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Abstract

It is conjectured that strongly coupled, spatially noncommutative N = 4 Yang-Mills

theory has a dual description as a weakly coupled open string theory in a near critical

electric field, and that this dual theory is fully decoupled from closed strings. Evidence for

this conjecture is given by the absence of physical closed string poles in the non-planar one-

loop open string diagram. The open string theory can be viewed as living in a geometry

in which space and time coordinates do not commute.
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1. Introduction

Noncommutative field theories have a rich and fascinating structure. The embedding

of these theories into string theory [1] suggests that this structure may be directly relevant

to understanding the inevitable breakdown of our familiar notions of space and time at

short distances in quantum gravity.

Investigations to date have largely concentrated on theories with purely spatial non-

commutativity (see however [2]). While such theories are interestingly nonlocal in space,

they are local in time, admitting familiar notions like that of the Hamiltonian and a quan-

tum state. Noncommutativity of a time-like coordinate should have even more far-reaching

consequences, and it is natural to ask whether or not such theories exist.

In this paper we give one answer to this question by asking another: What is the strong

coupling dual of NCYM (spatially-noncommutative N = 4 Yang-Mills)? This question can

be addressed in the description of NCYM as a scaling limit of three-branes with a B field in

IIB string theory [3]. IIB S-duality induces an S-duality on the NCYM theory, mapping

the strongly coupled NCYM theory to a weakly coupled open string theory1. This open

1 The low energy sector of the open string theory is ordinary N = 4 YM, and the induced

duality reduces to the standard S-duality.
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string theory can be viewed either as living in a near critical electric field2 3 , or in a

space-time with noncommuting space and time coordinates. A precise statement of the

spacetime noncommutativity in this theory is that the temporal zero mode X0 on the open

string worldsheet does not commute with the spatial zero modes. The scale associated with

this noncommutativity is the same as the effective open string scale. Thus the effects of

the noncommutativity are inextricably tied up with the usual stringy nonlocalities.

Since the closed string sector of the IIB theory is decoupled in the scaling limit,

the dual open string theory does not have a closed string sector. The appearance of an

open string theory without a closed string sector is striking. Ordinarily closed string poles

appear in open string loop diagrams, and unitarity then requires the addition of asymptotic

closed string states. In order to better understand this point we analyze (following [11-

16]) the nonplanar one loop open string diagram for the bosonic case. We find that the

temporally noncommutative phases lead to a precise cancellation of all the closed string

poles, in accord with our expectations. This cancellation in fact occurs for branes of any

dimension, indicating the existence of a family of non-commutative open string theories.

This paper is organized as follows. In section 2 we derive the S-dual of NCYM, which

we refer to as NCOS (noncommutative open strings), by embedding in string theory. In

section 3 we show that it is a decoupled open string theory with a near-critical electric

field. In section 4 we give evidence at the one loop level for the decoupling of closed strings

by computing the non-planar annulus for bosonic string theory with two incoming and

two outgoing tachyons. Section 5 contains a preliminary analysis of the general higher

loop diagram; no obvious closed string singularities are found. In section 6 we make some

comments regarding the supergravity duals of our open string theory. We conclude with

some discussion in section 7. For simplicity we concentrate on the U(1) theories but our

results generalize easily to U(N).

Related work will appear in [17].

2 The existence of a scaling theory at near critical electric fields, and its relevance to temporal

noncommutativity was emphasized to us by N. Seiberg, L Susskind and N. Toumbas (private

communications). The scaling to the critical electric field was also considered in [4], [5].
3 The critical value of the electric field arises when the force pulling apart the charges at

either end of the string just balances the string tension, so that the string is effectively tensionless

[6-9,10]. Beyond this value the spectrum contains a tachyon and the vacuum is unstable.
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2. Inducing S-Duality

The Olive Montonen dual of ordinary N = 4 SYM may be deduced as a consequence

of the S duality of IIB theory in the presence of D3-branes in the zero slope limit. In this

section we will determine the Olive Montonen dual of spatially noncommutative N = 4

SYM, using the S duality of IIB theory in flat space in the presence of D3-branes and a

background Bµν field, together with the modified zero slope limit [3] .

Consider a D3-brane, extended in the 0, 1, 2, 3 directions, in a background geometry

g′
µν = ηµν , g′

ij = α′2k1δij , g′
MN = δMN ,

B′
ij = −Bǫij , g′

str = α′k2.
(2.1)

in the limit α′→0, keeping k1, k2, B fixed (we will refer to this as the NCYM limit).

Here µ, ν = 0, 1 with i, j = 2, 3 and M, N = 4, ...9. (We will reserve unprimed notation

for the S-dual variables to be introduced in the next sub-section.) It was shown in [3]

that the decoupled theory on the brane is noncommutative U(1) SYM propagating on a

four dimensional space with (open string) metric (we use the conventions of [3]) G′
µν =

ηµν , G′
ij = (2πB)2

k1

δij , noncommutativity parameter θ′ij = ǫij

B , and gauge coupling g2
Y M =

2πG
′2
o , where G′2

o = k2B
k1

. In order to obtain noncommutative field theory propagating on

a space with unit metric we choose k1 = (2πB)2. In terms of the field theory couplings θ
′

and G′
o, B = 1

θ′ and k2 =
(2π)2G

′
2

o

θ′ .

In order to obtain a weakly-coupled dual description of the noncommutative gauge

theory at large G′
o we will consider the NCYM limit described above in an S-dual pic-

ture. Before describing this in detail we note that the S-dual version has two potentially

unpleasant features:

a. It seems to involve branes in the presence of an an RR 2 form potential (the S-dual

of B′
ij).

b. The S-dual of the NCYM limit takes the closed string coupling gstr to infinity, seeming

to indicate that any description of brane dynamics obtained in this picture will be

strongly rather than weakly coupled, independent of Go.

These difficulties may both be circumvented. In order to avoid having to deal with RR

fields, we gauge away the constant bulk NS-NS potential before performing the S-duality.

This gauge transformation induces a magnetic field F ′
23 = B on the the D3-branes, which

is converted into an electric field by the S-duality; in fact an electric field that approaches

its critical value in the scaling limit. This electric field may in turn be gauged into a
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constant background NS-NS two form potential B01 = F01 in the bulk. But, in such a

background, the open string coupling that governs the strength of interactions between

brane modes is not directly related to the closed string coupling. It turns out that the

open string coupling in this background is Go = 1
G′

o
, i.e. it is the inverse of the original

open string coupling, and therefore remains finite despite the fact that gstr → ∞. Thus at

large G′
o, the effective description is a weakly coupled noncommutative open string theory,

with noncommutativity in the time direction!

We now consider this limit in more detail. We could consider any finite number of

branes, N , but we will mostly stick to the case N = 1 for simplicity.

2.1. Born-Infeld S-Duality

S-duality transforms a constant magnetic field on the three-brane to a constant electric

field. Constant fields on a single D3-brane are governed by the Born-Infeld action

SBI =
1

(2π)3α′2gstr

∫
d4x

√
−det(gµν − 2πα′Fµν). (2.2)

The action of S duality on SBI will be reviewed in this subsection (See [18] ). Consider

a gauge theory on a torus. The flux of the magnetic field on any nontrivial two cycle of

the torus is integrally quantized, and so must, under electromagnetic S-duality, map to a

quantized electric flux. Recall why electric flux on a torus is quantized. The constant piece

(zero momentum mode) of a gauge field in flat infinite space is physically unmeasurable,

as it can be gauged away. This is not true, however, on a torus, as the Wilson line ei
∫

A.dx

over any nontrivial cycle of the torus is a gauge invariant observable, implying that the

zero momentum piece of the gauge field Ai is a periodic physical ‘coordinate’, with period
2π
Li

(Li is the size of the ith spatial direction). Consequently, the momentum conjugate to

the zero mode of Ai is quantized in integral units of Li. This quantized momentum is the

electric flux that is interchanged with the quantized magnetic flux under S duality.

In order to work out the expression for the quantized electric flux, consider the theory

(2.2) on a rectangular torus, with spatial coordinate radii L1, L2, L3. We are interested

in background field configurations in which F01 is nonzero and constant, but Fij is zero.

Since Ȧ1 appears in the Lagrangian only through F01, it is sufficient, for the purposes of

computing canonical momenta in such backgrounds, to set Fij to zero in the Lagrangian.

For a diagonal metric the Born Infeld action simplifies to (recall g00 is negative)

S =
1

(2π)3α′2gstr

∫
d4x

√−g
√

1 + (2πα′)2g11g00F 2
01. (2.3)
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Thus, for constant F01, the momentum conjugate to A1 is

P 1 = NL1 =
1

2πgstr
L1L2L3

√−g
g11g00F01√

1 + (2πα′)2g11g00F 2
01

. (2.4)

Thus the constant F ′
23 background of the spatially noncommutative theory maps,

under S duality, to a background with constant F01, whose value is given by the solutions

to the equations √−g

gstr

g11g00F01√
1 + (2πα′)2g11g00F 2

01

= F ′
23 =

1

θ′
(2.5)

where gµν and Fµν are the background metric and field strength in the S dual description.

In terms of the critical value of the electric field

F crit
01 =

√−g00g11

2πα′
(2.6)

one finds

F01 =
F crit

01√
1 + g22g33(

θ′

2πα′gstr
)2

. (2.7)

2.2. The Scaling Limits

Consider IIB theory with a D3-brane in the presence of a background NS-NS 2-form

potential, Bµν . Prior to any scaling limit, an open string metric G̃AB (the symbol GAB

will be reserved for a rescaled open string metric defined below) and a non-commutativity

parameter Θ can be deduced from disk correlators on the open string worldsheet boundaries

XA(0)XB(τ) = −α′G̃AB ln(τ)2 +
i

2
ΘABǫ(τ), A, B = 0, 1, 2, 3. (2.8)

The open string coupling Go is similarly read off from the coefficient of the gauge theory

action. These are related to closed string quantities by the formulae [3]

2πα′G̃AB + ΘAB =
(
2πα′)(

1

g + 2πα′B

)AB
,

G2
o = gstr

det
1

2 (g + 2πα′B)

det
1

2 (g)
.

(2.9)

As discussed above, in the NCYM limit, α′ → 0 while the open string metric G
′AB,

open string coupling G′
o and the (spatial) non-commutativity matrix Θ

′AB are held fixed.

We would now like to study this scaling limit in the S-dual description of Type IIB
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theory. We will call this the NCOS limit. Under an S-Duality, the type IIB closed string

backgrounds transform in the usual fashion, g
′

str = 1
gstr

, g′
µν =

gµν

gstr
(α′ is unchanged). The

associated open string quantities may then be read from their definitions in (2.9). The

results, in the limit α′→0, are summarized in the following table:

TABLE 1

The NCYM Limit The S-Dual NCOS Limit

g
′

µν = ηµν gµν =
θG4

o

2πα′
ηµν

g
′

ij = (2πα′)2

θ
′2

δij gij = 2πα′

θ δij

B′
µν = F ′

µν = 0 Bµν = Fµν = F crit
µν

(
1 − 1

2

(
2πα′

θG2
o

)2
)

B′
ij = F ′

ij = − 1
θ
′ ǫij Bij = Fij = 0

g
′

str = G
′2
o

2πα′

θ
′ gstr = θ

′

G
′2
o 2πα′

=
G4

oθ
2πα′

G
′AB = ηAB α′

α′
eff

G̃AB ≡ GAB = ηAB

G
′MN = g

′MN = δMN GMN = gMN = 2πα′

θG4
o
δMN

Θ
′µν = 0 Θµν = −θ

′

G
′2
o ǫµν = −θǫµν

Θ
′ij = −θ

′

ǫij Θij = 0

G
′

o = G
′

o Go = 1
G′

o

α′ = α′ α′
eff = θ

2π

Here

µ, ν = 0, 1, i, j = 2, 3, A, B = 0, 1, 2, 3, M, N = 4, 5, 6, 7, 8, 9.

In Table 1 we have expressed all open and closed string quantities as functions of θ and Go,

the noncommutativity parameter and open string coupling in the (S-dual) NCOS theory.

We have also defined the quantities, α′
eff the effective open string scale and the rescaled

open string metric GAB = α′

α′
eff

G̃AB of the NCOS theory.

Note that

1. In the limit α′→0, the electric field F01 of the NCOS theory attains its critical value

F crit
01 =

θG4
o

(2πα′)2
. (2.10)

2. The energy per unit coordinate length of an NCOS open string stretched in the 1

direction is given by (recall that the ends of an open string are charged)

p0 =
ǫ01
2π

(
1

α′
− 2πǫ01F01

)
∆x1 =

1

4πα′
eff

∆x1 (2.11)
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so these open strings have an effective tension set by α′
eff . As a consequence, it will

turn out that in the NCOS limit excited open string oscillator states are part of the

decoupled theory on the brane in the NCOS limit, and that their mass scale is also

set by α′
eff .

3. The open string coupling Go is the inverse of the gauge coupling G′
o in the NCYM

limit.

To summarize, strongly coupled spatially noncommutative Yang-Mills theory has an

effective description as a weakly coupled open string theory living on D3-branes, in the

presence of a near critical electric field. The parameters of this open string theory are

listed in Table 1. We will explore this theory in the rest of this paper.

3. The Classical NCOS Theory

3.1. Spacetime Noncommutativity

In the NCOS limit, open strings on the brane propagate in a background electric field.

This results in temporal noncommutativity, in the sense that the open string zero modes

obey

[Xµ, Xν ] = iθǫµν , (3.1)

as may easily be seen from (2.8).

Disk diagrams in the NCOS theory are very simple. As argued in [19], [3], open

string correlation functions on the disk in the NCOS theory may be obtained from the

equivalent correlation functions in the theory without the electric field, by the addition of

noncommutative phases in the 0, 1 directions (and using the appropriate open string metric

and coupling). Thus the classical action for open string modes in the NCOS limit may be

obtained by turning all products in the usual open string classical action into star products.

In other words if we think about the open string field theory action S =
∫

AQA+A∗wA∗wA

there the ∗w product is Witten’s star product [20] then the only change is that we replace

Witten’s product by a modified product which just adds in the Moyal phases, and of course

we replace α′ → α′
eff .

Since the effective string scale α′
eff is the same as that of non-commutativity θ, the

noncommutative phases are non negligible only for energies of the order of those of string

oscillators.
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3.2. The Free Spectrum

In this subsection we will argue that the NCOS limit defines an open string theory on

the 3-brane, as open string oscillators do not decouple in this limit. We will examine the

spectrum in the free NCOS theory and see that the effective scale is indeed set by α′
eff .

We first consider the scaling limit in the NCYM picture. Near the NCYM limit

one has weakly coupled closed strings coupled gravitationally to open strings. Open string

excitations with string frame energies obeying |g00k2
0 | ≪ 1

α′
, or equivalently Einstein frame

energies obeying |g00
E k2

0 | ≪ m2
p , decouple from the closed strings. As g00 = −1, open string

modes with k0 ≪ 1√
α′

decouple from closed string modes. The decoupled theory includes

all brane excitations with energies that obey this inequality, namely just the N = 4 YM

multiplet.

Now consider the same limit in the NCOS picture. The argument above ensures that

open string modes with k0 ≪ 1√
α′

decouple from closed strings. However, the open string

oscillator states in this picture obey the mass shell condition set by the open string metric

in the RHS of Table 1
α′

eff

α′
kAGABkB =

N

α′
(3.2)

with A, B = 0, 1, 2, 3. This implies

k2 =
N

α′
eff

≪ 1

α′
(3.3)

with

α′
eff =

θ

2π
(3.4)

in the limit α′→0. Thus the decoupled theory on the brane includes all open string

oscillator states! The mass spectrum is exactly the usual free spectrum on the three brane,

except with α′
eff replacing α′.

3.3. Worldsheet Correlators

Nontrivial vertex operators are functions of tangential worldsheet derivatives of XA

and normal worldsheet derivatives of XM . Correlation functions of such vertex operators

may be computed given the two point correlators of the free fields XA restricted to the

boundary of the world sheet, as well as the two point functions of the free fields XM .

The boundary correlators of XA are finite in the limit α′→0, and are given by

XA(0)XB(τ) = −α′
effGAB ln(τ)2 +

i

2
θABǫ(τ), A, B = 0, 1, 2, 3 (3.5)
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On the other hand, correlation functions involving the transverse directions XM are

derived from the sigma model

S =
1

4πα′

∫
GMN∂XM∂XN =

α′
effG4

0

4πα′2

∫
∂XM∂XNδMN . (3.6)

In terms of the rescaled fields Y M =
G2

0
α′

eff

α′
XM

S =
1

4πα′
eff

∫
∂Y M∂Y NδMN . (3.7)

The vertex operators representing physically normalized states are functions of the normal

derivatives of Y M .

Thus all correlation functions of NCOS vertex operators on the disk will be the same

as in usual open string theory except that α′ → α′
eff and we have extra non-commutative

phases appearing as in [3]. The open string coupling constant is G0 and it is finite.

4. The One Loop Diagram

One loop open string graphs usually contain closed string poles, and unitarity then

requires that closed strings be included as asymptotic states. In this section we consider

the nonplanar annulus diagram in the NCOS limit, and show that it has no physical closed

string poles. This demonstrates that an on shell closed string cannot be produced in

collisions of open strings.

Nonplanar diagrams for spatial Θ were computed in [11-16] – we will follow [14]. The

nonplanar diagram for our case can be obtained by analytic continuation. For simplicity

consider the case of two initial and two final open string tachyon vertex operators VT =

Goe
ikAXA

in the bosonic string with incoming momenta k1, k2 and outgoing momenta

k3, k4. Then we get for a D-3 brane in bosonic string theory (Eq. 2.17 of [14])

〈VT (k1)VT (k2)VT (k3)VT (k4)〉annulus ∼ i
√

GG4
o(4α′

eff )−2δ4(k1 + k2 + k3 + k4)

×
∫ ∞

0

ds

2πs11
η(

is

π
)−24e−

α′s
2

kAgABkB

×
∫ 1

0

dν1dν2dν3dν4Ψ1Ψ2Ψ12e
i
2

[
k3×k4(2ν34−ǫ(ν34))−k1×k2(2ν12−ǫ(ν12))

]
,

(4.1)
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with

Ψ1 = |θ11(ν12,
is
π

)

θ′11(0, is
π )

|2α′

effk1·k2 , Ψ2 = |θ11(ν34,
is
π

)

θ′11(0, is
π )

|2α′

effk3·k4 ,

Ψ12 = e−
s
4

∏

r=1,2 s=3,4

|θ10(νrs,
is
π )

θ′11(0, is
π

)
|2α′

eff kr·ks , (νrs = νr − νs),

k = k1 + k2, kr × ks = krAΘABksB, kr · ks = krAGABksB.

(4.2)

The expression for the annulus amplitude in (4.1) is written in the closed string

channel. (The expression for the superstring would be similar except that the factor of

s−11 = s−dt/2 → s−3 in (4.1). This factor comes from the number of transverse dimensions

dt. ) Closed string singularities arise in the integral over s in (4.1) as η( is
π ) may be ex-

panded in a series in e−Ns. We thus find non analyticities4 (singularities) in the amplitude

when
α′

2
kAgABkB = −N. (4.3)

In the NCOS scaling limit, this condition may be written as

πα′2

θG4
o

kµηµνkν +
θ

4π
kiδ

ijkj = −N. (4.4)

Singularities on the real axis occur at a squared energy

k2
0 = k2

1 +

(
G2

0θ

2πα′

)2 (
k2
2 + k2

3 +
2N

α′
eff

)

that becomes arbitrarily large as α′ is made increasingly small. In the strict limit α′→0,

open string one loop amplitudes factorize on singularities of the form

∫
ddtkM

1

k2
2 + k2

3 + 2N
α′

eff
+ gMNkMkN

.

As these singularities are never in the physical region, they do not correspond to physical

states.5 Recalling that GAB is fixed in the NCOS limit, it is easy to see that the amplitude

4 These singularites are 10 dimensional poles integrated over dt transverse momenta.

5 These singularities ∼ (k2
i )

dt−2

2 ln(k2
i ) are very similar to those induced by one loop graphs

in spatially noncommutative field theories, as found in [21], [22]. Notice that if dt ≥ 2 (p branes

with p < 7 in the supersymmetric case), this amplitude, though non analytic, is finite at k = 0.

For dt ≤ 2 the amplitude diverges at k2
i = 0. It is possible that stronger IR singularities appear

at higher loops, specially for high dimensional branes.
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(4.1) is finite (except of course for the tachyon pole which is absent in the superstring). It

is also straightforward using the results of [14] to show that there are no physical poles for

any numbers of initial and final open string tachyon vertex operators. Higher mass vertex

operators involve additional powers of the Green functions on the annulus. These are finite

in the NCOS limit and so will not spoil the finiteness of the amplitudes. Although we have

not worked out the details, we expect that the behavior of the superstring is similar.

It is instructive to contrast the behaviour of (4.1) in both the NCOS and the NCYM

limits. In the latter case the α′ → 0 limit is manifestly smooth when s
α′

is held fixed. This

forces one into a corner of the moduli space in which the massive open string states are

decoupled [11-16]. In the NCOS limit (4.1) receives contributions from finite s, and so from

all open string oscillator states. Apart from the non-commutative phases the one loop open

string diagram (4.1) has almost the same form as the corresponding diagram in a theory

with B = 0, with α′ replaced by α′
eff . However, the exponential term in (4.1) coming

from momentum flowing along the closed string channel has a different α′ dependence

from standard string theory with zero B. This different dependence is responsible for the

absence of physical closed string poles.

p

q

t

Fig. 1: Nonplanar open string diagram. In open string field theory we
would build it from the cubic vertex and we would consider states carrying
momentum q and q + p along the loop.

The absence of closed string poles in a non-commutative open string theory, whose

non-commutativity parameter θ is 2πα′
eff as in our NCOS theories, may be understood

more directly, as we explain below. This line of reasoning also suggests that a non commu-

tative open string theory with θ < 2πα′
eff has closed string poles, while the theory with

θ > 2πα′
eff is unstable.

Consider the simple non-planar diagram represented in figure 1, in an open string field

theory. Let the open string theory in question be noncommutative, with noncommutativity

parameter θ. The momentum integral for this diagram takes the form
∫

d4qe2ip×qIθ=0(q, p) ∼
∫

d4q

∫ ∞

0

dte2ip×qe−2πα′

eff tq2+tβp.q+... (4.5)
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where Iθ=0(p, q) is the integrand at θ = 0 and p× q = pµqµΘµν/2. We have exponentiated

the propagators in the diagram using a Schwinger proper time representation, where t is

the total proper time along the loop and we have explicitly given the form of the leading

dependence on q (β is some other Schwinger parameter, which is also integrated over; we

have supressed this integral in (4.5) for simiplicity). When q is integrated over we get

the diagram as a function of t and β. As in [21], the effect of noncommutativity on this

integral is an extra term in the exponent of the form

e−p o p/(8πα′

efft). (4.6)

where p o p = −pµΘµνΘνρp
ρ = −θ2p2. This may be seen by shifting the integral over

q to one over q′µ = qµ + iΘµνpν/(4πα′
efft). Note that terms of the form q.p in (4.5) are

unaffected by the shift due to the antisymmetry of Θ.

Thus the integrand of (4.5) is modified from its θ = 0 value only by the additional

exponential factor (4.6). On shifting to the s = π/t channel, the integrand has the usual

terms of the form e−s
α′

eff
2

(−p2

0
+p2

1
+...) (terms that would produce the s-channel poles if θ

were zero) multiplied by the additional factor e
−s θ2

8π2α′
eff

(p2

0
−p2

1
)
. When θ = 2πα′

eff this

extra factor exactly cancels the p0, p1 dependence of the exponent. Here we have used the

fact that we are in Lorenzian signature so that the final sign of the exponent in (4.6) is

the opposite to the one in Euclidean signature. If θ is slightly less that its critical value,

then (4.6) does not cancel the closed string poles. If θ is bigger than its critical value then

all closed string poles turn tachyonic, a reflection of the instability of the system.

5. Higher Loop diagrams

In this section we will examine higher loop string diagrams in the NCOS limit. We

will not attempt to prove that the limit is nonsingular for arbitrary diagrams, but we will

observe that a simple counting of powers of α′ does not reveal any difficulties. Naively, a

genus g surface in the string loop expansion is weighted by g2g−2
str . As gstr diverges in the

NCOS limit, a perturbative expansion in genus seems impossible. However, we shall argue

below that both holes and handles are really weighted by powers of G0 and so high genus

surfaces are suppressed at weak open string coupling.

12



5.1. Holes

The addition of a hole in the world sheet is accompanied by one power of gstr. It

also leads to an additional integral over the zero mode momentum circulating around the

loop. As shown in [6], these integrals have a measure factor proportional to det1/2(g +

2πα′B)det−1/2(g). Hence the total weighting of a hole is

gstr
det1/2(g + 2πα′B)

det1/2(g)
= G2

o, (5.1)

and is finite as α′ → 0.

5.2. Handles

Consider an open string world sheet A, with open string boundary conditions corre-

sponding to a 3-brane. The amplitude on a worldsheet (B) with an additional handle can

be factorized in the closed string channel along the handle. The resultant amplitude reads

schematically as

SB =
∑

SAVa,Va
λ2

eff

∫
d6k

1

gIJkIkJ + m2
a

; (I, J = 0 . . .9).

Here SAVa,Va
denotes the amplitude on A with two extra closed string insertions. The inte-

gral is over the momenta of the intermediate states in the transverse directions (momentum

is not conserved in these directions).

x x

(a)

(b)

V V
a a

=

A   =

B = 

Fig. 2: Adding a handle to a worldsheet A, we obtain a worldsheet B,
which can be represented as coming from the propagation of closed string
states between two points of the worldsheet. We sum over all closed string
states.
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The effective coupling λ2
eff is determined as follows: A closed string mode φ with spacetime

action

S =
1

g2
strα

′4

∫
d10x

√
g(∂Iφ∂JφgIJ + m2

aφ2)

has effective coupling

λeff =
gstrα

′2

g
1

4

=
α′

5

2

G4
0α

′
1

2

eff

in the NCOS limit. The integral

∫
d6k

1

gIJkIkJ + m2
a

= α′
∫

d6k
1

α′2kM kN δMN

α′
eff G4

0

+ N + α′
eff (k2

2 + k2
3) + ...

is of order

α′

(
α′

effG4
0

α′2

)3

.

Finally, in the normalization we have adopted, SAVa,Va
is of the same order as SA.

Putting it all together, we find that

SB

SA
≈ G4

0α
′2
eff . (5.2)

Thus we conclude that extra handles, in the NCOS limit, are neither infinitely suppressed

nor enhanced in the NCOS limit. They are instead really weighted by a factor of G4
0, as

they would have been for an ordinary weakly coupled open string theory6.

6. Supergravity duals

The considerations of the previous sections generalize to open string theories on N

coincident 3-branes. In that case since we are dealing with a deformation of U(N) N =

4 SYM we expect that it should have a supergravity dual for large N . The relevant

supergravity solutions were written in [24,25]. We start from the Lorentzian version of the

6 See also [23] for a discussion of diagrams with many holes.
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solution (2.3) in [25], with B23 = 0. Then we do the following scaling of parameters

r =
√

α′u

cosh θ′ =
b̃′

α′

g =
g̃b̃′

α′

x0,1 =
b̃′√
α′

x̃0,1

x2,3 =
√

α′x̃2,3

R4 =fixed = 4πg̃N

(6.1)

We obtain7

ds2
str = α′f1/2

[
u4

R4
(−dx̃2

0 + dx̃2
1) + f−1(dx̃2

2 + dx̃2
3) + du2 + u2dΩ2

5

]

2πα′B01 = α′ u
4

R4
,

e2φ = g̃2f
u4

R4

A23 =α′ 1

g̃
f−1 ,

F0123u = α′2 1

g̃

4f−1

u

f = 1 +
R4

u4

(6.2)

The particular scalings that we have to do to reproduce this solution are, up to constants,

the same as those in section 2.2. The only scaling that is not so obvious is the scaling of

the radial coordinate. Notice that in the N = 4 SYM case we rescale the radial coordinate

as r ∼ α′u. The fact that we have r ∼
√

α′u in this case is related to the fact that the

closed string metric has a factor of 1/α′ in section 2.2. We see from 5.2 that for small u we

recover the usual AdS5 ×S5 solution as we expect, since the open string theory reduces to

N = 4 SYM at low energies. In particular we see that we should identify g̃ = G2
0. As we

increase u the metric becomes different than the metric of AdS and we also see that the

dilaton becomes large. This suggests that for large u we should do an S-duality to analyze

7 Here we normalize the B field as in the previous sections, in [25] it was normalized differently

by a factor of 2πα′, BMR = 2πα′Bhere.
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the solution. After we do the S-duality we obtain a solution which is the same as the

supergravity solution which corresponds to a D3 brane with spatial non-commutativity in

the directions 23, see [25], eqn. (2.7). This suggests that at very high energies the open

string theory we are studying would have a dual description in terms of the theory with

spatial non-commutativity.

7. Discussion

7.1. Open String Dipoles and UV/IR

Free open string states in the NCOS limit behave quite differently from ordinary

open strings propagating in the same metric, despite having the same spectrum. In the

presence of background fields, (as discussed for example in [7,8,9] and especially in [14] for

the magnetic case) the mode expansion reads

Xµ(σ, τ) = xµ
0 + 2iα′

effpµτ +
1

π
Θµνpνσ + (oscillators). (7.1)

For strings in the NCOS limit this implies that the distance along the direction of the field

between the two ends of the string , as measured in the metric GAB , is

∆X1 = 2πα′
effk0, (7.2)

plus oscillator contributions which time average to zero. (Note that ∆X1 is the distance

between the endpoints of the string worldsheet along a line of constant worldsheet time

rather than along a line of constant X0. As we argue below, the proper length of the string

is given by a formula analogeous to (7.2) with k0 replaced by the centre of mass energy of

the state.)

The invariant energy and proper length of an oscillator state may be estimated as

follows. The tension of an open string aligned with a near critical electric field is almost

canceled by a negative contribution from its dipole interaction with the field. In the NCOS

limit, the effective tension Teff = 1
4πα′

eff
(see (2.11)) . The energy of such a string, with

an oscillation number N , is E = TeffL + πN
L

. This is minimized for L = 2π
√

α′
effN =

2πα′
effE, as in (7.2).

16



7.2. Thermodynamics

At low energies, compared to 1√
α′

eff

the NCOS theory reduces to ordinary N = 4

SYM, and its free energy scales like T 4. At intermediate energies, the thermodynamics of

a weakly coupled NCOS theory (λ = G2
oN ≪ 1), may be expected to reflect its Hagedorn

density of states.

However, as argued in this paper, the weakly coupled NCOS theory has a dual de-

scription as a strongly coupled NCYM theory. In a spatially noncommutative field theory,

at weak coupling, planar diagrams [26] dominate over nonplanar diagrams [21] for energies

k0 ≫ 1√
θ
. It is plausible that this result to continues to hold at strong coupling8, with a

crossover scale renormalized by a function of the coupling. If true, this assertion implies

that, at high temperatures, the free energy of spatially noncommutative SYM is propor-

tional to the free energy of ordinary large N SYM, and so scales with temperature like T 4,

even at large G
′2
o .

It would be interesting to investigate this issue further.

7.3. Generalizations to other Dimensions

In this paper we have ‘derived’ the existence of a decoupled four dimensional open

string theory, NCOS, by S dualizing spatially noncommutative SYM. We presented evi-

dence that, independent of this derivation, the resultant theory is well defined, and weakly

coupled over a range of parameters.

It is easy to extend our construction of the NCOS to other dimensions, even though

we do not have an independent (S duality) argument for the decoupling of closed strings.

The NCOS scaling limit for a p brane is, once again, defined by table 1, where the indices

i, j run from 2 . . . p and A, B from 0 . . . p. In other words, this limit still describes a near

critical electric field turned on in the 1 direction. The open string coupling defined in (2.9)

and the effective low energy Yang Mills coupling constant g2
Y M ∼ G2

0α
′

p−3

2

eff are finite. In

the NCOS limit, open strings appear to decouple from closed strings for all p. The annulus

amplitude is finite in arbitrary dimension, and always factorizes on unphysical closed string

poles. As in the 3-brane, string diagrams with handles and holes are suppressed by powers

of the open string coupling, and may be neglected at weak coupling.

8 This statement is true at least in the ‘supergravity’ limit λ ≫ 1, G2
o ≪ 1; in that limit [25],

[24], supergravity suggests that planar diagrams dominate for k0 ≫ 1

(λθ2)
1

4

.
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In fact, these open string theories appear to be non-gravitational UV finite completions

of low energy (supersymmetric) Yang-Mills. This statement appears to be true even in

high dimensions where the gauge theory is non-renormalizable.

Acknowledgements

We are grateful to C. Bachas, M. Berkooz, M. Gutperle, J. Harvey, S. Kachru, H. Liu,

J. McGreevy, P. Kraus, N. Seiberg, A. Sen, S. Shenker, E. Silverstein, L. Susskind and

N. Toumbas for useful discussions. R.G. and S.M. are grateful to the high energy theory

group at Stanford University for their hospitality.

This work was supported in part by DOE grant DE-FG02-91ER40654.

18



References

[1] Alain Connes, Michael R. Douglas and Albert Schwarz, Noncommutative Geometry

and Matrix Theory: Compactification on Tori, hep-th/9711162, JHEP 9802 (1998)

003.

[2] N. Seiberg, L. Susskind and N. Toumbas, The Teleological Behavior of Rigid Regge

Rods, hep-th/0005015.

[3] N. Seiberg and E. Witten String Theory and Noncommutative Geometry, hep-

th/9912072.

[4] S. Gukov, I. R. Klebanov and A. M. Polyakov, Dynamics of (n,1) strings, Phys. Lett.

B423, 64 (1998) [hep-th/9711112].

[5] H. Verlinde, A matrix string interpretation of the large N loop equation, hep-

th/9705029.

[6] C.G. Callan, C. Lovelace, C.R. Nappi, S.A. Yost, Open Strings in Background gauge

Fields, Nucl.Phys. B288 525,1985.

[7] C.P.Burgess, Open String Instability in Background electric Fields, Nuc. Phys.

B294427-444, 1987.

[8] C. Bachas and M. Porrati, Pair Creation of Open Strings in an Electric Field,

Phys.Lett.B296:77-84,1992.

[9] V.V.Nesterenko, The Dynamics of Open Strings in a Background Electromagnetic

Field, Int. J. Mod. Phys. A4 (1989) 2627-2652.

[10] E.S. Fradkin, A.A. Tseytlin, Nonlinear Electrodynamics from Quantized Strings

Phys.Lett.B163 123,1985.

[11] Oleg Andreev and Harald Dorn, Diagrams of Noncommutative Phi-Three Theory from

String Theory , hep-th/0003113.

[12] Youngjai Kiem and Sangmin Lee, UV/IR Mixing in Noncommutative Field Theory

via Open String Loops, hep-th/0003145.

[13] Jaume Gomis, Matthew Kleban, Thomas Mehen, Mukund Rangamani and Stephen

Shenker, Noncommutative Gauge Dynamics From The String Worldsheet,hep-th/0003215.

[14] Hong Liu and Jeremy Michelson, Stretched Strings in Noncommutative Field Theory,

hep-th/0004013.

[15] Adel Bilal, Chong-Sun Chu, Rodolfo Russo, String Theory and Noncommutative Field

Theories at One Loop, hep-th/0003180.

[16] Chong-Sun Chu, Rodolfo Russo and Stefano Sciuto, Multiloop String Amplitudes with

B-Field and Noncommutative QFT, hep-th/0004183.

[17] N. Seiberg, L. Susskind and N. Toumbas, Strings in background electric field, space /

time noncommutativity and a new noncritical string theory, hep-th/0005040.

[18] A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory hep-th/9908105,

and references therein.

19

http://arXiv.org/abs/hep-th/9711162
http://arXiv.org/abs/hep-th/0005015
http://arXiv.org/abs/hep-th/9912072
http://arXiv.org/abs/hep-th/9912072
http://arXiv.org/abs/hep-th/9711112
http://arXiv.org/abs/hep-th/9705029
http://arXiv.org/abs/hep-th/9705029
http://arXiv.org/abs/hep-th/0003113
http://arXiv.org/abs/hep-th/0003145
http://arXiv.org/abs/hep-th/0003215
http://arXiv.org/abs/hep-th/0004013
http://arXiv.org/abs/hep-th/0003180
http://arXiv.org/abs/hep-th/0004183
http://arXiv.org/abs/hep-th/0005040
http://arXiv.org/abs/hep-th/9908105


[19] V. Schomerus, D-branes and Deformation Quantization, hep-th/9903205, JHEP 9906

(1999) 030.

[20] E. Witten, Noncommutative Geometry And String Field Theory, Nucl. Phys. B268,

253 (1986).

[21] Shiraz Minwalla, Mark Van Raamsdonk, Nathan Seiberg, Noncommutative Pertur-

bative Dynamics , hep-th/9912072.

[22] M. van Raamsdonk and N. Seiberg, Comments on Noncommutative Perturbative Dy-

namics,JHEP 0003 (2000) 035

[23] O. Andreev, A note on open strings in the presence of constant B-field, Phys. Lett.

B481, 125 (2000) hep-th/0001118.

[24] A. Hashimoto and N. Itzhaki, Non-Commutative Yang-Mills and the AdS/CFT Cor-

respondence, Phys.Lett. B465 (1999) 142

[25] J. Maldacena and J. Russo, The Large N limit of non-commutative gauge theories,

hep-th/9908134, JHEP 9909:025,1999.

[26] T. Filk, Divergences in a Field Theory on Quantum Space, Phys.Lett. B376:53-

58,1996.

20

http://arXiv.org/abs/hep-th/9903205
http://arXiv.org/abs/hep-th/9912072
http://arXiv.org/abs/hep-th/0001118
http://arXiv.org/abs/hep-th/9908134

