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Abstract
It is conjectured that strongly coupled, spatially noncommutative N' = 4 Yang-Mills
theory has a dual description as a weakly coupled open string theory in a near critical
electric field, and that this dual theory is fully decoupled from closed strings. Evidence for
this conjecture is given by the absence of physical closed string poles in the non-planar one-
loop open string diagram. The open string theory can be viewed as living in a geometry

in which space and time coordinates do not commute.
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1. Introduction

Noncommutative field theories have a rich and fascinating structure. The embedding
of these theories into string theory [[] suggests that this structure may be directly relevant
to understanding the inevitable breakdown of our familiar notions of space and time at
short distances in quantum gravity.

Investigations to date have largely concentrated on theories with purely spatial non-
commutativity (see however [F]). While such theories are interestingly nonlocal in space,
they are local in time, admitting familiar notions like that of the Hamiltonian and a quan-
tum state. Noncommutativity of a time-like coordinate should have even more far-reaching
consequences, and it is natural to ask whether or not such theories exist.

In this paper we give one answer to this question by asking another: What is the strong
coupling dual of NCYM (spatially-noncommutative N' = 4 Yang-Mills)? This question can
be addressed in the description of NCYM as a scaling limit of three-branes with a B field in
I1B string theory [J]. IIB S-duality induces an S-duality on the NCYM theory, mapping
the strongly coupled NCYM theory to a weakly coupled open string theoryﬂ. This open

L The low energy sector of the open string theory is ordinary ' = 4 YM, and the induced
duality reduces to the standard S-duality.



string theory can be viewed either as living in a near critical electric fieldd B , or in a
space-time with noncommuting space and time coordinates. A precise statement of the
spacetime noncommutativity in this theory is that the temporal zero mode X° on the open
string worldsheet does not commute with the spatial zero modes. The scale associated with
this noncommutativity is the same as the effective open string scale. Thus the effects of
the noncommutativity are inextricably tied up with the usual stringy nonlocalities.

Since the closed string sector of the IIB theory is decoupled in the scaling limit,
the dual open string theory does not have a closed string sector. The appearance of an
open string theory without a closed string sector is striking. Ordinarily closed string poles
appear in open string loop diagrams, and unitarity then requires the addition of asymptotic
closed string states. In order to better understand this point we analyze (following [[[T-
[[]) the nonplanar one loop open string diagram for the bosonic case. We find that the
temporally noncommutative phases lead to a precise cancellation of all the closed string
poles, in accord with our expectations. This cancellation in fact occurs for branes of any
dimension, indicating the existence of a family of non-commutative open string theories.

This paper is organized as follows. In section 2 we derive the S-dual of NCYM, which
we refer to as NCOS (noncommutative open strings), by embedding in string theory. In
section 3 we show that it is a decoupled open string theory with a near-critical electric
field. In section 4 we give evidence at the one loop level for the decoupling of closed strings
by computing the non-planar annulus for bosonic string theory with two incoming and
two outgoing tachyons. Section 5 contains a preliminary analysis of the general higher
loop diagram; no obvious closed string singularities are found. In section 6 we make some
comments regarding the supergravity duals of our open string theory. We conclude with
some discussion in section 7. For simplicity we concentrate on the U(1) theories but our
results generalize easily to U(N).

Related work will appear in [[[7].

2 The existence of a scaling theory at near critical electric fields, and its relevance to temporal
noncommutativity was emphasized to us by N. Seiberg, L Susskind and N. Toumbas (private
communications). The scaling to the critical electric field was also considered in [, [{].

3 The critical value of the electric field arises when the force pulling apart the charges at
either end of the string just balances the string tension, so that the string is effectively tensionless

[BH,L0]. Beyond this value the spectrum contains a tachyon and the vacuum is unstable.
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2. Inducing S-Duality

The Olive Montonen dual of ordinary /' =4 SYM may be deduced as a consequence
of the S duality of IIB theory in the presence of D3-branes in the zero slope limit. In this
section we will determine the Olive Montonen dual of spatially noncommutative N/ = 4
SYM, using the S duality of IIB theory in flat space in the presence of D3-branes and a
background B, field, together with the modified zero slope limit [B] .

Consider a D3-brane, extended in the 0, 1, 2, 3 directions, in a background geometry

2
Gy = M 95 = & k10, gun = Omn, 1)
le'j = —Beij, g;tr = Of’kg. .
in the limit o/—0, keeping ki, ko, B fixed (we will refer to this as the NCYM limit).
Here p,v = 0,1 with i,j = 2,3 and M, N = 4,...9. (We will reserve unprimed notation
for the S-dual variables to be introduced in the next sub-section.) It was shown in [j]
that the decoupled theory on the brane is noncommutative U(1) SYM propagating on a

four dimensional space with (open string) metric (we use the conventions of [{]) G/, =
G/ (27TB)

d;j, noncommutativity parameter 0" = < and gauge coupling g2 ,, =

B

Uma
27rG02, where Gf = klz—lB. In order to obtain noncommutative field theory propagating on
a space with unit metric we choose k; = (27rB)2. In terms of the field theory couplings 6’
and G, B = ei’ and ko = (QWEG?.

In order to obtain a weakly-coupled dual description of the noncommutative gauge

theory at large G! we will consider the NCYM limit described above in an S-dual pic-
ture. Before describing this in detail we note that the S-dual version has two potentially
unpleasant features:

a. It seems to involve branes in the presence of an an RR 2 form potential (the S-dual
of Bj;).

b. The S-dual of the NCYM limit takes the closed string coupling gs¢,- to infinity, seeming
to indicate that any description of brane dynamics obtained in this picture will be
strongly rather than weakly coupled, independent of G,.

These difficulties may both be circumvented. In order to avoid having to deal with RR
fields, we gauge away the constant bulk NS-NS potential before performing the S-duality.
This gauge transformation induces a magnetic field Fj; = B on the the D3-branes, which
is converted into an electric field by the S-duality; in fact an electric field that approaches

its critical value in the scaling limit. This electric field may in turn be gauged into a
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constant background NS-NS two form potential By; = Fpyp in the bulk. But, in such a
background, the open string coupling that governs the strength of interactions between
brane modes is not directly related to the closed string coupling. It turns out that the
open string coupling in this background is G, = é, i.e. it is the inverse of the original
open string coupling, and therefore remains finite deospite the fact that g4 — oo. Thus at
large G/, the effective description is a weakly coupled noncommutative open string theory,
with noncommutativity in the time direction!

We now consider this limit in more detail. We could consider any finite number of

branes, N, but we will mostly stick to the case N = 1 for simplicity.

2.1. Born-Infeld S-Duality

S-duality transforms a constant magnetic field on the three-brane to a constant electric

field. Constant fields on a single D3-brane are governed by the Born-Infeld action

1
Spr = e d*z —det(guy — 2w’ F). (2.2)
(2m)%a/"gse

The action of S duality on Sp; will be reviewed in this subsection (See [I§] ). Consider
a gauge theory on a torus. The flux of the magnetic field on any nontrivial two cycle of
the torus is integrally quantized, and so must, under electromagnetic S-duality, map to a
quantized electric flux. Recall why electric flux on a torus is quantized. The constant piece
(zero momentum mode) of a gauge field in flat infinite space is physically unmeasurable,
as it can be gauged away. This is not true, however, on a torus, as the Wilson line eif A.de
over any nontrivial cycle of the torus is a gauge invariant observable, implying that the
zero momentum piece of the gauge field A; is a periodic physical ‘coordinate’, with period
i—:_r (L; is the size of the i*" spatial direction). Consequently, the momentum conjugate to
the zero mode of A; is quantized in integral units of L;. This quantized momentum is the
electric flux that is interchanged with the quantized magnetic flux under S duality.

In order to work out the expression for the quantized electric flux, consider the theory
(2.2) on a rectangular torus, with spatial coordinate radii Li, Lo, L3. We are interested
in background field configurations in which Fp; is nonzero and constant, but Fj; is zero.
Since A; appears in the Lagrangian only through Fy, it is sufficient, for the purposes of
computing canonical momenta in such backgrounds, to set Fj; to zero in the Lagrangian.

For a diagonal metric the Born Infeld action simplifies to (recall g°° is negative)

S = ot /d4x\/—_g\/1 + (27’ )2g g FE. (2.3)

(27?)3a’2g5tT
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Thus, for constant Fyq, the momentum conjugate to A; is

g " Fy,
\/1 271'04’ gllgOOFZ

P'=NL, =

LaLsv/~g (2.4)

Thus the constant Fj; background of the spatially noncommutative theory maps,
under S duality, to a background with constant Fjy;, whose value is given by the solutions

to the equations
/_g gllgOOF01 _ F/ _ l (2 5)
gstr \/1+ (2ma/)2gtg00F2 By

where g, and F),,, are the background metric and field strength in the S dual description.

In terms of the critical value of the electric field

Fc’rzt V _900911

e

(2.6)

one finds "
FCT’L
FO — 01

1 / '
\/1+922933(27r(fm)2

2.2. The Scaling Limits

Consider IIB theory with a D3-brane in the presence of a background NS-NS 2-form
potential, B,,. Prior to any scaling limit, an open string metric GAB (the symbol GAB
will be reserved for a rescaled open string metric defined below) and a non-commutativity

parameter © can be deduced from disk correlators on the open string worldsheet boundaries
XA0)XB(r) = —a’GAB In(r)? + %@ABE(7'), A,B=0,1,2,3. (2.8)

The open string coupling G, is similarly read off from the coefficient of the gauge theory

action. These are related to closed string quantities by the formulae [J]

1 AB
T + = ( m”(ig—l—%ra’B) ,
2=y det? (g + 2md/ B) (2.9)
o — Ystr
det2( )
As discussed above, in the NCYM limit, o/ — 0 while the open string metric G'AB ,

open string coupling G/, and the (spatial) non-commutativity matrix ©'AB are held fixed.

We would now like to study this scaling limit in the S-dual description of Type IIB
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theory. We will call this the NCOS limit. Under an S-Duality, the type IIB closed string

backgrounds transform in the usual fashion, g,,, =

1 l
Gstr ’ gu’y - Gstr

= Jv (o' is unchanged). The

associated open string quantities may then be read from their definitions in (2.9). The

results, in the limit o’ —0, are summarized in the following table:

TABLE 1

The NCYM Limit

The S-Dual NCOS Limit

0G4

Jpr = M Iuv = 2rar v

/ 2 / 7rO/
g,y = 250 gi; = 250

2
3 1 (2nwd’
1

Bll-j = Fi/j = —9—,62‘]‘ Bij = Fij = 0 \

’ ’ 2 ’ 0’ GOG
Istr = G02 79]-?5 gstr = Gl221a! = 2ral
G AB _ nAB a/o;ff GAB = GAB — 77AB

'"MN _ 'MN _ sMN MN MN __ 2ma’ SMN
GMN — g'MN _ 5 GMN = gMN — Zrac s
01 =0 O = —0 G2t = —feiv
Q' = —§ ¢ 0l =
G, =G, Go=gr
o = o O/eff — %

Here
wv=01, 4,j=23  AB=0123  MN=45618,9.

In Table 1 we have expressed all open and closed string quantities as functions of # and G,

the noncommutativity parameter and open string coupling in the (S-dual) NCOS theory.

We have also defined the quantities, o/ s the effective open string scale and the rescaled
open string metric GAB = ﬁé““g of the NCOS theory.

Note that

1. In the limit o/ —0, the electric field Fy; of the NCOS theory attains its critical value

oG

Fcrit — )
0T (2ral)?

(2.10)

2. The energy per unit coordinate length of an NCOS open string stretched in the 1

direction is given by (recall that the ends of an open string are charged)

€01 1
Po=or

Azt

1
—~ = 27T€01F01) Al’l =
(e}

!
47r046ff

(2.11)



so these open strings have an effective tension set by o/csr. As a consequence, it will
turn out that in the NCOS limit excited open string oscillator states are part of the
decoupled theory on the brane in the NCOS limit, and that their mass scale is also
set by @/csr .
3. The open string coupling G, is the inverse of the gauge coupling G in the NCYM
limit.
To summarize, strongly coupled spatially noncommutative Yang-Mills theory has an
effective description as a weakly coupled open string theory living on D3-branes, in the
presence of a near critical electric field. The parameters of this open string theory are

listed in Table 1. We will explore this theory in the rest of this paper.

3. The Classical NCOS Theory
3.1. Spacetime Noncommutativity

In the NCOS limit, open strings on the brane propagate in a background electric field.
This results in temporal noncommutativity, in the sense that the open string zero modes
obey

[XH, XY] =ifet, (3.1)

as may easily be seen from (2.8).

Disk diagrams in the NCOS theory are very simple. As argued in [I9], [B], open
string correlation functions on the disk in the NCOS theory may be obtained from the
equivalent correlation functions in the theory without the electric field, by the addition of
noncommutative phases in the 0, 1 directions (and using the appropriate open string metric
and coupling). Thus the classical action for open string modes in the NCOS limit may be
obtained by turning all products in the usual open string classical action into star products.
In other words if we think about the open string field theory action S = [ AQA+Ax,, A%, A
there the x,, product is Witten’s star product [B0] then the only change is that we replace
Witten’s product by a modified product which just adds in the Moyal phases, and of course
we replace o' — ay ;.

Since the effective string scale /¢y is the same as that of non-commutativity ¢, the
noncommutative phases are non negligible only for energies of the order of those of string

oscillators.



3.2. The Free Spectrum

In this subsection we will argue that the NCOS limit defines an open string theory on
the 3-brane, as open string oscillators do not decouple in this limit. We will examine the
spectrum in the free NCOS theory and see that the effective scale is indeed set by /¢y .

We first consider the scaling limit in the NCYM picture. Near the NCYM limit
one has weakly coupled closed strings coupled gravitationally to open strings. Open string
excitations with string frame energies obeying |g°°k2| < %, or equivalently Einstein frame
energies obeying |gWk3| < ml% , decouple from the closed strings. As ¢°° = —1, open string
modes with ky < \/% decouple from closed string modes. The decoupled theory includes
all brane excitations with energies that obey this inequality, namely just the N' =4 YM
multiplet.

Now consider the same limit in the NCOS picture. The argument above ensures that

open string modes with kg < \/105—, decouple from closed strings. However, the open string

oscillator states in this picture obey the mass shell condition set by the open string metric
in the RHS of Table 1

/
e N
—O‘af ! aGABkp = = (3.2)
with A, B =0,1,2,3. This implies
N 1
=< = (3.3)
Qeff (e
with
, 0
Aeff =5 (3.4)

in the limit o/—0. Thus the decoupled theory on the brane includes all open string
oscillator states! The mass spectrum is exactly the usual free spectrum on the three brane,

except with o’y replacing o'.

3.3. Worldsheet Correlators

Nontrivial vertex operators are functions of tangential worldsheet derivatives of X4
and normal worldsheet derivatives of X™. Correlation functions of such vertex operators
may be computed given the two point correlators of the free fields X4 restricted to the
boundary of the world sheet, as well as the two point functions of the free fields X .

The boundary correlators of X4 are finite in the limit o/—0, and are given by

XA0)XB(r) = =/ ey GAB In(7)? + %ef“%m, A,B=0,1,2,3 (3.5)



On the other hand, correlation functions involving the transverse directions X are

derived from the sigma model

1

S —
4o

/e G4
GunOXMoxVN = % / OXMAXN . (3.6)
In terms of the rescaled fields Y™ = %X M

4m, - / OYMOY NGy (3.7)

The vertex operators representing physically normalized states are functions of the normal
derivatives of Y.

Thus all correlation functions of NCOS vertex operators on the disk will be the same
as in usual open string theory except that o/ — o, 7¢ and we have extra non-commutative

phases appearing as in [f]. The open string coupling constant is G and it is finite.

4. The One Loop Diagram

One loop open string graphs usually contain closed string poles, and unitarity then
requires that closed strings be included as asymptotic states. In this section we consider
the nonplanar annulus diagram in the NCOS limit, and show that it has no physical closed
string poles. This demonstrates that an on shell closed string cannot be produced in
collisions of open strings.

Nonplanar diagrams for spatial © were computed in [[TH[G] - we will follow [[4]. The
nonplanar diagram for our case can be obtained by analytic continuation. For simplicity
consider the case of two initial and two final open string tachyon vertex operators Vp =
GyetkaX * in the bosonic string with incoming momenta k1, k> and outgoing momenta

ks, k4. Then we get for a D-3 brane in bosonic string theory (Eq. 2.17 of [[4])

(Ve (k1) Vi (ko) Vi (k3) Vi (ka)) annutus ~ iVGGE(A! o5 5) 7204 (k1 + ko + k3 + kq)

o0 dS ZS —24 _a_/skAgABk,B
></ S ) e (4.1)

1 )
x / dvy dvadvdig U, Uy Ty get [Faxhs Graa—evan) ki xka (22 —c(n2))]
0
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with :
18
0112, ) 2ok

01,(0, %)

9/11<07 %)

s 010(Vrs, L2
\P12 = 14 H |M|2a'e]‘f}€r~k‘s’ (VTS =, — Vs), (42)
r=1,2 s=3,4 11(07 ?)

k= kl + k2: kr X ks = krA@ABksBy kr : ks = krAGABksB-

\1]1:‘ ) \P2:|

Y

The expression for the annulus amplitude in (4.1) is written in the closed string
channel. (The expression for the superstring would be similar except that the factor of
s~ = s=4/2 _, 5=3 in (4.1). This factor comes from the number of transverse dimensions
di. ) Closed string singularities arise in the integral over s in (4.1) as () may be ex-
panded in a series in e~V*. We thus find non amaulyticitiesIa (singularities) in the amplitude

when

o A
?kAg BkB = —N. (43)

In the NCOS scaling limit, this condition may be written as
ra'?

0
- 1224 NI —
g bt b + kit = =N, (4.4)

Singularities on the real axis occur at a squared energy

G20\ IN
k2 =k? + (27T0a/) (kg + k2 + —a,eff)

that becomes arbitrarily large as o’ is made increasingly small. In the strict limit o’—0,

open string one loop amplitudes factorize on singularities of the form

/ddtkM 2 1.2 2N1 :
k2+k3+ 7 +9MNkMkN

ale

As these singularities are never in the physical region, they do not correspond to physical

States.E Recalling that GAP is fixed in the NCOS limit, it is easy to see that the amplitude

4 These singularites are 10 dimensional poles integrated over d; transverse momenta.
dy—2
® These singularities ~ (k?) E In(k?) are very similar to those induced by one loop graphs

in spatially noncommutative field theories, as found in [R1], [3]. Notice that if d; > 2 (p branes
with p < 7 in the supersymmetric case), this amplitude, though non analytic, is finite at k& = 0.
For d; < 2 the amplitude diverges at k? = 0. It is possible that stronger IR singularities appear

at higher loops, specially for high dimensional branes.
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(4.1) is finite (except of course for the tachyon pole which is absent in the superstring). It
is also straightforward using the results of [[4] to show that there are no physical poles for
any numbers of initial and final open string tachyon vertex operators. Higher mass vertex
operators involve additional powers of the Green functions on the annulus. These are finite
in the NCOS limit and so will not spoil the finiteness of the amplitudes. Although we have
not worked out the details, we expect that the behavior of the superstring is similar.

It is instructive to contrast the behaviour of (4.1) in both the NCOS and the NCYM
limits. In the latter case the o/ — 0 limit is manifestly smooth when % is held fixed. This
forces one into a corner of the moduli space in which the massive open string states are
decoupled [[IHIG]. In the NCOS limit (4.1) receives contributions from finite s, and so from
all open string oscillator states. Apart from the non-commutative phases the one loop open
string diagram (4.1) has almost the same form as the corresponding diagram in a theory
with B = 0, with o/ replaced by o - However, the exponential term in (4.1) coming
from momentum flowing along the closed string channel has a different o’ dependence
from standard string theory with zero B. This different dependence is responsible for the

absence of physical closed string poles.

Fig. 1: Nonplanar open string diagram. In open string field theory we
would build it from the cubic vertex and we would consider states carrying
momentum ¢ and ¢ + p along the loop.

The absence of closed string poles in a non-commutative open string theory, whose
non-commutativity parameter 6 is 2wa/, s¢ as in our NCOS theories, may be understood
more directly, as we explain below. This line of reasoning also suggests that a non commu-
tative open string theory with 6 < 2w/ s has closed string poles, while the theory with
6 > 2ma/ ¢y is unstable.

Consider the simple non-planar diagram represented in figure 1, in an open string field
theory. Let the open string theory in question be noncommutative, with noncommutativity

parameter #. The momentum integral for this diagram takes the form

/d4qe2ip><q[9_0<q,p) N/d4q/ dteQipXqe—27ro/efftq2+tﬂp.q—|—... (45)
0
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where Tg—o(p, q) is the integrand at # = 0 and p x ¢ = p,q,©"" /2. We have exponentiated
the propagators in the diagram using a Schwinger proper time representation, where ¢ is
the total proper time along the loop and we have explicitly given the form of the leading
dependence on ¢ (3 is some other Schwinger parameter, which is also integrated over; we
have supressed this integral in (4.5) for simiplicity). When ¢ is integrated over we get
the diagram as a function of ¢t and 8. As in [PT]], the effect of noncommutativity on this

integral is an extra term in the exponent of the form

P 0 p/(8Tal ). (4.6)

where p 0 p = —p,O*0O, ,p" = —0?p?. This may be seen by shifting the integral over
q to one over g, = g, + i@Wp”/(47ro/efft). Note that terms of the form ¢.p in (4.5) are
unaffected by the shift due to the antisymmetry of ©.

Thus the integrand of (4.5) is modified from its § = 0 value only by the additional
exponential factor (4.6)/. On shifting to the s = 7/t channel, the integrand has the usual
terms of the form e_sae#(_pgﬂ’%*“) (terms that would produce the s-channel poles if ¢

. 0 2 2
were zero) multiplied by the additional factor e 57 ¢ ess (Po—71)

. When 6 = 2may,;; this
extra factor exactly cancels the pg, p1 dependence of the exponent. Here we have used the
fact that we are in Lorenzian signature so that the final sign of the exponent in (4.6) is
the opposite to the one in Euclidean signature. If # is slightly less that its critical value,
then (4.6) does not cancel the closed string poles. If 6 is bigger than its critical value then

all closed string poles turn tachyonic, a reflection of the instability of the system.

5. Higher Loop diagrams

In this section we will examine higher loop string diagrams in the NCOS limit. We
will not attempt to prove that the limit is nonsingular for arbitrary diagrams, but we will
observe that a simple counting of powers of o’ does not reveal any difficulties. Naively, a
genus g surface in the string loop expansion is weighted by gﬁf;? As g diverges in the
NCOS limit, a perturbative expansion in genus seems impossible. However, we shall argue
below that both holes and handles are really weighted by powers of Gy and so high genus

surfaces are suppressed at weak open string coupling.
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5.1. Holes

The addition of a hole in the world sheet is accompanied by one power of ggy-. It
also leads to an additional integral over the zero mode momentum circulating around the
loop. As shown in [[f], these integrals have a measure factor proportional to det!/ 2(g +
21a’ B)det '/2(g). Hence the total weighting of a hole is

det'/?(g 4 2w/ B)
det'/?(g)

= G2, (5.1)

gstr
and is finite as o/ — 0.

5.2. Handles

Consider an open string world sheet A, with open string boundary conditions corre-
sponding to a 3-brane. The amplitude on a worldsheet (B) with an additional handle can
be factorized in the closed string channel along the handle. The resultant amplitude reads

schematically as

1
_ 2 6 : _
Sp = E SAVa»Va)\eff/d kg”kfkj—i— o (I,J=0...9).

Here Sa4,, . denotes the amplitude on A with two extra closed string insertions. The inte-
gral is over the momenta of the intermediate states in the transverse directions (momentum

is not conserved in these directions).

A =

@

(b)

Fig. 2: Adding a handle to a worldsheet A, we obtain a worldsheet B,
which can be represented as coming from the propagation of closed string
states between two points of the worldsheet. We sum over all closed string
states.
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The effective coupling A2 7 1s determined as follows: A closed string mode ¢ with spacetime

action

1

S =y [0 y5(0160,09 + mie?)
str&
has effective coupling
gstralz O/%
)\eff B 1 N 4 /%
g God' 2y

in the NCOS limit. The integral

1 1
a5k _ a’/de :
/ 9" krky +m? CUENOE £ N+ ey (G +KF) + .

Xeff

3
/ <O/effG%)
(6] —_— .
o'’

Finally, in the normalization we have adopted, S4,, ,. is of the same order as Sa.

is of order

Putting it all together, we find that

SB 4 12
S_A ~ G()O/eff' (52)
Thus we conclude that extra handles, in the NCOS limit, are neither infinitely suppressed

nor enhanced in the NCOS limit. They are instead really weighted by a factor of G§, as

they would have been for an ordinary weakly coupled open string theoryﬂ.

6. Supergravity duals

The considerations of the previous sections generalize to open string theories on N
coincident 3-branes. In that case since we are dealing with a deformation of U(N) N =
4 SYM we expect that it should have a supergravity dual for large N. The relevant

supergravity solutions were written in [24,25]. We start from the Lorentzian version of the

6 See also [PJ] for a discussion of diagrams with many holes.
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solution (2.3) in [2Y], with Bz = 0. Then we do the following scaling of parameters

r =vaiu

/
cosh &’ :b—,
o
v
Y (6.1)
[
Zo,1 IWCCOJ
x2.3 :\/3552,3
R* =fized = 4wrgN
We obtainﬂ
4
ds?, = o f1/? %(—diﬁ +d72) + fNdFE + dF2) + du? + uPdD2
4
27TO/B01 = Oél% N
4
o U
eQd) — 92]0@
1 (6.2)
Agg =o' = f 1,
g
14f1
Foi23u = 04/2:—f
g u
R4
f=1+—7

The particular scalings that we have to do to reproduce this solution are, up to constants,
the same as those in section 2.2. The only scaling that is not so obvious is the scaling of
the radial coordinate. Notice that in the N' =4 SYM case we rescale the radial coordinate
as 1 ~ o’u. The fact that we have 7 ~ v/o/u in this case is related to the fact that the
closed string metric has a factor of 1/o/ in section 2.2. We see from 5.2 that for small u we
recover the usual AdSs x S° solution as we expect, since the open string theory reduces to
N =4 SYM at low energies. In particular we see that we should identify g = G3. As we
increase u the metric becomes different than the metric of AdS and we also see that the

dilaton becomes large. This suggests that for large u we should do an S-duality to analyze

7 Here we normalize the B field as in the previous sections, in [BH] it was normalized differently

by a factor of 2wra’, Byr = 2ma’ Bhere.
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the solution. After we do the S-duality we obtain a solution which is the same as the
supergravity solution which corresponds to a D3 brane with spatial non-commutativity in
the directions 23, see [29], eqn. (2.7). This suggests that at very high energies the open
string theory we are studying would have a dual description in terms of the theory with

spatial non-commutativity.

7. Discussion
7.1. Open String Dipoles and UV /IR

Free open string states in the NCOS limit behave quite differently from ordinary
open strings propagating in the same metric, despite having the same spectrum. In the
presence of background fields, (as discussed for example in [[],8,d] and especially in [[4] for

the magnetic case) the mode expansion reads
“ .y 1 v :
XH(o,T) =z + 2id] ey ppH'T + —OHp,0 + (oscillators). (7.1)
™

For strings in the NCOS limit this implies that the distance along the direction of the field

between the two ends of the string , as measured in the metric G4, is
AX' =27d s pko, (7.2)

plus oscillator contributions which time average to zero. (Note that AX?! is the distance
between the endpoints of the string worldsheet along a line of constant worldsheet time
rather than along a line of constant X°. As we argue below, the proper length of the string
is given by a formula analogeous to (7.2) with kg replaced by the centre of mass energy of
the state.)

The invariant energy and proper length of an oscillator state may be estimated as
follows. The tension of an open string aligned with a near critical electric field is almost
canceled by a negative contribution from its dipole interaction with the field. In the NCOS

limit, the effective tension T,s; = (see (2.11)) . The energy of such a string, with

1
dmal ey
an oscillation number N, is E = T, L + % This is minimized for L = 27, /o/effN =

2ol B, as in (7.2).
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7.2. Thermodynamics

At low energies, compared to \/ﬁ the NCOS theory reduces to ordinary N = 4
SYM, and its free energy scales like T#. At intermediate energies, the thermodynamics of
a weakly coupled NCOS theory (A = G2N < 1), may be expected to reflect its Hagedorn
density of states.

However, as argued in this paper, the weakly coupled NCOS theory has a dual de-
scription as a strongly coupled NCYM theory. In a spatially noncommutative field theory,
at weak coupling, planar diagrams [2f dominate over nonplanar diagrams [2]]] for energies
ko > %. It is plausible that this result to continues to hold at strong couplingE, with a
crossover scale renormalized by a function of the coupling. If true, this assertion implies
that, at high temperatures, the free energy of spatially noncommutative SYM is propor-
tional to the free energy of ordinary large N SYM, and so scales with temperature like T4,

even at large G.2.

It would be interesting to investigate this issue further.

7.3. Generalizations to other Dimensions

In this paper we have ‘derived’ the existence of a decoupled four dimensional open
string theory, NCOS, by S dualizing spatially noncommutative SYM. We presented evi-
dence that, independent of this derivation, the resultant theory is well defined, and weakly
coupled over a range of parameters.

It is easy to extend our construction of the NCOS to other dimensions, even though
we do not have an independent (S duality) argument for the decoupling of closed strings.
The NCOS scaling limit for a p brane is, once again, defined by table 1, where the indices
i,7 run from 2...p and A, B from 0...p. In other words, this limit still describes a near
critical electric field turned on in the 1 direction. The open string coupling defined in (2.9)
and the effective low energy Yang Mills coupling constant g%,, ~ Gga’ :f%f are finite. In
the NCOS limit, open strings appear to decouple from closed strings for all p. The annulus
amplitude is finite in arbitrary dimension, and always factorizes on unphysical closed string
poles. As in the 3-brane, string diagrams with handles and holes are suppressed by powers

of the open string coupling, and may be neglected at weak coupling.

8 This statement is true at least in the ‘supergravity’ limit A > 1, G2 < 1; in that limit A,

[B4], supergravity suggests that planar diagrams dominate for ko > ST
(r02)4

17



In fact, these open string theories appear to be non-gravitational UV finite completions
of low energy (supersymmetric) Yang-Mills. This statement appears to be true even in
high dimensions where the gauge theory is non-renormalizable.
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