+2)
−1yi (B.5)

where we label i = 2, 3 . . . d + 1.

The constraint equation becomes:

u = z − (z)−1(t2 − x2
i ) (B.6)

which gives the metric on the Poincare patch (5.1).

We can take the inverse transformations and express the derivatives of the

Poincare co-ordinates in terms of derivatives of y’s and take various linear com-

binations to obtain

M01 = −(y0∂1 − y1∂0)

= −
1

2
(z2 + 1 + t2 + x2

i )
∂

∂t
− zt

∂

∂z
− txi

∂

∂xi

M0i = −(y0∂i + yi∂0)

= −
1

2
(z2 + 1 − t2 + +x2

i + x2
j )

∂

∂xi

+ zxi

∂

∂z
+ txi

∂

∂t
+ x2

i

∂

∂xi

+ xixj

∂

∂xj

(j 6= i)

M1i = −(y1∂i + yi∂1) = −t
∂

∂xi

− xi

∂

∂t
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Mij = −(yi∂j − yj∂i) = −(xi

∂

∂xj

− xj

∂

∂xi

)

M0,d+2 = −(y0∂d+2 + yd+2∂0) = −z
∂

∂z
− t

∂

∂t
− xi

∂

∂xi

M1,d+2 = −(y1∂d+2 + yd+2∂1)

= −
1

2
(z2 + t2 + x2

i − 1)
∂

∂t
− zt

∂

∂z
− txi

∂

∂xi

Mi,d+2 = −(yd+2∂i + yi∂d+2)

= −
1

2
(z2 − t2 + x2

i + x2
j − 1)

∂

∂xi

+ zxi

∂

∂z
+ txi

∂

∂t
+ x2

i

∂

∂xi

+ xixj

∂

∂xj

(j 6= i)

In the above equations, the repeated indices j are summed over in M0i and Mi,d+2.

To connect with our notation for the boundary generators, we define:

H = M01 − M1,d+2; K = M01 + M1,d+2; D = M0,d+2

Pi = −M0i + Mi,d+2; Ki = M0i + Mi,d+2; Bi = −M1i (B.7)

Mij = Mij

After transforming to infalling Eddington-Finkelstein coordinates the generators

of (B.7) become then ones given in (5.4) We then carry out the contraction on these

Killing vectors using the scaling: z = ǫ0z̃, t = ǫ0t̃ and xi = ǫ1x̃i and obtain (5.5).
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