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1. Introduction

Quantum field theory on a non-commutative space is of interest for a variety of

reasons. It appears to be a self-consistent deformation of the highly constrained

structure of local quantum field theory. Non-commutative field theories are nonlocal;

unraveling the consequences of the breakdown of locality at short distances may help

understanding non-locality in quantum gravity. The discovery of non-commutative

quantum field theory in a limit of string theory [1] provides new inroads to the

subject.

1



J
H
E
P
0
5
(
2
0
0
0
)
0
2
0

Perturbative aspects of non-commutative field theories have been analyzed in

[2]–[27]. This study has thrown up some evidence for the renormalizability of a

class of non-commutative field theories, and has revealed an intriguing mixing of the

UV and IR [15] in these theories. In this paper we will construct localized classical

solutions in some simple non-commutative field theories. We expect these objects to

play a role in the quantum dynamics of the theory.

We first consider a scalar field with a polynomial potential. A scaling argument

due to Derrick [28] shows that, in the commutative case, solitonic solutions do not ex-

ist in more than 1+1 dimensions, as the energy of any field configuration can always

be lowered by shrinking. Perhaps surprisingly, for sufficiently large noncommutativ-

ity parameter θ, we will find classically stable solitons in any theory with a scalar

potential with more than one local minimum. These solitons are asymptotic to the

true vacuum, and reach a second (possibly false) vacuum in their core. They cannot

decay simply by shrinking to zero size because sharply peaked field configurations

have high energies in non-commutative field theories. These solitons are metastable

in the quantum theory, but by adjusting parameters in the scalar potential, their life-

time can be made arbitrarily long while their mass is kept fixed. Solutions are found

corresponding to solitons in 2l+1 dimensions or instantons in 2l dimensions for any l.

Our construction of these solutions exploits the connection between non-commu-

tative fields and operators in single particle quantum mechanics. Under this corre-

spondence, the ? product maps onto usual operator multiplication, and the equation

of motion translates into algebraic operator equations. The non-commutative scalar

action can be rewritten as the trace over operators (which can be regarded as∞×∞
matrices). This leads to a connection between non-commutative field theories, and

zero-dimensional matrix models.

Next we consider non-commutative U(N) Yang-Mills theory. When expanded

around a simple solution of the equations of motion, the action takes the simple

quartic form (up to constants and topological terms)

SYM =
1

4g2YM

∫
d2lx δµλ δνρTr

(
[Φµ,Φν ][Φλ,Φρ]

)
, (1.1)

where Φµ are N ×N -hermitean matrices and all commutators are constructed from
the ? product. Note that the kinetic term has been shifted away! The usual space-

time gauge symmetries act linearly as unitary transformations on the fields Φµ, and

the Φµ = 0 vacuum leaves even local gauge symmetries unbroken. This construction

is similar to that of [29], in which the kinetic term of Witten’s string field theory

action [30] is shifted away. Indeed, our search for such a construction in non-

commutative field theory was motivated by the tantalizing analogy, noted in [15],

between non-commutative field theories and string field theories. The existence of

the formulation (1.1) of non-commutative gauge theories strengthens the analogy.

We also reproduce, as an illustration, the U(1) instanton solutions of [31].

2



J
H
E
P
0
5
(
2
0
0
0
)
0
2
0

Rewriting non-commutative fields as the large-N limit of matrices, (1.1) is closely

related to the IKKT matrix theory [32]. Indeed, our construction is essentially

equivalent to that presented by Aoki et al. [11] in this context. Related observations

are also made in [37, 1, 33, 36].

This paper is organized as follows. In section 2 we describe the action for non-

commutative scalar field theory. In section 3 we consider the limit, θ →∞, in which
the equations simplify considerably. The general solution can be found exactly and

is given in terms of quantum mechanical projection operators. In section 4 we show

that there are stable solitons in this limit, as long as the potential has at least

two local minima. In section 5 we argue that there are stable solitons at large but

finite θ which can be constructed perturbatively in θ−1. In section 6 we turn to the
non-commutative gauge theory where the purely quartic action is constructed. The

U(1)-instanton solution of [31] is also reproduced. In appendix A we give an explicit

construction, of the leading 1/θ correction to the simplest stable soliton of the scalar

field theory.

2. The non-commutative scalar action

Consider first a non-commutative field theory of a single scalar φ in (2 + 1) di-

mensions with noncommutativity purely in the spatial directions. The spatial R2 is

parametrized by complex coordinates z, z̄. The energy functional

E =
1

g2

∫
d2z (∂zφ ∂z̄ φ+ V (φ)) , (2.1)

where d2z = dx dy. (We will comment on the generalization to arbitrary dimensions

in the appropriate places.) Fields in this non-local action are multiplied using the

Moyal star product,

(A ? B) (z, z̄) = e
θ
2
(∂z∂z̄′−∂z′∂z̄)A(z, z̄)B (z′, z̄′) |z=z′ . (2.2)

Note that in the quadratic part of the action, the star product reduces to the

usual product.

We seek finite energy (localized) solitons of (2.1). These can also be interpreted

as finite action instantons in the two-dimensional euclidean theory. We will, however,

refer to the solutions as solitons in the following.

Since no solutions exist in the commutative limit θ = 0 [28], we begin our search

in the limit of large noncommutativity, θ→∞. It is useful to non-dimensionalize
the coordinates z→z√θ, z̄→z̄√θ. As a result, the ? product will henceforth have
no θ, i.e. it will be given by (2.2) with θ = 1. Written in rescaled coordinates, the

dependence on θ in the energy is entirely in front of the potential term:

E =
1

g2

∫
d2z

(
1

2
(∂φ)2 + θV (φ)

)
. (2.3)
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In the limit θ→∞, with V held fixed, the kinetic term in (2.3) is negligible in com-
parison to V (φ), at least for field configurations varying over sizes of order one in

our new coordinates.

Our considerations apply to generic potentials V (φ), but we will, for definiteness,

mostly discuss those of polynomial form

V (φ) =
1

2
m2φ2 +

r∑
j=3

bj

j
φj . (2.4)

We have, of course, abbreviated

φj = φ ? φ ? · · · ? φ .

3. Scalar solitons in the θ =∞ limit
After neglecting the kinetic term, the energy

E =
θ

g2

∫
d2z V (φ) (3.1)

is extremised by solving the equation

∂V

∂φ
= 0 . (3.2)

For instance, (3.2) is

m2φ+ b3 φ ? φ = 0 (3.3)

for a cubic potential and

m2φ+ b3 φ ? φ+ b4 φ ? φ ? φ = 0 (3.4)

for a quartic potential.

If V (φ) were the potential in a commutative scalar field theory, the only solutions

to (3.2) would be the constant configurations

φ = λi , (3.5)

where λi ∈ {λ1, λ2, . . . , λk} are the various real extrema of the function V (x).1 As
we shall see below, the derivatives in the definition of the star product allow for more

interesting solutions of (3.2).

1For V (φ) as in (2.4), λi are the real roots of the equation m
2x+

∑r
j=3 bjx

j−1 = 0.
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3.1 A simple non-trivial solution

A non-trivial solution to (3.2) can easily be constructed. Given a function φ0(x)

that obeys

(φ0 ? φ0) (x) = φ0(x) , (3.6)

it follows by iteration that φn0 (x) = φ0(x),
2 and that f(aφ0(x)) = f(a)φ0(x) (fields in

f are multiplied using the star product). In particular, λi φ0(x) solves (3.2) when λi
is an extremum of V (x). Thus, in order to find a solution of (3.2), it is sufficient to

find a function that squares to itself under the star product. We proceed to construct

such a function below.

If we take the ordinary product of a smooth function of width ∆ with itself, the

spatial size of the function shrinks to a fraction of ∆, which is why non-constant

functions never square to themselves! The non locality of the star product, however,

introduces an additional effect, adding roughly3 1/∆ to the width of the product.

This makes it possible for a lump of approximately unit size to square to itself under

the star product.

Consider a gaussian packet of the form

ψ∆(r) =
1

π∆2
e−r

2/∆2 ,

with radial width ∆ (here r2 = x2 + y2). The star product of ψ∆ with itself is easily

computed by passing to momentum space,

ψ̃∆(k) =

∫
eik·x ψ∆(x) d2x = e−k

2∆2/4 , (3.7)

(
ψ̃∆ ? ψ̃∆

)
(p) =

1

(2π)2

∫
d2kψ̃∆(k)ψ̃∆(p− k)e i2 εµνkµ(p−k)ν =

=
1

2π∆2
e−

p2

8
(∆2+ 1

∆2
) . (3.8)

Therefore

(ψ∆ ? ψ∆) (x) =
1

π2∆2(∆2 + 1
∆2
)
exp

[ −2r2
∆2 + 1

∆2

]
. (3.9)

In particular,4 when ∆2 = 1, the gaussian squares to itself (up to a factor of 2π).

That is,

φ0(x) = 2πψ1(x) = 2 e
−r2 (3.10)

solves (3.6) and λi φ0(x) solves (3.2).

2This equation and its solution has also appeared in earlier work involving the Moyal Product.

See [38, 39].
3The added width is actually ≈ K, the typical momentum in the Fourier transform of the

function. For a function of size ∆ with no oscillations, K ≈ 1/∆. For a function of size ∆ with n
oscillations, K ≈ n/∆.
4We note in passing that in the limit ∆→0, (3.9) reduces to δ2(x) ? δ2(x) = 1/(2π)2.
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3.2 The general solution

In order to find all solutions of (3.2) we will exploit the connection between Moyal

products and quantization. Given a C∞ function f(q, p) on R2 (thought of as the
phase space of a one-dimensional particle), there is a prescription which uniquely

assigns to it an operatorOf(q̂, p̂), acting on the corresponding single particle quantum

mechanical Hilbert space, H. It is convenient for our purposes to choose the Weyl
or symmetric ordering prescription

Of(q̂, p̂) =
1

(2π)2

∫
d2k f̃(k) e−i(kq q̂+kpp̂), (3.11)

where

f̃(k) =

∫
d2x ei(kqq+kpp)f(q, p) (3.12)

and

[q̂, p̂] = i . (3.13)

With this prescription, it may be verified that

1

2π

∫
dp dq f(q, p) = TrHOf (3.14)

and that the Moyal product of functions is isomorphic to ordinary operator multi-

plication

Of ·Og = Of?g . (3.15)

In order to solve any algebraic equation involving the star product, it is thus

sufficient to determine all operator solutions to the equation in H. The functions on
phase space corresponding to each of these operators may then be read off from (3.11).

We will now employ this procedure to find all solutions of (3.2).

As noted above, any solution to (3.6) may be rescaled into a solution of (3.2).

Particular solutions of (3.2) may thus be obtained by constructing operators in H
that obey (3.6), i.e. O2φ = Oφ. This equation is solved by any projection operator

in H. H possesses an infinite number of projection operators, which can be classified
by the dimension of the subspace they project onto. Each class contains a large

continuous infinity of operators, each of which, upon rescaling, yields a solution

to (3.2).

The most general solution to (3.2) hence takes the form

O =
∑
j

ajPj , (3.16)

where {Pj} are mutually orthogonal projection operators onto one-dimensional sub-
spaces, with aj taking values in the set {λi} of real extrema of V (x).
In order to obtain the functions in space corresponding to the solutions (3.16),

it is convenient to choose a particular basis in H. Let |n〉 represent the energy eigen-

6
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states of the one-dimensional harmonic oscillator whose creation and annihilation

operators are defined by

a =
q̂ + ip̂√
2
; a† =

q̂ − ip̂√
2

. (3.17)

Note that a|n〉 = √n |n − 1〉 and a†|n〉 = √n+ 1 |n + 1〉. Any operator may be
written as a linear combination of the basis operators |m〉〈n|’s, which, in turn, may
be expressed in terms of a and a† as

|m〉〈n| =: a
†m
√
m!

e−a
†a an√

n!
: , (3.18)

where double dots denote normal ordering.

We will first describe operators of the form (3.16) that correspond to radially

symmetric functions in space. As a†a ≈ r2/2, operators corresponding to radially

symmetric wavefunctions are functions of a†a. From (3.18), the only such opera-
tors are linear combinations of the diagonal projection operators |n〉〈n| = 1/n! :
a†ne−a

†aan :. Hence all radially symmetric solutions of (3.2) correspond to operators

of the form O =
∑
n an|n〉〈n|, where the numbers an can take any values in the

set {λi}.
We now translate these operator solutions back to field space. From the Baker-

Campbell-Hausdorff formula

e−i(kq q̂+kpp̂) = e−i(kz̄a+kza
†) = e−k

2/4 : e−i(kz̄a+kza
†) : , (3.19)

where

kz =
kx + iky√
2

, kz̄ =
kx − iky√
2

, k2 = 2kz kz̄ .

Any operator O expressed as a normal ordered function of a and a†, fN (a, a†), can
be rewritten in Weyl ordered form as follows. By definition,

O =: fN (a, a
†) :=

1

(2π)2

∫
d2kf̃N (k) : e

−i(kz̄a+kza†) : . (3.20)

Using (3.19) and (3.20) may be rewritten as

O =
1

(2π)2

∫
d2kf̃N(k)e

k2/4e−i(kz̄a+kza
†) . (3.21)

Thus, the momentum space function f̃ associated with the operator O, according to

the rule (3.11) is

f̃(k) = ek
2/4f̃N (k) . (3.22)

For the operator On = |n〉〈n| we find, using (3.18) and (3.20), that the corresponding
normal ordered function φ̃

(n)
N (k) = 2πe

−k2/2Ln(k2/2). (3.22) then becomes

|n〉〈n| = 1

(2π)

∫
d2k e−k

2/4Ln

(
k2

2

)
e−i(kz̄a+kza

†) , (3.23)
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where Ln(x) is the n-th Laguerre polynomial. The field φn(x, y) that corresponds to

the operator On = |n〉〈n| is, therefore,

φn(r
2 = x2 + y2) =

1

(2π)

∫
d2k e−k

2/4Ln

(
k2

2

)
e−ik.x = 2(−1)ne−r2Ln

(
2r2
)
. (3.24)

Note that φ0(r
2) is precisely the gaussian solution found in section 3.1.

In summary, (3.2) has an infinite number of real radial solutions, given by

∞∑
n=0

an φn(r
2) , (3.25)

where φn(r
2) is given by (3.24) and each an takes values in {λi}.

In order to generate all non-radially symmetric solutions to (3.2), we rewrite (3.1)

in operator language, using (3.14) as

E =
2πθ

g2
TrV (Oφ) . (3.26)

Eq. (3.26) is manifestly invariant under unitary transformations of Oφ and so has a

U(∞) global symmetry. In other words, if O is a solution to the equation of motion,
so is UOU †, where U is any unitary operator acting on H. A general hermitean
operator (one that corresponds to a real field φ) may be obtained by acting on a

diagonal operator (i.e. an operator that corresponds to a radially symmetric field

configuration) by an element of the U(∞) symmetry group (since any hermitean
operator is unitarily diagonalizable). Thus every solution to (3.2) may be obtained

from a radially symmetric solution by means of U(∞) symmetry transformations.
Therefore solutions to (3.2) consist of disjoint infinite-dimensional manifolds la-

belled by the set of eigenvalues of the corresponding operator. Points on the same

manifold can be mapped into each other by U(∞) transformations. Each manifold
includes several5 diagonal operators (radially symmetric solutions). We will have

more to say about the moduli space of these solutions in the next section.

As all solutions are related to radially symmetric solutions by a symmetry trans-

formation, we will mostly discuss only radially symmetric solutions.

3.3 UV/IR mixing

φ0(r
2), the gaussian solution worked out in subsection 3.1, is a lump of unit size

centered at the origin, as shown in figure 1.

5Distinct diagonal operators having the same eigenvalues lie on the same manifold, being related

by the “Weyl” subgroup of U(∞) that permutes eigenvalues.

8
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Figure 1: A plot of φ0(r) versus r. The

solution is a blob centered at the origin.

Figure 2: A plot of φ30(r) versus r.

φn(r), at large n, looks quite different (see figure 2). It is a solution of size ≈ √n
that undergoes n oscillations6 in that interval, with oscillation period∝ 1/√n. φn(r2)
thus receives significant contributions from momenta up to

√
n in momentum space.

These solutions exemplify the UV/IR mixing pointed out in [15]; oscillations with

frequency
√
n produce an object of size

√
n (instead of 1/

√
n) in a non-commutative

theory.

3.4 Generalization to higher dimensions

All considerations of the preceding subsections may easily be generalized to higher di-

mensions. Consider a scalar field theory in 2l+1 dimensions with noncommutativity

only in the spatial directions. By a choice of axes, the 2l×2l-dimensional noncommu-
tativity matrix Θ may always be brought into block diagonal form. In other words,

it is possible to choose spatial coordinates zi, z̄j̄ (i, j̄ = 1, . . . , l), in terms of which

the noncommutativity matrix Θij̄ = θiδij̄ , Θij = Θī,j̄ = 0. As before we consider the

limit where θi are uniformly taken to ∞ and non-dimensionalize zi→zi
√
θi. As in

the previous subsections, the kinetic term in the action may be dropped in this limit.

Solutions to the equations of motion (3.2) are once again in correspondence with

operator solutions to the same equations; the operators in question now acting on

H×H×· · ·×H, l copies of the Hilbert space of the previous subsection. The general
solution to (3.2) once again takes the form (3.16) in terms of projection operators

on this space. As in the previous subsection, the general solution may be obtained

from diagonal solutions via U(∞) rotations. Diagonal solutions to (3.2) are given by
O =

∑
~n

a~n|~n〉〈~n| ←→
∑
~n

a~n
∏
i

φni(|zi|2) , (3.27)

6Using asymptotic formulae for Laguerre polynomials we find

φn(r) =



2(−1)n r �

√
1
8n

2(−1)n
(2π2r2)1/4

cos
(√
2n2r − π4

) √
1
8n � r�

√
2n

2(−2r2)n
n! e−r

2

r � √2n.

9
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where ~n is shorthand for the set of quantum numbers {ni} for the l-dimensional
oscillator and φni are defined in (3.24). As in (3.25), the coefficients a~n take values in

{λi}. A subset of the solutions (3.27) are actually invariant under SO(2l) rotations
and can be written in terms of associated Laguerre polynomials. These are displayed

in subsection A.3 of the appendix.

In summary, in the limit of maximal noncommutativity, the construction of

solitons in two spatial dimensions generalizes almost trivially to every even spatial

dimension.

4. Stability and moduli space at θ =∞
In this section we study the stability of the solitons constructed in the previous

section. We will also describe the moduli space of stable solitons.

4.1 Stability at θ =∞
We wish to examine the stability of the radial solution

φ(r2) =
∞∑
n=0

λanφn(r
2) (4.1)

to small fluctuations. Since any U(∞) rotation does not change the energy of our so-
lution (4.1), it is sufficient to study the stability of (4.1) to radially symmetric fluctua-

tions. These are most conveniently parameterized as deformations of the eigenvalues.

The energy for an arbitrary radially symmetric state φ(r2) =
∑∞
n=0 cnφn(r

2) is

E =
2πθ

g2

∞∑
n=0

V (cn) .

The solution cn = λan is manifestly an extremum of S, as, by definition, λai are

extrema of the function V (x). Clearly (4.1) is a local minimum of the energy (and so

a stable solution) if, and only if, λan is a local minimum of V (x) for all 0 ≤ n ≤ ∞.
As an example consider the cubic potential of figure 3. with a maximum at

λ = −1. In this case, all λan in (4.1) are either zero or −1. The only stable solution
is that for which all λan = 0, i.e. the vacuum. The solution −φ0(r2), for instance, is
unstable, as the energy of this field configuration is decreased by scaling this solution

by a constant near unity. This instability shows up as a negative eigenvalue of

the quadratic form for fluctuations about −φ0(x); the corresponding eigenmode δφ0
is ∝ φ0.

On the other hand the field theory with V (φ) (say, for a quartic potential)

graphed in figure 4 has stable solitons; these are solutions of the form φ(r2) =∑∞
n=0 λcnφn(r

2) with λcn taking the values of the minima – 0 or λ ≈ −1.4 for all
n. In particular λφ0(r

2) is a stable solution, manifestly stable to rescalings. Again,

10
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one may check that the quadratic form for fluctuations about λφ0(r
2) is positive. In

particular, δφ ∝ φ0 is an eigenmode of this quadratic form with positive eigenvalue.

The stability of φ(r2) = λφ0(r
2) in

-2 -1 1 2

0.2

0.4

0.6

0.8

1

Figure 5: Profile of the gaussian soliton

with a false vacuum region (above the hor-

izontal bar) of radius 1.

the previous example may qualitatively

be understood as follows. φ0 is a gaus-

sian of height 2λ. Far away from the ori-

gin, φ0(x) = 0, but near x = 0, φ0(x)

is in the vicinity of the second vacuum.

In other words, the static solution cor-

responds to a bubble of the “false” vac-

uum. The area of the bubble is of order

one (or θ in our original coordinates), the

noncommutativity scale. In a commuta-

tive theory such a bubble would decay by

shrinking to zero size. Noncommutativity

prevents the bubble from shrinking to a spatial size smaller than
√
θ. In order to

decay, φ0 actually has to scale to zero — but that process involves going over the

hump in the potential and so is classically forbidden.

The energy of this soliton is proportional to the vacuum energy density V (λ)/g2

at the “false” vacuum times the volume of the soliton θ. It is remarkable that the

energy of the soliton is completely insensitive to the value of the scalar potential at

any point except φ = λ. Thus the mass of the soliton is unchanged if the height of

the barrier in V (φ) (between φ = λ and φ = 0, see figure 4) is taken to infinity while

V (λ) is kept fixed. This is true even though φ0(r), the solitonic field configuration

corresponding to λ|0〉〈0|, decreases continuously from φ = 2λ at r = 0 to φ = 0 at

r =∞!
Consider a 2+1-dimensional scalar theory, noncommutative only in space, at

infinite θ. Using the correspondence between functions and operators (matrices) de-

scribed in the previous section, the non-commutative scalar field theory is equivalent

to the matrix quantum mechanics of an N × N -hermitean matrix H , at infinite N ,
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with the usual relativistic kinetic term Tr (∂tH)
2, and a potential Tr (V (H)). The

amplitude for an eigenvalue of H to tunnel from λ to 0 is exponentially suppressed by

the area under the potential barrier in figure 4, and goes to zero as this area is taken

to infinity. Thus the finite mass soliton λ|0〉〈0| is stable, even quantum mechanically,
in this limit.

The U(∞) symmetry of (3.1) is spontaneously broken by every non-zero solution,
φ(x), of (3.2). As a consequence, every solution has a number of exact zero modes

(Goldstone modes) corresponding to small dis-placements about φ(x) on the manifold

of solutions. As Rnm = |n〉〈m| + |m〉〈n| and Snm = i (|n〉〈m| − |m〉〈n|) are the
generators of U(∞), these zero modes are given by the non-zero elements of δφ ∝
[Rnm, φ], [Snm, φ].

The U(∞) group of symmetry transformations that generates these zero modes
is certainly not manifest (at least to the untrained eye) in the energy written in

coordinate space in the form (3.1). In addition to the two translations, (3.1) possesses

three manifest local symmetries, corresponding to a linear change of the coordinates

x, y by an SL(2,R) matrix. The remaining U(∞) transformations act non-locally
on φ(x, y), according to φ′(x, y) = (U ? φ ? U †)(x, y) where U(x, y) is any function
that obeys U ? U † = 1 (such functions correspond to U(∞) operators under the
map (3.11)).

All arguments in this subsection may be applied (after straightforward general-

izations) to higher-dimensional solitons.

4.2 Multi solitons

In this subsection we will qualitatively describe a part of the moduli space of stable

solitons (at θ = ∞) in the simple case of the potential graphed in figure 4 with a
single non-zero minimum at φ = λ.

The stable solitons can be characterized by their “level” (number of λ eigenval-

ues). All stable level one solitons correspond to operators of the form

λU |0〉 〈0 |U † , (4.2)

where U is a unitary operator. As mentioned above, the set of level one solitons span

an infinite-dimensional manifold parameterized by U(N)/U(N − 1) (for N =∞).
The soliton looks very different at different points on the manifold. U = I

in (4.2) corresponds to the gaussian blob of figure 1. If U happens to be a unitary

transformation that maps |0〉 to |m〉, for large m, the corresponding wave function
is qualitatively similar to that in figure 2. When U = ea

†z−az̄ is the generator of
translations, the operator in (4.2), λ|z〉〈z|, is proportional to the projection operator
onto a gaussian centered around z = 1√

2
(x + iy). (Here |z〉 = e−|z|

2/2ea
†z|0〉 is the

usual coherent state.) Again, if U corresponds to one of the SL(2,R) operators, we

obtain squeezed states; gaussians elongated in the y direction and shrunk in the x

direction. And so on.
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Turn now to solitons at arbitrary level n. All such solitons may be obtained by

acting on

λ(φ0 + φ1 + · · ·+ φn−1)
by arbitrary unitary transformations. The manifold of solutions thus generated is

parameterized by U(N)/U(N − n) (and has dimension dn ≈ 2nN) where N→∞.
Notice that dn ≈ nd1. This fact has a nice explanation; in a particular limit the

manifold of level n solutions reduces to n copies of level 1 solitons very far from each

other. This conclusion follows from the observation that the operator that represents

n widely separated level one solitons (with centres zj), for instance

M = λ
∑
j

|zj〉〈zj| (4.3)

is approximately a level n soliton (and exponentially close to a true level n soliton)

when |zi − zj |→∞ for all i, j. We demonstrate this explicitly below for the case
n = 2.

Using 〈z| − z〉 = e−2|z|2, it is easy to check that the kets

|z±〉 = |z〉 ± | − z〉√
2(1± e−2|z|2) (4.4)

are orthogonal. From (3.16) we conclude that the projector

Oz = λ (|z+〉〈z+|+ |z−〉〈z−|) =

= λ
|z〉〈z| + | − z〉〈−z| + e−2|z|2 (|z〉〈−z| + | − z〉〈z|)

(1− e−4|z|2) (4.5)

corresponds to a level 2 solution. Up to corrections of order e−2|z|2, Oz is equal to
|z〉〈z| + | − z〉〈−z|, the superposition of field configurations corresponding to two
widely separated level one solitons.7 We conclude that a part of the level n moduli

space describes n widely separated level one solitons.

We have, so far, worked in the strict limit θ = ∞. The picture developed in
this limit is qualitatively modified at large but finite θ, as we will describe in the

next section.

5. Scalar solitons at large but finite θ

We have argued that, under certain conditions on V (φ), (3.2) has an infinite number

of stable solutions. Each solution has an infinite number of exact zero modes, the

Goldstone modes of the spontaneously broken U(∞) symmetry of (3.1).
At finite θ, the kinetic term in (2.3) explicitly breaks this U(∞) symmetry down

to the euclidean group in 2 dimensions. Finite θ effects may thus be expected to
7It is curious that the kinetic energy of this field configuration is independent of z indicating

that there is no force between the two solitons even to next leading order in 1/θ.
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1. Lift the θ =∞ manifold of solutions to a discrete set of solutions.
2. Give (positive or negative) masses to the U(∞) Goldstone bosons about these
discrete solutions.

In appendix A we will argue that, at large enough θ, corresponding to every

radially symmetric solution s of (3.2), there is a radially symmetric saddle point

of (2.3), that reduces to s as θ→∞. It is likely that these are the only saddle points
of (2.3).

Not all these radially symmetric solutions are stable, however. In fact, it might

seem likely that some of the infinite number of zero modes, at θ = ∞, about each
solution s, might become tachyonic at finite θ. If this were true, (2.3) would have no

classically stable extremum at any finite θ, no matter how large.

We will find that is not the case. In subsection 5.1 below we will argue that

any small perturbation of (3.1) must preserve the existence of at least one classically

stable level one soliton. In subsection 5.2 we will identify this soliton to be the one

near the gaussian λφ0(r
2).

5.1 Existence of a stable soliton

For definiteness, through the rest of this section we assume that the potential V (φ)

has the shape shown in figure 4. In particular, it is positive definite. Let the stable

extremum of V occur at φ = λ and the unstable extremum at φ = β, (λ < β < 0).

Consider, first, (3.1) i.e. the energy functional in the limit where we neglect the

kinetic term. We will show that any path in field space leading from the soliton

λφ0(r
2) to the vacuum passes through a point whose energy is larger than 2πθ

g2
V (β).

Since the energy of the stable soliton is 2πθ
g2
V (λ) < 2πθ

g2
V (β), every path from the

soliton to the vacuum must pass over a barrier of height O(θ/g2).
The energy evaluated on an operator A is

E =
2πθ

g2
Tr(V (A)) =

2πθ

g2

∞∑
n=1

V (cn) , (5.1)

where cn are the eigenvalues of A. Since V is positive definite,

E ≥ 2πθ
g2

V (b) , (5.2)

where b is the smallest eigenvalue of A.

Consider a path in field, or operator space, leading from λφ0 to the vacuum. At

the beginning of this path b = λ. At its end b = 0. Since λ < β < 0, any smooth path

with these endpoints must have a point at which b = β. At that point E > 2πθ
g2
V (β),

as was to be shown.

Now include the kinetic term in (3.1). Barring singular behaviour, this changes

the energies of all field configurations by terms of O(1/g2). For large enough θ, the

14
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arguments of the previous paragraph imply that the field configuration that describe

the level one soliton at θ =∞ cannot decay to the vacuum. Hence there must exist
at least one stable soliton near one of the unperturbed level one solutions. In fact,

as we will show in the next subsection, there is a stable soliton near the gaussian

λφ0(r
2). In the appendix we will present an approximate construction of this solution

at large but finite θ. A similar argument demonstrates the existence of at least one

stable solution at level n.

5.2 Approximate description of the stable soliton

All level one solutions to (3.2) take the form λU |0〉〈0|U † where U is a unitary opera-
tor. We wish to determine the contribution of the kinetic term to the energy of such

an operator.

The kinetic term in (2.1) for an operator A is

K =
2π

g2
Tr[a, A][A, a†] . (5.3)

Setting A = λU |0〉〈0|U † we find

g2K(U)

2πλ2
= 1 +

∑
k

2k|Uk,0|2 − 2
∣∣∣∣∣
∑
k

√
k + 1Uk,0U

∗
k+1,0

∣∣∣∣∣
2

. (5.4)

We expand (5.4) to quadratic order in deviations from U = I. Choose Ui = Ui,0
for i ≥ 1 as the coordinates for this expansion (|U00| is determined in terms of Ui as
U is unitary). To quadratic order in Ui

g2K(U)

2πλ2
= 1 + 2

∞∑
k=2

k|Uk|2 . (5.5)

As U1 and Ū1 do not appear in (5.5), they parameterize flat directions of K(U) (to

quadratic order). This was to be expected. Any localized extremum of (2.1) has two

exact translational zero modes. Infinitesimally, U01 and its complex conjugates act

as derivatives on φ0(r
2), generating these zero modes. Modulo these zero modes, the

fluctuation matrix about U = 1 is positive definite.

While K(U) has several critical points other than U = I, it has no further local

minima. For example, U = U (m), the unitary transformation that rotates |0〉〈0| to
|m〉〈m|, is an unstable critical point of K(U) for all m. In fact U = U (m) is unstable
to decay into U = I. This may be demonstrated by considering the path in field

space |α〉〈α| where |α〉 = cosα|0〉+sinα|m〉. (5.3) evaluated on such a path is equal
to 1 + 2m sin2 α (for m > 1; 1 + 2 sin4 α for m = 1) indicating that the state |m〉〈m|
can decay to |0〉〈0|.
We will now argue that, at large enough θ, the finite θ saddle point φ(x, y)

of (2.3) that reduces to λ|0〉〈0| as θ→∞ is classically stable.
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Consider the mass matrix for fluctuations about φ(x, y). Since any operator

may be written as UDU † where D is diagonal and U unitary, small fluctuations may
be decomposed into radial (fluctuations of D) and angular ones (fluctuations of U).

The mass matrix for purely radial fluctuations is O(θ) to leading order, and has been
shown to be positive definite in subsection 3.4. The mass matrix for purely angular

fluctuations is O(1) to leading order, and has been shown to be positive definite,
modulo the two-zero modes. Since angular modes completely disappear from the

potential, mixing between radial and angular fluctuations occurs only through the

kinetic term, and are also O(1). These cross terms result in corrections to the
eigenvalues of the mass matrix only at O(1/θ). Hence, to leading order in 1/θ, the
mass matrix is positive. The two-zero modes of the angular mass matrix cannot be

driven negative by 1/θ corrections as they are exact.

A similar argument demonstrates the instability of all other radially symmetric

level one solitons (those that reduce to λ|n〉〈n| at θ =∞) at large-enough θ.
The considerations of this subsection may easily be generalized to solitons in 2l

spatial dimensions, using the higher-dimensional analogue of (5.4):

g2K(U)

(2π)lλ2
= 1 + 2

∑
j,~k

kj|U~k,~0|2 − 2
∑
j

∣∣∣∣∣∣
∑
~k

√
kj + 1U~k,~0 U

∗
~k+~i,~0

∣∣∣∣∣∣
2

(5.6)

and (5.5)

g2K(U)

(2π)lλ2
= 1 + 2

∑
~k

(
l∑
j=1

kj −
l∑
j=1

δ~k,~i

)
|U~k,~0|2 . (5.7)

We use the notation of (3.27); ~k is an l-dimensional vector, j runs from 1 to l and
~i is the basis unit vector in the i-th direction; in components in = δi,n. Notice that

K(U) in (5.7) is independent of U~i,0 for all i, a consequence of the exact translational

invariance in all 2l spatial directions.

6. Non-commutative Yang-Mills

6.1 Quartic action for the U(1) theory in two dimensions

Consider the action

S =
1

4 g2YM

∫
d2z
[
Φ̄,Φ

] [
Φ̄,Φ

]
, (6.1)

where Φ is a complex field and[
Φ, Φ̄

] ≡ Φ ? Φ̄− Φ̄ ? Φ . (6.2)

The equation of motion following from (6.1) is[
Φ̄,
[
Φ, Φ̄

]]
= 0 . (6.3)
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Φ can also be viewed as a quantum mechanical operator and Φ̄ as it’s hermitean

conjugate. The commutators in (6.1)–(6.3) are then ordinary operator commutators,

and the integral is the trace over the Hilbert space. In the operator representation a

simple solution of the equation of motion (6.3) is

Φ = a , Φ̄ = a† . (6.4)

Let us expand around this solution by defining

Φ = a+ i Az̄ , Φ̄ = a† − i Az . (6.5)

One then finds, translating back to functions (with
√
2 z = q + ip, [a, ] = ∂z̄ and

[a†, ] = −∂z), that[
Φ, Φ̄

]
= 1 + i ∂zAz̄ − i ∂z̄Az − [Az, Az̄] = 1 + i Fzz̄ . (6.6)

The operator representation of (6.1) has the manifest U(N = ∞) symmetry under
which Φ→Φ′ = U †ΦU just as in the scalar field theory. Infinitesimally,

δΦ = i [Φ,Λ] , (6.7)

where U = exp iΛ. When gauged, this is just the usual U(1) gauge symmetry of the

non-commutative theory,

δA = dΛ+ i [A,Λ] .

The equation of motion (6.3) is

Dz̄Fzz̄ = 0 . (6.8)

The action (6.1) is then

S = − 1

4 g2YM

∫
d2z(Fzz̄ − i)2 , (6.9)

the standard two-dimensional non-commutative U(1) Yang-Mills action up to con-

stants and topological terms.

6.2 The U(N)-theory in 2l dimensions

(6.1) can be generalized to

S =
1

4g2YM

∫
d2lxδµλδνρTr ([Φµ,Φν ][Φλ,Φρ]) , (6.10)

where µ, ν = 1, . . . , 2l and Φµ are real N × N matrices. Though we have restricted
ourselves to a flat euclidean metric, one can generalise the argument below to the

Minkowski metric as well.
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The equation of motion is

δµν [Φµ, [Φν ,Φλ]] = 0 . (6.11)

We choose complex coordinates such that Θab̄ = i δab̄, with a, b = 1, . . . , l. (6.11) has

the solution

Φb = ab , Φb̄ = a
†
b̄
, (6.12)

where [ab, a
†
c̄] = δbc̄. Expanding around this solution with

Φb = ab + iAb̄ (6.13)

one finds

S = − 1

4 g2YM

∫
d2lz

(
Fab̄ −Θ−1ab̄

)2
. (6.14)

As before the manifest U(∞)⊗U(N) symmetry corresponds to the non-commutative
U(N)-gauge symmetry.

6.3 The U(1) instanton

The four-dimensional non-commutative gauge theory has instanton solutions which

are deformed versions of the usual non-abelian instantons. In particular, the U(1)-

non-commutative theory also has non-singular finite action saddle points [31]. We

exhibit the operators Φa corresponding to the simplest such U(1) instanton.

The operators Φa corresponding to an anti-self dual field strength δ
ab̄Fab̄ = 0

(a, b̄ = 1, 2), obey

[Φb,Φc] = 0 , δab̄[Φa,Φb̄] = 2 . (6.15)

In four dimensions, the operators Φa(a = 1, 2) live in a Hilbert space generated

by the creation and annihilation operators of a two-dimensional harmonic oscillator

(see subsection 3.3). Rather than work in the conventional number basis |n1, n2〉, it
is convenient to work in Schwinger’s angular momentum basis,

|j,m〉 ≡ (a†1)
j+m√

(j +m)!

(a†2)
j−m√

(j −m)! |0, 0〉 , (6.16)

with 0 ≤ j <∞, |m| ≤ j. The operators

J+ = a
†
1a2 , J− = a

†
2 a1 , Jz =

1

2

(
a†1a1 − a†2 a2

)
(6.17)

obey the usual angular momentum algebra.

We will find a solution to (6.15) of the form

Φb = ab
∑
j,m

(1 + cj)|j,m〉〈j,m| = ab + ab
∑
j,m

cj|j,m〉〈j,m| , Φb̄ = a
†
b̄
(6.18)

and put it into hermitean form via a complexified gauge transformation W .
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The ansatz (6.18) satisfies the holomorphic part of (6.15) for any cj . For a real

cj , the only condition comes from the equation F11̄ = −F22̄. Using

a†1,2 |j,m〉 =
√
j ±m+ 1

∣∣∣∣j + 12 , m± 12
〉
;

a1,2 |j,m〉 =
√
j ±m

∣∣∣∣j − 12 , m∓ 12
〉
, (6.19)

yields the equation jcj = (j + 1)cj+ 1
2
. Which has the solution

cj =
c

j(2j + 1)
, (j > 0) . (6.20)

The complexified gauge transformation

W = W † =
∑
j,m

√
j

j + 1
|j,m〉 (6.21)

puts the solution (6.18) into hermitean form for c = −1. The field strength then
takes the compact form

[Φb̄,Φc] = −δb̄c − iFb̄c = −δb̄c − ( ~J · ~σ)b̄c
∑
j,m

1

j(j + 1)(2j + 1)
|j,m〉〈j,m| . (6.22)

Here ~J are the angular momentum generators defined in (6.17) and ~σ, the usual

Pauli matrices. This solution is exactly the same as the simplest charge one U(1)

instanton in [31]. It may be checked that 1
2
TrF 2

ab̄
= 1.
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A. Solutions at finite θ

In this appendix we will examine radially symmetric saddle points of (2.3) at finite θ.

In subsection A.1 we study the equation of motion resulting from (2.3) at finite θ,

and examine the existence of radially symmetric solutions to these equations. In

subsection A.2 we concentrate on a particular solution; the one that reduces to the

stable soliton λ|0〉〈0| as θ is taken to infinity. We present an approximate construction
of this soliton at large θ. In subsection A.3 we briefly comment on the generalization

of these results to solitons in higher dimensions.
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A.1 The perturbation expansion and a recursion relation

The full equation of motion derived from (2.1) may be written in momentum space as

φ̃(k2) +
r∑
j=3

bj

m2
φ̃j−1(k2) =

−k2
m2θ

φ̃ (k2) (A.1)

While the l.h.s. of (A.1) is independent of θ, the r.h.s. is of order 1/θ, and so is

a small parameter at large θ. For notational convenience, we set bj/m
2 = dj and

1/m2θ = ε.

Let ∞∑
n=0

cn φ̃n
(
k2
)

(A.2)

be a solution to (A.1). Substituting (A.2) into (A.1), using the recurrence relation for

Laguerre polynomials, and equating coefficients of φ̃n(k
2), we arrive at the difference

equations

cn +

r∑
j=3

djc
j−1
n = 2 ε

[
ncn−1 − (2n+ 1)cn + (n+ 1)cn+1

]
. (A.3)

We are interested in finite energy solutions to (3.2), i.e. solutions to (A.3) for which∑
n

V (cn) <∞ . (A.4)

Since V (0) = 0, (A.4) will be satisfied if the cns approach zero sufficiently fast

as n approaches infinity. For such a solution, all non-linear terms in (A.3) may be

neglected at large-enough n. At sufficiently large n, n may also be replaced by a

continuous variable u, and (A.3) turns into the second-order differential equation

c(u) = 2 ε u
d2c(u)

du2
. (A.5)

(A.5) is the Schroedinger equation for a zero energy state of a particle in a 1/u

potential.
√
ε plays the role of Planck’s constant, and at small ε (A.5) is easily

solved in the WKB approximation, yielding

c(u) = A−u1/4e−
√
2u/ε + A+u

1/4e+
√
2u/ε , (A.6)

where A± are arbitrary constants. In order that cn tend to zero at large n, A+ = 0.
Thus, for large8 n,

cn ≈ An1/4e−
√
2n/ε . (A.7)

8(A.6) is a good approximation when |cn| � 1 (so that dropping non-linear terms in (A.3) is
justified) and cn−cn−1

cn
� 1, i.e. nε� 1 (so that the transition from (A.3) to (A.5) is justified).
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Eq. (A.7) has an undetermined parameter A, the scale of the solution at large n.

As (A.3) is a non-linear equation, A is not an arbitrary parameter, but is determined

to be one of a discrete set of values. Given cp and cp+1, the (p + 1) equations (A.3)

with n = 0, . . . , p overdetermine the p unknowns cn for n < p. The extra equation

constrains the scale A, as we will see in the next subsection.

A.2 The gaussian soliton corrected

In this section we present an approximate construction of the stable soliton that

reduces to the gaussian at infinite θ. Our construction approximates the true solution

to arbitrary accuracy at small enough ε.

We wish to find a solution of (A.3) such that

lim
ε→0

c0 = λ (A.8)

and

lim
ε→0

cm = 0 (A.9)

uniformly in m, for m ≥ 1. (A.9) ensures that, on such a solution, (A.3) for n ≥ 1
reduces to

cn = 2 ε
[
n cn−1 − (2n+ 1)cn + (n+ 1)cn+1

]
(A.10)

for small enough ε. It is easy to find an explicit solution to (A.10) that obeys (A.8)

and (A.9). Consider a function φ(x, y) that obeys the differential equation

(−ε∂2 + 1)φ = b φ0 . (A.11)

Expanding φ in the form

φ =

∞∑
n=0

cnφn (A.12)

and imitating the manipulations of appendix A.1, we find that cns obey (A.10) for

n ≥ 1, but obey
c0 = 2ε [c1 − c0] + b (A.13)

instead of (A.3) (with n = 0). This relation will fix the free parameter b.

(A.11) is easily solved in momentum space

φ̃(k) = b
φ̃0(k)

1 + 2 ε k2
. (A.14)

Using the explicit forms for φ̃n(k) and orthogonality of the Laguerre polynomials

we find

cn = b

∫ ∞
0

dx
e−xLn(x)
1 + 2 ε x

. (A.15)
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In particular

c0 = b

∫
dx

e−x

1 + 2εx
= b F (ε) where F (ε) = 1− ε+O (ε2) . (A.16)

Using (A.16) we conclude that (A.13) and (A.3) (at n = 0) are identical on {cn} if b
is chosen such that

b F (ε) +
r∑
j=3

dj (bF (ε))
j−1 = b (F (ε)− 1) . (A.17)

We wish to find a solution to (A.17) that obeys (A.8), i.e. (from (A.16)) one for which

limε→0 b = λ. As λ+
∑r
j=3 djλ

j−1 = 0, such a solution exists, and takes the form

b (ε) = λ
(
1 +Kε+O (ε2)) (A.18)

at small ε where K is a number that may easily be determined.

In summary, {cn} given by (A.15) with b given by (A.17), (A.18), solve (A.11)
for n ≥ 1 and (A.3) (with n = 0). {cn} therefore also approximately satisfy the true
difference equations (A.3) for all n as long as |cn| � 1 for all n ≥ 1. But it is easy
to verify that all |cn| for all n ≥ 1 are arbitrarily small at small enough ε. Using the
completeness of the Laguerre polynomials,

∞∑
n=0

c2n = b
2

∫ ∞
0

e−x

(1 + 2 ε x)2
< b2 . (A.19)

But

c0 = b

∫ ∞
0

dx
e−x

1 + 2εx
> b

∫ ∞
0

dx e−x(1− 2εx) = b (1− 2ε) . (A.20)

Combining (A.19) and (A.20)
∞∑
n=1

c2n < 4 ε b
2 (A.21)

establishing (A.9) uniformly in n on our solution. Thus {cn} provides an approximate
solution to the full non-linear difference equations (A.3) for all n at small enough ε.

Furthermore, from (A.19), this solution has finite energy.

As {cn} obey the linearized recursion relation (A.11) and are small at small ε, we
can conclude, from the previous subsection, that dn takes the form (A.7) for n ε� 1.
In order to estimate the behaviour of cn(ε) for n � 1/ε we formally expand the
denominator in (A.15) in a power series in εx and integrate term by term, arriving

at the asymptotic expansion

cn =
∞∑
m=n

(−1)m+n(2ε)m m!2

n!(m− n)! . (A.22)

This expansion is useful only when the first few terms in the series in (A.22) are

successfully smaller, i.e. for nε� 1.
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A.3 Generalization to higher dimensions

In this subsection we will outline the generalization of the arguments of subsec-

tion A.1 and the construction of subsection A.2, for the case of the maximally

isotropic noncommutativity in 2l dimensions, i.e. a theory with noncommutativity

matrix Θ, all of whose eigenvalues are ±iθ. It is likely that these arguments can be
further extended to generic Θ.

We first note that a subset of the diagonal θ = ∞ solutions (3.27) are (in non-
dimensionalized coordinates) invariant under SO(2l) rotations. These solutions take

the form ∑
~n

cJ
1√
DJ

δ(J,
∑
i ni)
|~n〉〈~n| ←→ 1√

DJ

∑
J

cJ φ
(l)
J

(
r2
)
. (A.23)

Here

φ
(l)
J

(
r2 =

∑
i

|zi|2
)
= 2l(−1)JL(l−1)J

(
r2
)
, (A.24)

where L
(l−1)
J (r2) is an associated Laguerre polynomial. (A.24) is obtained from (3.27)

by repeated use of the identity

n∑
m=0

Lαn−m(x)L
β
m(y) = L

α+β+1
n (x+ y) .

DJ =
(
J + l − 1
J

)
is a convenient normalization factor.

When the noncommutativity matrix is maximally isotropic, the kinetic term

in (2.3) is invariant under SO(2l) rotations of rescaled coordinates. Thus the cor-

rections to an SO(2l)-invariant θ = ∞ solution, of the form (A.23), are also SO(2l)
invariant.

Restricting to SO(2l)-invariant functions, the arguments of subsection A.1 are

easily generalized. Any SO(2l) invariant function takes the form

φ̃
(
k2
)
=

∞∑
n=0

cJ φ̃J
(
k2
)
; φ̃J

(
k2
)
=
1√
DJ
(2π)lL

(l−1)
J

(
k2

2

)
e−k

2/4 . (A.25)

The equation of motion implies that cJ obey the following generalization of (A.3):

cJ +

r∑
j=3

djc
j−1
J = 2 ε

[
(J + l − 1)cJ−1 − (2J + l)cJ + (J + 1)cJ+1

]
. (A.26)

For large J (A.26) and (A.3) are identical, hence all conclusions of subsection A.1

carry over to this case.

The perturbative construction of the solution that reduces to the SO(2l) invariant

gaussian proceeds as in subsection A.2 yielding the approximate result (good for

small ε)

dJ =
b√

DJ Γ(l)

∫ ∞
0

dx
xl−1e−xL(l−1)J (x)

1 + 2 ε x
. (A.27)
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