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Abstract. A triangulation of a connected closed surface is called weakly regular
if the action of its automorphism group on its vertices is transitive. A triangulation
of a connected closed surface is called degree-regular if each of its vertices have the
same degree. Clearly, a weakly regular triangulation is degree-regular. In [8], Lutz has
classified all the weakly regular triangulations on at most 15 vertices. In [5], Datta and
Nilakantan have classified all the degree-regular triangulations of closed surfaces on at
most 11 vertices.

In this article, we have proved that any degree-regular triangulation of the torus is
weakly regular. We have shown that there exists an n-vertex degree-regular triangulation
of the Klein bottle if and only if n is a composite number ≥ 9. We have constructed
two distinct n-vertex weakly regular triangulations of the torus for each n ≥ 12 and a
(4m + 2)-vertex weakly regular triangulation of the Klein bottle for each m ≥ 2. For
12 ≤ n ≤ 15, we have classified all the n-vertex degree-regular triangulations of the
torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are
triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among
the last 7, only one is weakly regular.

Keywords. Triangulations of 2-manifolds; regular simplicial maps; combinatorially
regular triangulations; degree-regular triangulations.

1. Introduction and results

Recall that a simplicial complex is a collection of non-empty finite sets (set of vertices)
such that every non-empty subset of an element is also an element. For i ≥ 0, the elements
of size i + 1 are called the i-simplices of the simplicial complex. 1-simplices are also
called the edges of the simplicial complex. For a simplicial complex X, the maximum of
k such that X has a k-simplex is called the dimension of X. The set V (X) of vertices of X
is called the vertex-set of X. A simplicial complex X is called finite if V (X) is finite.

If X and Y are two simplicial complexes, then a (simplicial) isomorphism from X to
Y is a bijection ϕ: V (X) → V (Y ) such that for σ ⊆ V (X), σ is a simplex of X if and
only if ϕ(σ) is a simplex of Y . Two simplicial complexes X, Y are called (simplicially)
isomorphic (and is denoted by X ∼= Y ) when such an isomorphism exists. We identify
two complexes if they are isomorphic. An isomorphism from a simplicial complex X to
itself is called an automorphism of X. All the automorphisms of X form a group, which
is denoted by Aut(X).

A simplicial complex X is usually thought of as a prescription for constructing a topo-
logical space (called the geometric carrier ofX and is denoted by |X|) by pasting together
geometric simplices. Formally, |X| is the subspace of [0, 1]V (X) consisting of the functions
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f : V (X) → [0, 1] such that the support {v ∈ V (X): f (v) �= 0} is a simplex of X and∑
v∈V (X) f (v) = 1. If σ is a simplex then |σ |: = {f ∈ |X|: ∑

v∈σ f (v) = 1} is called
the geometric carrier of σ . We say that a simplicial complex X triangulates a topological
space P (orX is a triangulation of P ) if P is homeomorphic to |X|. A simplicial complex
X is called connected if |X| is connected. A 2-dimensional simplicial complex is called a
combinatorial 2-manifold if it triangulates a closed surface. A combinatorial 2-manifold
X is called orientable if |X| is an orientable 2-manifold.

If v is a vertex of a simplicial complex X, then the number of edges containing v is
called the degree of v and is denoted by degX(v) (or deg(v)). If the number of i-simplices
of an m-dimensional finite simplicial complex X is fi(X) (0 ≤ i ≤ m), then the number
χ(X): = ∑m

i=0(−1)ifi(X) is called the Euler characteristic of X. A simplicial complex
is called neighbourly if each pair of vertices form an edge.

A combinatorially regular combinatorial 2-manifold is a connected combinatorial 2-
manifold with a flag-transitive automorphism group (a flag is a triple (u, e, F ), where e is
an edge of the face F and u is a vertex of e). A connected combinatorial 2-manifold X is
said to be weakly regular (or a weakly regular triangulation of |X|) if the automorphism
group of X acts transitively on V (X). Clearly, a combinatorially regular combinatorial
2-manifold is weakly regular. Well-known examples of combinatorially regular combina-
torial 2-manifolds are the boundaries of the tetrahedron, the octahedron, the icosahedron
and the 6-vertex real projective plane [4, 5]. The combinatorial manifolds T3,3,0 and T6,2,2
(in Examples 2 and 3) are combinatorially regular. Schulte and Wills [10, 11] have con-
structed two combinatorially regular triangulations of the orientable surface of genus 3.
In [8], Lutz has shown that there are exactly 14 combinatorially regular combinatorial
2-manifolds on at most 22 vertices. By using computer, Lutz has shown the following:

PROPOSITION 1

There are exactly 77 weakly regular combinatorial 2-manifolds on at most 15 vertices; 42 of
these are orientable and 35 are non-orientable. Among these 77 combinatorial 2-manifolds,
20 are of Euler characteristic 0. These 20 are T7,1,2, . . . ,T15,1,2, T12,1,3, . . . ,T15,1,3,
T12,1,4,T15,1,4, T15,1,5, T6,2,2, T3,3,0, Q5,2 and Q7,2 of Examples 1,2,3,6.

A connected combinatorial 2-manifold X is said to be degree-regular of type d if each
vertex ofX has degree d . A combinatorial 2-manifold X is said to be degree-regular (or a
degree-regular triangulation of |X|) if it is degree-regular of type d for some d. So, trivial
examples of degree-regular combinatorial 2-manifolds are weakly regular and neighbourly
combinatorial 2-manifolds.

IfK is ann-vertex degree-regular of type d combinatorial 2-manifold thennd = 2f1(K)

= 3f2(K) and χ(K) = f0(K) − f1(K) + f2(K) = n − nd
2 + nd

3 = n(6−d)
6 . So, if

χ(K) �= 0 then only finitely many (n, d) satisfies the above equation and hence only finitely
many degree-regular combinatorial 2-manifolds of a given non-zero Euler characteristic.
If K is degree-regular and χ(K) > 0 then (n, d) = (4, 3), (6, 4), (6, 5) or (12, 5). For
each (n, d) ∈ {(4, 3), (6, 4), (6, 5), (12, 5)}, there exists unique combinatorial 2-manifold,
namely, the 4-vertex 2-sphere, the boundary of the octahedron, the 6-vertex real projective
plane and the boundary of the icosahedron (see [4, 5]). These 4 combinatorial 2-manifold
are combinatorially regular. For the existence of degree-regular of type d combinatorial
2-manifolds of negative Euler characteristic, d must be at least 7. Since n(6−d)

6 �= −1 for
n > d ≥ 7, there does not exist any degree-regular combinatorial 2-manifolds of Euler
characteristic −1. If χ(K) = −2 then (f0(K), d) = (12, 7). In [6], we have seen that
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there are exactly 6 degree-regular triangulations of the orientable surface of genus 2, three
of which are weakly regular and none of them are combinatorially regular.

For the existence of an n-vertex neighbourly combinatorial 2-manifold, n(n− 1) must
be divisible by 6, equivalently, n ≡ 0 or 1 mod 3. Ringel and Jungerman [7, 9] have
shown that there exists neighbourly combinatorial 2-manifolds on 3k and 3k+ 1 vertices,
for each k ≥ 2. By using computer, Altshuler et al [3] have shown that there are exactly
59 orientable neighbourly combinatorial 2-manifolds on 12 vertices. In [2], Altshuler
describe two operations by which one gets many neighbourly combinatorial 2-manifolds
from one such combinatorial 2-manifold on the same number of vertices. Using this he
has constructed 40615 distinct non-orientable neighbourly combinatorial 2-manifolds on
12 vertices.

Here we are interested in the cases when the Euler characteristic is 0 (i.e., triangulations
of the torus and the Klein bottle). Clearly, ifK is an n-vertex degree-regular combinatorial
2-manifold and χ(K) = 0 then n > d = 6. From [5], we know the following:

PROPOSITION 2

(a) For each n ≥ 7, there exists an n-vertex weakly regular triangulation of the torus.
(b) For each k,l ≥ 3, there exists a kl-vertex degree-regular triangulation of the Klein

bottle.

PROPOSITION 3

There are exactly 27 degree-regular combinatorial 2-manifolds on at most 11 vertices; 8
of which are of Euler characteristic 0. These 8 are T7,1,2, . . . ,T11,1,2, T3,3,0,B3,3 andQ5,2
of Examples 1,3,4,6.

Here we prove the following.

Theorem 1. Any degree-regular triangulation of the torus is weakly regular.

Theorem 2. There exists an n-vertex degree-regular triangulation of the Klein bottle if
and only if n is a composite number ≥ 9.

Theorem 3.

(a) For each n ≥ 12 there exists atleast two distinct n-vertex weakly regular triangulations
of the torus.

(b) For each n ≥ 18 there exists atleast three distinct n-vertex weakly regular triangula-
tions of the torus.

(c) For each m ≥ 2 there exists a (4m + 2)-vertex weakly regular triangulation of the
Klein bottle.

Theorem 4. Let Tn,1,k be as in Example 1. For a prime n ≥ 7, ifM is an n-vertex weakly
regular triangulation of the torus then M is isomorphic to Tn,1,k for some k.

COROLLARY 5

(a) For n = 13 or 17, there are exactly 2 distinct n-vertex degree-regular combinatorial
2-manifolds of Euler characteristic 0. These are Tn,1,2 and Tn,1,3.
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(b) There are exactly 3 distinct 19-vertex degree-regular combinatorial 2-manifolds of
Euler characteristic 0. These are T19,1,2, T19,1,3 and T19,1,7.

From Theorem 1 and Proposition 1 we know all the degree-regular triangulations of the
torus on at most 15 vertices. Here we present (without using computer) the following:

Theorem 6. Let M be an n-vertex degree-regular combinatorial 2-manifold of Euler
characteristic 0. If n = 12,14 or 15 then M is isomorphic to T12,1,2, . . . ,T12,1,4, T6,2,2,
T14,1,2, T14,1,3, T15,1,2, . . . ,T15,1,5, Q7,2, Q5,3, B3,4, B4,3, B3,5, B5,3 or K3,4. These 17
combinatorial 2-manifolds are pairwise non-isomorphic. The first 10 triangulate the torus
and the remaining 7 triangulate the Klein bottle. Among the last 7, only Q7,2 is weakly
regular.

2. Examples

In this section we present some degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0. First we give some definitions and notations which will be used throughout
the paper.

A 2-simplex in a 2-dimensional simplicial complex is also said to be a face. We denote
a face {u, v,w} by uvw. We also denote an edge {u, v} by uv.

A graph is a simplicial complex of dimension at most one. The complete graph on
n vertices is denoted by Kn. Disjoint union of m copies of Kn is denoted by mKn.
A graph without any edge is called a null graph. An n-vertex null graph is denoted
by ∅n.

IfG is a graph and n ≥ 0 is an integer then we define the graphGn(G) as follows. The
vertices of Gn(G) are the vertices of G. Two vertices u and v form an edge in Gn(G) if
the number of common neighbours of u and v is n. Clearly, if G and H are isomorphic
then Gn(G) and Gn(H) are isomorphic for all n ≥ 0.

A connected finite graph is called a cycle if the degree of each vertex is 2. An
n-cycle is a cycle on n vertices and is denoted by Cn (or by Cn(a1, . . . , an) if the
edges are a1a2, . . . , an−1an, ana1). Disjoint union of m copies of Cn is denoted
by mCn.

For a simplicial complex K , the graph consisting of the edges and vertices of K is
called the edge-graph of K and is denoted by EG(K). The complement of EG(K) is
called the non-edge graph of K and is denoted by NEG(K). Let K be a simplicial com-
plex with vertex-set V (K). If U ⊆ V (K) then the induced subcomplex of K on U ,
denoted by K[U ], is the subcomplex whose simplices are those of K which are subsets
of U .

If v is a vertex of a simplicial complex X, then the link of v in X, denoted by lkX(v)
(or lk(v)), is the simplicial complex {τ ∈ X : v �∈ τ, {v} ∪ τ ∈ X}. If v is a ver-
tex of a simplicial complex X, then the star of v in X, denoted by stX(v) (or st(v)), is
the simplicial complex {{v}, τ, τ ∪ {v} : τ ∈ lkX(v)}. Clearly, a finite simplicial com-
plex K is a combinatorial 2-manifold if and only if lkK(v) is a cycle for each vertex v
of K .

Example 1. A series of weakly regular orientable combinatorial 2-manifolds of Euler
characteristic 0. For each n ≥ 7 and each k ∈ {2, . . . , �n−3

2 �} ∪ {
n+1
2 �, . . . , n− 3},

Tn,1,k = {{i, i + k, i + k + 1}, {i, i + 1, i + k + 1}: 1 ≤ i ≤ n},
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where V (Tn,1,k) = {1, . . . , n}. Since lk(i) = C6(i + k, n+ i − 1, n+ i − k − 1, n+ i −
k, i + 1, i + k + 1), Tn,1,k is a combinatorial 2-manifold. Clearly, Tn,1,k triangulates the
torus and hence it is orientable. Since Zn acts transitively (by addition) on vertices, Tn,1,k
is weakly regular. (Here addition is modulo n.) In [1], Altshuler has shown that Tn,1,k is a
subcomplex of an n-vertex cyclic polytopal 3-sphere.

Lemma 2.1. Let Tn,1,k be as above. We have the following:

(a) Tn,1,k = Tn,1,n−k−1 for all n and k.

(b) Tn,1,2 �∼= Tn,1,3 for all n ≥ 12.
(c) Tn,1,2 �∼= Tn,1,4 �∼= Tn,1,3 for all n ≥ 20.

(d) T12,1,2 �∼= T12,1,4 �∼= T12,1,3.

(e) T13,1,4 ∼= T13,1,2 ∼= T13,1,5.

(f) T15,1,k �∼= T15,1,j for j,k ∈ {2,3,4,5} and j �= k.

(g) T16,1,5 ∼= T16,1,2 �∼= T16,1,6 �∼= T16,1,3 ∼= T16,1,4.

(h) T17,1,5 ∼= T17,1,7 ∼= T17,1,2 and T17,1,4 ∼= T17,1,6 ∼= T17,1,3.

(i) T18,1,6 ∼= T18,1,5 and T18,1,k �∼= T18,1,j for j,k ∈ {2,3,4,5,7}, j �= k.

(j) T19,1,6 ∼= T19,1,8 ∼= T19,1,2 �∼= T19,1,7 �∼= T19,1,3 ∼= T19,1,4 ∼= T19,1,5.

(k) T20,1,6 ∼= T20,1,2, T20,1,7 ∼= T20,1,3 and T20,1,k �∼= T20,1,j for j,k ∈ {2,3,4,5,8}, j �= k.

Proof. Observe that lkTn,1,k (i) = C6(i + 1, i + k + 1, i + k, n + i − 1, n + i − k −
1, n+ i − k) = lkTn,1,n−k−1(i). So, the faces in both Tn,1,k and Tn,1,n−k−1 are same. This
proves (a).

ThenG4(EG(Tn,1,2)) = Cn(1, . . . , n) for n ≥ 11 andG4(EG(Tn,1,3)) is a null graph for
n = 13 and for n ≥ 15. Also, G4(EG(T14,1,2)) is 7K2. So, Tn,1,2 �∼= Tn,1,3 for all n ≥ 13.

Observe that G4(EG(T12,1,3)) is a 12-cycle with edges {i, i + 5}, 1 ≤ i ≤ 12. So, the
edges of G4(EG(T12,1,3)) are non-edges of T12,1,2. But G4(EG(T12,1,2)) is a subgraph of
EG(T12,1,2). So, T12,1,2 �∼= T12,1,3. This proves (b).

For alln ≥ 20,G3(EG(Tn,1,4)) is a null graph, but {i, i+2} is an edge inG3(EG(Tn,1,3)).
So, G3(EG(Tn,1,4)) �∼= G3(EG(Tn,1,3)) and hence Tn,1,4 �∼= Tn,1,3 for n ≥ 20.

Again, for all n ≥ 20, G4(EG(Tn,1,4)) = ∅n. So, G4(EG(Tn,1,4)) �∼= G4(EG(Tn,1,2))
and hence Tn,1,4 �∼= Tn,1,2 for n ≥ 20. This proves (c).

Observe that G4(EG(T12,1,4)) = 3K4 (with edges {i, j}, i − j ≡ 0 (mod 3)). Since,
G4(EG(T12,1,2)) and G4(EG(T12,1,3)) are 12-cycles, T12,1,2 �∼= T12,1,4 �∼= T12,1,3. This
proves (d).

The map i �→ 4i (mod 13) defines an isomorphism from T13,1,2 to T13,1,4 and the map
i �→ 7i (mod 13) defines an isomorphism from T13,1,2 to T13,1,5. This proves (e).

Observe that G0(EG(T15,1,2)) is a 15-cycle (with edges {i, i + 7}, 1 ≤ i ≤ 15) and
G0(EG(T15,1,i )) is a null graph for i = 3, 4, 5. So, T15,1,i �∼= T15,1,2 for i = 3, 4 or 5.
Again, G4(EG(T15,1,3)) is a null graph, G4(EG(T15,1,4)) = 3C5 (with edges {i, i + 6},
1 ≤ i ≤ 15) and G4(EG(T15,1,5)) = C15 (with edges {i, i + 4}, 1 ≤ i ≤ 15). So,
T15,1,3 �∼= T15,1,4 �∼= T15,1,5 �∼= T15,1,3. These prove (f).

The map i �→ 3i (mod 16) defines an isomorphism from T16,1,4 to T16,1,3 and an
isomorphism from T16,1,5 to T16,1,2.

Observe that G4(EG(T16,1,6)) = 8K2 (with edges {i, i + 8}, 1 ≤ i ≤ 8). Since
G4(EG(T16,1,2)) = C16 and G4(EG(T16,1,3)) is a null graph, T16,1,2 �∼= T16,1,6 �∼= T16,1,3.
This proves (g).
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The map i �→ 14i (mod 17) defines an isomorphism from T17,1,5 to T17,1,2. The map
i �→ 2i (mod 17) defines an isomorphism from T17,1,7 to T17,1,2. The map i �→ 13i (mod
17) defines an isomorphism from T17,1,4 to T17,1,3. The map i �→ 3i (mod 17) defines an
isomorphism from T17,1,6 to T17,1,3. This proves (h).

The map i �→ 5i (mod 18) defines an isomorphism from T18,1,6 to T18,1,5.
Now,G3(EG(T18,1,3)) = 2C9 (with edges {i, i+2}, 1 ≤ i ≤ 18) andG3(EG(T18,1,7)) =

9K2 (with edges {i, i + 9}, 1 ≤ i ≤ 9). So, T18,1,3 �∼= T18,1,7. Again, G4(EG(T18,1,2)) =
C18(1, 2, . . . , 18) ⊆ EG(T18,1,2), G4(EG(T18,1,3)) and G4(EG(T18,1,7)) are null graphs,
G4(EG(T18,1,4)) = 9K2 (with edges {i, i + 9}, 1 ≤ i ≤ 9) and G4(EG(T18,1,5)) = C18
(with edges {i, i+7}, 1 ≤ i ≤ 18). Thus,G4(EG(T18,1,5)) is not a subgraph of EG(T18,1,5).
These imply (i).

The map i �→ 3i (mod 19) defines an isomorphism from T19,1,5 to T19,1,3. The map
i �→ 15i (mod 19) defines an isomorphism from T19,1,4 to T19,1,3. The map i �→ 6i (mod
19) defines an isomorphism from T19,1,2 to T19,1,6. The map i �→ 9i (mod 19) defines an
isomorphism from T19,1,2 to T19,1,8.

The graph G4(EG(T19,1,7)) is null, whereas G4(EG(T19,1,2)) = C19. So, T19,1,7 �∼=
T19,1,2. Again, G0(EG(T19,1,7)) is null, whereas G0(EG(T19,1,3)) = C19 (with edges
{i, i + 9}, 1 ≤ i ≤ 19). So, T19,1,7 �∼= T19,1,3. This proves ( j).

The map i �→ 3i (mod 20) defines an isomorphism from T20,1,6 to T20,1,2 and an
isomorphism from T20,1,7 to T20,1,3.

Observe that G4(EG(T20,1,2)) = C20, G4(EG(T20,1,3)), G4(EG(T20,1,4)), G4
(EG(T20,1,5)) are null graphs and G4(EG(T20,1,8)) = 10K2 (with edges {i, i + 10},
1 ≤ i ≤ 10). So, T20,1,2 �∼= T20,1,i for i = 3, 4, 5, 8 and T20,1,8 �∼= T20,1,i for i = 3, 4, 5.

Again,G3(EG(T20,1,3)) = 2C10 (with edges {i, i+2}, 1 ≤ i ≤ 20) butG3(EG(T20,1,4))

and G3(EG(T20,1,5)) are null graphs. So, T20,1,3 �∼= T20,1,i for i = 4, 5.
Finally, if possible, let ϕ be an isomorphism from T20,1,4 to T20,1,5. Then ϕ induces iso-

morphism betweenGn(EG(T20,1,4)) andGn(EG(T20,1,5)) for each n. Since, Aut(T20,1,4)

acts transitively on V (T20,1,4), we can assume that ϕ(20) = 20. SinceG0(EG(T20,1,4)) =
C20(20, 7, 14, . . . , 13) and G0(EG(T20,1,5)) = C20(20, 3, 6, . . . , 17), ϕ(7) = 17 or 3. If
ϕ(7) = 17 then ϕ(14) = 14, ϕ(1) = 11, . . . . In that case, ϕ({20, 1}) = {20, 11}. This
is a contradiction since {20, 1} is an edge in T20,1,4 but {20, 11} is not an edge in T20,1,5.
Similarly, we get a contradiction if ϕ(7) = 3. This proves (k). �

LetDn denote the dihedral group of order 2n and Zm2−m+1 : Z6: = 〈ρ,µ: ρm
2−m+1 =

1 = µ6, µ−1ρµ = ρm〉 for m ≥ 3. In [8], Lutz has shown that Aut(Tn,1,k) = Dn
for (n, k) = (9, 2), . . . , (15, 2), (12, 3), (14, 3), (15, 5), Aut(T12,1,4) = D4 × D3,
Aut(T15,1,k) = D5 × D3 for k = 3, 4 and Aut(Tm2−m+1,1,m−1) = Zm2−m+1 : Z6 for
m = 3, 4. Here we prove the following.

Lemma 2.2.

(a) Dn acts face-transitively on Tn,1,k for all n ≥ 7 and for all k.
(b) Aut(Tn,1,2) = Dn for all n ≥ 9.
(c) D2m ×Dm+1 ≤ Aut(T2m2+2m,1,2m) for m ≥ 2.
(d) Dm+1 ×Dm−1 ≤ Aut(Tm2−1,1,m−1) for m ≥ 4.
(e) Dm+1 ×Dm−1 ≤ Aut(Tm2−1,1,m) for m ≥ 4.
(f) Zm2−m+1 : Z6 ≤ Aut(Tm2−m+1,1,m−1) for m ≥ 3.

Here H ≤ G means G has a subgroup isomorphic to H .
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Proof. Let αn, βn : V (Tn,1,k) → V (Tn,1,k) be given by αn(i) = i + 1 and βn(i) = n− i

(modulo n). Let An,k,i : = {i, i + 1, i + k + 1} and Bn,k,i : = {i, i + k, i + k + 1}.
Then αn(An,k,i) = An,k,i+1, αn(Bn,k,i) = Bn,k,i+1, βn(An,k,i) = Bn,k,n−i−k−1 and
βn(Bn,k,i) = An,k,n−i−k−1. So, αn, βn ∈ Aut(Tn,1,k). Clearly, the order of αn is n, the
order of βn is 2 and βnαnβn = α−1

n . Thus, 〈αn, βn〉 is isomorphic toDn. Clearly, the action
of 〈αn, βn〉 on Tn,1,k is transitive on the faces. This proves (a).

For n ≥ 11, G4(EG(Tn,1,2)) = Cn(1, 2, . . . , n). Therefore, 〈αn, βn〉 ≤ Aut(Tn,1,2) ≤
Aut(G4(EG(Tn,1,2))) = Aut(Cn(1, . . . , n)) = 〈αn, βn〉. Thus, Aut(Tn,1,2) = 〈αn, βn〉
for n ≥ 11. Since G2(EG(T10,1,2)) = C10(1, 4, 7, 10, 3, 6, 9, 2, 5, 8), 〈α3

10, β10〉 ≤
Aut(T10,1,2) ≤ Aut(G2(EG(T10,1,2))) = Aut(C10(1, 4, . . . , 5, 8)) = 〈α3

10, β10〉. Thus,
Aut(T10,1,2) = 〈α3

10, β10〉 = 〈α10, β10〉. Observe that NEG(T9,1,2) = C9(1, 5, 9, 4, 8, 3,
7, 2, 6). Therefore, 〈α4

9, β9〉≤ Aut(T9,1,2) ≤ Aut(NEG(T9,1,2)) = Aut(C9(1, 5, 9, 4, 8, 3,
7, 2, 6)) = 〈α4

9, β9〉. Thus, Aut(T9,1,2) = 〈α4
9, β9〉 = 〈α9, β9〉. This proves (b).

Let α, β, γ, δ : V (T2m2+2m,1,2m) → V (T2m2+2m,1,2m) be given by α(i) = i + m + 1,

β(i) = i+2m,γ (i) = (2m+1)i and δ(i) = (2m2−1)i (i.e.,α = αm+1
2m2+2m

,β = α2m
2m2+2m

).
Then α, β, γ, δ ∈ Aut(T2m2+2m,1,2m), order of α is 2m, order of β is m + 1, order of γ
is 2, order of δ is 2, αβ = βα, αγ = γα, βδ = δβ, γ δ = δγ = β2m2+2m, δαδ = α−1,
γβγ = β−1. Therefore, 〈α, β, γ, δ〉 = 〈α, δ〉 × 〈β, γ 〉 ∼= D2m ×Dm+1. This proves (c).

Claim. If m2 ≡ 1 (mod n), then µ(i) = mi and ν(i) = (n − m)i define two distinct
involutions (automorphisms of order 2) of Tn,1,k for each k ∈ {m− 1,m}.

Let An,k,i and Bn,k,i be as above. Then µ(An,m−1,i ) = An,m−1,mi , µ(Bn,m−1,i ) =
Bn,m−1,mi−m+1, µ(An,m,i) = Bn,m,mi and µ(Bn,m,i) = An,m,mi . Thus µ ∈ Aut(Tn,1,k)
and hence ν = βnµ = µβn ∈ Aut(Tn,1,k) for k = m − 1,m. Since µ−1 = µ, ν−1 = ν

and µν = βn �= the identity, µ �= ν. This proves the claim.
For k = m − 1,m, let α, λ, µ, ν : V (Tm2−1,1,k) → V (Tm2−1,1,k) be given by α(i) =

i+m+1, λ(i) = i+m−1,µ(i) = mi and ν(i) = (n−m)i (i.e., α = αm+1
m2−1

, λ = αm−1
m2−1

).
Then α and λ are automorphisms of Tm2−1,1,k . Also, by the above claim, µ and ν are
distinct automorphisms of Tm2−1,1,k . Clearly, the orders of α, λ, µ and ν arem−1,m+1,
2 and 2 respectively. Again, αµ = µα, αλ = λα, λν = νλ, µν = νµ, ναν = α−1 and
µλµ = λ−1. Thus, 〈α, λ, µ, ν〉 = 〈λ,µ〉 × 〈α, ν〉 ∼= Dm+1 ×Dm−1. This proves (d) and
(e).

Let σ : V (Tm2−m+1,1,m−1) → V (Tm2−m+1,1,m−1) be given by σ(i) = mi. Then
σ(Am2−m+1,m−1,i ) = Bm2−m+1,m−1,mi and σ(Bm2−m+1,m−1,i ) = Am2−m+1,m−1,mi−1.
Thus, σ ∈ Aut(Tm2−m+1,1,m−1). Since 6 is the smallest positive integer n for whichmn−1
is divisible by m2 −m+ 1, the order of σ is 6. Now, if ρ = αm2−m+1 (i.e., ρ(i) = i + 1)
then ρ is an automorphism of orderm2 −m+1 and (σ ◦ρ ◦σ−1)(i) = m((1−m)i+1) =
i +m = ρm(i). Thus, 〈ρ, σ 〉 = Zm2−m+1 : Z6. This proves (f ). �

Example 2. A series of weakly regular orientable combinatorial 2-manifolds of Euler
characteristic 0. For each n ≥ 4 and each k = 1, . . . , n− 3,

Tn,2,k = {uiui+1vi+1, uivivi+1, ui+kui+k+1vi, ui+k+1vivi+1: 1 ≤ i ≤ n},
where V (Tn,2,k) = {u1, . . . , un} ∪ {v1, . . . , vn}. (Addition in the subscripts are mod-
ulo n.) Since lk(ui) = C6(ui−1, vi, vi+1, ui+1, vn+i−k−1, vn+i−k) and lk(vj ) =
C6(vj−1, uj−1, uj , vj+1, uj+k+1, uj+k), Tn,2,k is a degree-regular combinatorial 2-
manifold on 2n vertices. Clearly, Tn,2,k triangulates the torus and hence it is orientable.
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If α, β : V (Tn,2,k) → V (Tn,2,k) are the maps given by α(ui) = ui+1, α(vi) = vi+1,
β(ui) = vi , β(vi) = ui+k for 1 ≤ i ≤ n, then α and β are automorphisms of Tn,2,k and
hence 〈α, β〉 is a subgroup of Aut(Tn,2,k). Clearly, 〈α, β〉 acts transitively on vertices.
Thus Tn,2,k is weakly regular.

Lemma 2.3. Let Tn,1,j and Tm,2,k be as in Examples 1, 2. We have the following:

(a) If n and k are relatively prime or n and k + 2 are relatively prime then Tn,2,k is
isomorphic to T2n,1,j for some j .

(b) T6,2,2 �∼= T12,1,i for all i.
(c) T8,2,4 ∼= T8,2,2 �∼= T16,1,i for all i.

Proof. If (n, k) = 1 and k ≤ n − 3, then there exists p ∈ {1, . . . , n − 2} such that
pk ≡ 1 (mod n). Since k ≤ n − 3 and n ≥ 4, 2p �= n, n − 1. (2p = n implies
2 ≡ 2pk ≡ 0 (mod n), a contradiction. 2p = n − 1 implies 2 ≡ 2pk ≡ n − k. This
implies k ≡ n − 2 (mod n) and hence k = n − 2.) Let ϕ : V (Tn,2,k) → {1, . . . , 2n}
be given by ϕ(ui) = 1 + 2p(i − 1) and ϕ(vi) = 2 + 2p(i − 1) (modulo 2n). Since
(n, p) = 1, ϕ is a bijection. Now, ϕ(uiui+1vi+1) = {1 + 2(i − 1)p, 1 + 2ip, 2 + 2ip},
ϕ(uivivi+1) = {1+2(i−1)p, 2+2(i−1)p, 2+2ip},ϕ(ui+kui+k+1vi) = {1+2(i−1)p+
2, 1+2ip+2, 2+2(i−1)p} = {2(i−1)p+2, 2(i−1)p+3, 2ip+3}, ϕ(ui+k+1vivi+1) =
{2ip + 3, 2(i − 1)p + 2, 2 + 2ip} = {2(i − 1)p + 2, 2ip + 2, 2ip + 3} ∈ T2n,1,2p. This
shows that ϕ : Tn,2,k → T2n,1,2p is an isomorphism.

If (n, k + 2) = 1 then assume that (n, k) �= 1 (otherwise there is nothing to prove). Let
p(k + 2) ≡ 1 (mod n). Observe that 2p �= n, n− 1. (2p = n implies 2 ≡ 2p(k + 2) ≡ 0
(mod n), a contradiction. 2p = n−1 implies 2 ≡ 2p(k+2) ≡ (n−1)(k+2) ≡ n−k−2.
This implies k ≡ n− 4 (mod n) and hence k = n− 4. Since (n, k) �= 1, n and k are even
and hence (n, k + 2) �= 1, a contradiction.) Let ψ : V (Tn,2,k) → {1, . . . , 2n} be given
by ψ(ui) = 1 + 2p(i − 1) and ψ(vi) = 2 + 2p(i − 2) (modulo 2n). Since (n, p) = 1,
ψ is a bijection. Similar argument as before shows that ψ : Tn,2,k → T2n,1,2p−1 is an
isomorphism. This proves (a).

SinceG4(EG(T6,2,2)) = 3K4 andG4(EG(T12,1,i )) = C12 for i = 2, 3, T6,2,2 �∼= T12,1,i
for i = 2, 3.

Now,G3(EG(T12,1,4)) = 4C3 (with edges {i, i+ 4}, 1 ≤ i ≤ 12). So,G3(EG(T12,1,4))

is a subgraph of EG(T12,1,4). Whereas, G3(EG(T6,2,2)) = 4C3 (with edges {ui, uj },
{vi, vj }, where i − j ≡ 0 (mod 2)). So, edges of G3(EG(T6,2,2)) are not in EG(T6,2,2).
Thus, T6,2,2 �∼= T12,1,4. This proves (b).
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The map ui �→ ui , vi �→ vi+3 defines an isomorphism from T8,2,2 to T8,2,4. (As usual,
addition in the subscripts are modulo 8.) Observe that G1(EG(T8,2,2)) is a null graph,
whereas G1(EG(T16,1,2)) = 2C8, G1(EG(T16,1,3)) = 2C8, G1(EG(T16,1,6)) = 4C4.
Thus T8,2,2 �∼= T16,1,j for j = 2, 3 and 6. Therefore, by Lemma 2.1 (g), T8,2,2 �∼= T16,1,i
for all i. This proves (c). �

Example 3. Some more weakly regular orientable combinatorial 2-manifolds of Euler
characteristic 0. For n,m ≥ 3 and k = 0, . . . , n− 1,

Tn,m,k = {ui,j ui,j+1ui+1,j+1, ui,j ui+1,j ui+1,j+1: 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}
∪ {um,jum,j+1u1,j+k+1, um,ju1,j+ku1,j+k+1: 1 ≤ j ≤ n},

where V (Tn,m,k) = {ui,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. (Addition in the second subscripts are
modulo n.) Clearly, Tn,m,k triangulates the torus and hence it is an orientable combinatorial
2-manifold on mn vertices. Since the degree of each vertex is 6, Tn,m,k is degree-regular.
(Tn,m,0 was earlier defined in [5] as Am,n.) If σ , γ : V (Tn,m,k) → V (Tn,m,k) are the maps
given by γ (ui,j ) = ui+1,j for 1 ≤ i ≤ m − 1, γ (um,j ) = u1,j+k and σ(ui,j ) = ui,j+1
then σ and γ are automorphisms of Tn,m,k and hence 〈σ, γ 〉 is a subgroup of Aut(Tn,m,k).
For any vertex ui,j , σ j−1γ i−1(u1,1) = ui,j . This implies that the action of 〈σ, γ 〉 is vertex-
transitive. Thus Tn,m,k is weakly regular.

Lemma 2.4. Let Tn,m,k be as in Examples 1, 2, 3. Then

(a) If n and k are relatively prime or n and k + m are relatively prime then Tn,m,k is
isomorphic to Tnm,1,j for some j .

(b) T4,4,2 ∼= T8,2,2.
(c) T16,1,k �∼= T4,4,0 �∼= T8,2,j for all k and j .

Proof. Since (n, k) = 1, there exists p ∈ {1, . . . , n − 1} such that pk ≡ 1 (mod n).
Let ϕ : V (Tn,m,k) → {1, . . . , mn} be given by ϕ(ui,j ) = i + mp(j − 1) (modulo mn).
Since (n, p) = 1, ϕ is a bijection. By the similar argument as in the proof of Lemma 2.3,
ϕ : Tn,m,k → Tmn,1,mp is an isomorphism.

Let (n, k + m) = 1 where m ≥ 3. Let p ∈ {1, . . . , n − 1} be such that p(k + m) ≡ 1
(mod n). Let ψ : V (Tn,2,k) → {1, . . . , mn} be given by ψ(ui,j ) = i+mp(j − i) (modulo
mn). Since (n, p) = 1,ψ is a bijection. Now,ψ(ui,j ui,j+1ui+1,j+1) = {i+mp(j−i), i+
mp(j+1−i), i+1+mp(j−i)},ψ(ui,j ui+1,j ui+1,j+1) = {i+mp(j−i), i+1+mp(j−
i − 1), i + 1 + mp(j − i)}, ψ(um,jum,j+1u1,j+k+1) = {m + mp(j − m),m + mp(j +
1 −m), 1 +mp(j + k)} = {m+mp(j −m),m+mp(j + 1 −m), 1 +m+mp(j −m)},
ψ(um,ju1,j+ku1,j+k+1) = {m + mp(j − m), 1 + mp(j + k − 1), 1 + mp(j + k)} =
{m+mp(j −m), 1+m+mp(j −m−1), 1+m+mp(j −m)} ∈ Tmn,1,mp−1. (Clearly, if
mn is even thenmn/2−1 �= mp−1 �= mn/2 and ifmn is odd thenmp−1 �= (mn−1)/2.)
Thus ψ : Tn,m,k → Tmn,1,mp−1 is an isomorphism. This proves (a).

The map ui,1 �→ ui , ui,3 �→ ui+4, ui,2 �→ vi and ui,4 �→ vi+4 for 1 ≤ i ≤ 4 defines an
isomorphism from T4,4,2 to T8,2,2. This proves (b).

Since G1(EG(T16,1,2)) = 2C8, G1(EG(T16,1,3)) = 2C8, G1(EG(T16,1,6)) = 4C4 and
G1(EG(T4,4,0)) is a null graph, T4,4,0 is not isomorphic to any of T16,1,2, T16,1,3 and
T16,1,6). Again G4(EG(T4,4,0)) is a null graph whereas G4(EG(T8,2,2)) = 8K2. Thus
T4,4,0 �∼= T8,2,2. (c) now follows from parts (a), (c) of Lemma 2.3 and part (g) of Lemma 2.1.

�
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Now, we will present three series of degree-regular triangulations of the Klein bottle.
Among these, Bm,n were defined earlier in [5]. The smallest amongQm,n’s, namelyQ5,2,
also defined in [5] as Q.

Example 4. A series of degree-regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. For m, n ≥ 3,

Bm,n = {vi,j vi+1,j vi+1,j+1, vi,j vi,j+1vi+1,j+1: 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}
∪ {vi,mvn+2−i,1vn+1−i,1, vi,mvi+1,mvn+1−i,1: 1 ≤ i ≤ n},

where V (Bm,n) = {vi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. (Addition in the first subscripts
are modulo n.) Clearly, Bm,n triangulates the Klein bottle and hence it is a non-
orientable combinatorial 2-manifold. Since the degree of each vertex is 6, Bm,n is
degree-regular.

Example 5. A series of degree-regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. For m ≥ 3 and n ≥ 2,

Km,2n = {vi,j vi,j+1vi+1,j , vi,j+1vi+1,j vi+1,j+1: 1 ≤ i ≤ n, 1 ≤ j ≤ m− 1}
∪ {vi,mvi+1,mv2n+2−i,1, vi+1,mv2n+2−i,1v2n+1−i,1: 1 ≤ i ≤ n}
∪ {vi,j vi+1,j vi+1,j+1, vi,j vi,j+1vi+1,j+1: n+ 1 ≤ i ≤ 2n, 1 ≤ j ≤ m− 1}
∪ {vi,mvi+1,mv2n+1−i,1, vi,mv2n+2−i,1v2n+1−i,1: n+ 1 ≤ i ≤ 2n},

where V (Km,2n) = {vi,j : 1 ≤ i ≤ 2n, 1 ≤ j ≤ m}. (Addition in the first subscripts are
modulo 2n.) Clearly, Km,2n triangulates the Klein bottle and hence it is a non-orientable
combinatorial 2-manifold. Since the degree of each vertex is 6, Km,2n is degree-regular.
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Example 6. A series of weakly regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. For each m ≥ 2,

Q2m+1,2 = {{i, i + 1, i + 2}, {i, i + 2, i + 2m+ 2}: 1 ≤ i ≤ 4m+ 2},

where V (Q2m+1,2) = {1, . . . , 4m + 2}. (Addition modulo 4m + 2.) Clearly, Q2m+1,2
triangulates the Klein bottle and hence it is a non-orientable combinatorial 2-manifold.
Since Z4m+2 acts transitively (by addition) on vertices, Q2m+1,2 is weakly regular.

More generally, for each n ≥ 2 we define the following.

Example 7. A series of degree-regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. For m, n ≥ 2,

Q2m+1,n = {ui,j ui+1,j vi,j , ui,j+1ui+1,j+1vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {vi,j vi+1,j ui+1,j , vi,j vi+1,j ui+1,j+1: 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n}
∪ {um+1,j u1,n+2−j v1,n+2−j , um+1,j+1u1,n+2−j v1,n+1−j ,

um+1,j u1,n+2−j vm,j , um+1,j+1u1,n+2−j vm,j : 1 ≤ j ≤ n},

where V (Q2m+1,n) = {ui,j : 1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n} ∪ {vi,j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.
(Addition in the second subscripts are modulo n.) Clearly,Q2m+1,n triangulates the Klein
bottle and hence it is a non-orientable combinatorial 2-manifold. Since the degree of each
vertex is 6, Q2m+1,n is degree-regular.

For n ≥ 3 there are two induced 3-cycles (induced subcomplexes which are 3-cycles)
through v2,1 in Q5,n, namely, C3(v2,1, u1,1, u2,1) and C3(v2,1, u3,1, v1,1). But there is no
induced 3-cycle through v2,n. So, there does not exist any automorphism of Q5,n which
sends v2,1 to v2,n. Thus, Q5,n is not weakly regular for n ≥ 3.

Observe thatG3(EG(Q7,2t−1)) = C7(u1,1, u3,1, v1,1, v3,1, u2,1, u4,1, v2,1)�C7(u1,t+1,
u3,t+1, v1,t , v3,t , u2,t+1, u4,t+1, v2,t ) and G3(EG(Q7,2t−2)) = C7(u1,1, u3,1, v1,1, v3,1,

u2,1, u4,1, v2,1) � C7(u1,t , u3,t , v1,t , v3,t , u2,t , u4,t , v2,t ) for t ≥ 2. So, for n ≥ 2,
G3(EG(Q7,n)) consists of two disjoint 7-cycles. This implies that G3(EG(Q7,n)) is not
regular for n ≥ 3 and hence Q7,n is not weakly regular for n ≥ 3.

For eachm ≥ 2, there are exactly two (2m+1)-cycles (namely,C2m+1(u1,1, . . . , um+1,1,
v1,1, . . . , vm,1), C2m+1(u1,t+1, . . . , um+1,t+1, v1,t , . . . , vm,t ) in Q2m+1,2t−1 and C2m+1
(u1,1, . . . , um+1,1, v1,1, . . . , vm,1), C2m+1(u1,t+1, . . . , um+1,t+1, v1,t+1, . . . , vm,t+1) in
Q2m+1,2t ) each of which is the boundary of a (2m + 1)-vertex Möbius strip. In other
words, there are exactly two (2m+ 1)-cycle, say C1 and C2, such that |Q2m−1,n| \ |Ci | is
the union of two disjoint open Möbius strips for i = 1, 2. Thus, if n ≥ 3 and u is a vertex
in C1 and v is a vertex outside C1 ∪ C2 then there does not exist any automorphism of
Q2m+1,n which sends u to v. So, Q2m+1,n is not weakly regular for all m ≥ 2 and n ≥ 3.

Lemma 2.5. Let Bm,n, Km,2n and Q2m+1,n be as above. We have the following:

(a) B3,4 �∼= B4,3 �∼= K3,4 �∼= B3,4.
(b) B3,5 �∼= B5,3 �∼= Q5,3 �∼= B3,5.
(c) None of B3,4, B4,3, K3,4, B3,5, B5,3, Q5,3 are weakly regular.
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Proof. Observe thatG4(EG(B3,4)) = C3(v11, v42, v23)∪C3(v41, v12, v13)∪C3(v31, v22,

v43) ∪ C3(v21, v32, v33), G4(EG(B4,3)) = C8(v11, v32, v23, v14, v21, v12, v33, v24) ∪
K4({v31, v22, v13,v34}) andG4(EG(K3,4)) = K4({v11, v22, v33, v42})∪K4({v12, v23, v31,

v43}) ∪ K4({v13, v21, v32, v41}). These prove (a) (since M ∼= N implies G4(EG(M)) ∼=
G4(EG(N))).

It is easy to see the following: (i) G4(EG(B5,3)) = C5(v21, v12, v33, v24, v15) ∪
C10(v11, v32, v23, v14, v35, v31, v22, v13, v34, v25), (ii) G4(EG(B3,5)) is C3(v11, v52, v23)

∪ C3(v31, v32, v43) ∪ C3(v21, v42, v33) ∪ C3(v51, v12, v13) together with the three iso-
lated vertices v41, v22, v53 and (iii) G4(EG(Q5,3)) is C5(u11, u21, u31, v11, v21) ∪
C5(u13, u23, u33, v12, v22) together with five isolated vertices. These prove (b).

IfM is weakly regular then Aut(M) acts vertex-transitively onGn(EG(M)) for alln ≥ 0.
Since G4(EG(B4,3)) = C8 � K4, no group can act vertex-transitively on G4(EG(B4,3)).
So, B4,3 is not weakly regular. Similarly, B5,3 is not weakly regular. Since G4(EG(B3,5))

and G4(EG(Q5,3)) are not regular graphs, B3,5 and Q5,3 are not weakly regular.
Observe that G3(EG(B3,4)) ∩ EG(B3,4) = C6(v11, v12, v23, v41, v42, v13) ∪ C6(v31,

v32, v43, v21, v22, v33). If possible let there be σ ∈ Aut(B3,4) such that σ(v11) = v12. Since
Aut(B3,4) acts vertex-transitively on the graphG3(EG(B3,4))∩ EG(B3,4),σ(v12) = v11 or
v23. In the first case, σ(v41) = v42 and hence σ(v11v12v41) = v11v12v42. But v11v12v41 is a
face, whereas v11v12v42 is not a face, a contradiction. In the second case, (v11, v12, v23, v41,
v42, v13) is a cycle in (the permutation) σ . Then σ(v11v12v41) = v12v23v42. But v11v12v41
is a face, whereas v12v23v42 is not a face, a contradiction. So, there is no automorphism
which maps v11 to v12. Therefore, B3,4 is not weakly regular.

If possible let there be τ ∈ Aut(K3,4) such that τ(v11) = v21. Since G3(EG(K3,4)) =
C3(v11, v12, v13)∪C3(v21, v23, v42)∪C3(v31, v32, v33)∪C3(v41, v22, v43), τ(v12) = v23
or v42. In either case τ maps the edge v11v12 ofK3,4 to a non-edge ofK3,4, a contradiction.
So, there is no automorphism which maps v11 to v21. Thus,K3,4 is not weakly regular. �

Example 8. A triangulation (E) of the plane R
2. The vertex-set V (E) = {um,2n =

(m, n
√

3), um,2n−1 = (m + 1
2 ,

(2n−1)
√

3
2 ): m, n ∈ Z} and the faces are {um,2num+1,2n

um,2n+1, um+1,2num,2n+1um+1,2n+1, um,2n−1um+1,2n−1um+1,2n, um,2n−1um,2num+1,2n:
m, n ∈ Z}. The groupH of translations generated byα1:u �→ u+u1,0 andα2:u �→ u+u0,1
is a subgroup of Aut(E). Clearly,H acts transitively on V (E). The stabilizer of any vertex
u in Aut(E) is isomorphic to the dihedral group D6 (of order 12) which acts transitively
on the set of flags containing u. So, E is combinatorially regular. LetG0 denote the stabi-
lizer of u0,0. Since H acts transitively on V (E), Aut(E) = 〈H,G0〉. This implies that if
σ ∈ Aut(E) has no fixed element in E (vertex, edge or face) then either σ ∈ H \ {Id} or

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�
�

�
��

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
�

�

u−2,−1 u−1,−1 u0,−1 u1,−1 u2,−1 u3,−1 u4,−1 u5,−1

u−2,0 u−1,0 u0,0 u1,0 u2,0 u3,0 u4,0 u5,0 u6,0

u−2,1 u−1,1 u0,1 u1,1 u2,1 u3,1 u4,1 u5,1

u−1,2 u0,2 u1,2 u2,2 u3,2 u4,2 u5,2 u6,2

E
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is a glide reflection (i.e., an automorphism of the form ta ◦ rl , where rl ∈ Aut(E) is the
reflection about a line l through some vertex and of slope a multiple of π/6 and ta ∈ H is
the translation by a nonzero vector a parallel to l).

3. Proofs

Lemma 3.1. There is no triangulation of the closed 2-disk such that (i) the degree of each
vertex (except one) in the boundary is 4 and (ii) the degree of each interior vertex is 6.

Proof. If possible let there be a triangulationK of the closed 2-disk onm+n+ 1 vertices
with n interior vertices such that the degree of each interior vertex is 6, the degree of
one vertex in the boundary is k (≥ 2) and the degree of each of the remaining m vertices
in the boundary is 4. Then f0(K) = n + m + 1, f1(K) = 6n+4m+k

2 and f2(K) =
6n+3m+k−1

3 . Therefore, 1 = χ(K) = f0(K) − f1(K) + f2(K) = n + m + 1 − (3n +
2m+k/2)+ (2n+m+ (k−1)/3). This implies that k = −2, a contradiction. This proves
the lemma. �

Lemma 3.2. Let E be as in Example 8 and letM be a triangulation of the plane R
2. If the

degree of each vertex of M is 6 then M is isomorphic to E.

Proof. Choose an edge, say v0,0v1,0. Then there exists a unique vertex, say v2,0, in lk(v1,0)

such that each side of the segment v0,0v1,0v2,0 (union of two line segments) contains three
faces from st(v1,0) (i.e., lk(v1,0) is of the form C6(v0,0, x, y, v2,0, z, w)). Now, given v1,0
and v2,0 there exists unique vertex v3,0 in lk(v2,0) such that each side of the segment
v1,0v2,0v3,0 contains three faces from st(v2,0). Similarly, given v1,0 and v0,0 there exists
unique vertex v−1,0 in lk(v0,0) such that each side of the segment v1,0v0,0v−1,0 contains
three faces from st(v0,0). Continuing this way we get vertices vi,0, i ∈ Z, such that each
side of the segment vi−1,0vi,0vi+1,0 contains three faces from st(vi,0). Because of Lemma
3.1, all these vertices are distinct. So, we get a triangulation of a line (see the figure).
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v−2,−1 v−1,−1 v0,−1

v1,−1
v2,−1 v3,−1 v4,−1

v5,−1

v−2,0 v−1,0 v0,0 v1,0
v2,0 v3,0 v4,0

v5,0
v6,0

v−2,1 v−1,1 v0,1
v1,1

v2,1
v3,1 v4,1 v5,1

v−1,2 v0,2 v1,2 v2,2
v3,2 v4,2 v5,2 v6,2

M

Let lk(v1,0) = C6(v0,0, v0,1, v1,1, v2,0, v1,−1, v0,−1). By the same argument as above,
there exists a unique vertex, say v2,1, in lk(v1,1) such that each side of the segment
v0,1v1,1v2,1 contains three faces from st(v1,1). This implies that lk(v2,0) is of the form
C6(v1,0, v1,1, v2,1, v3,0, x, v1,−1). If we continue this way we get vertices vi,1, i ∈ Z,
such that each side of the segment vi−1,1vi,1vi+1,1 contains three faces from st(vi,1) and
vi,0vi+1,0vi,1, vi+1,0vi,1vi+1,1 are faces for all i ∈ Z.
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Similarly, we get: (i) vertices vi,2, i ∈ Z, such that each side of the segment
vi−1,2vi,2vi+1,2 contains three faces from st(vi,2) and vi,1vi+1,1vi+1,2, vi,1vi,2vi+1,2
are faces for all i ∈ Z, (ii) vertices vi,−1, i ∈ Z, such that each side of the seg-
ment vi−1,−1vi,−1vi+1,−1 contains three faces from st(vi,−1) and vi,−1vi+1,−1vi+1,0,
vi,−1vi,0vi+1,0 are faces for all i ∈ Z.

Continuing this way we get vertices vi,j , i, j ∈ Z, of M such that each side of
the segment vi−1,j vi,j vi+1,j contains three faces from st(vi,j ) and vi,2kvi+1,2kvi,2k+1,
vi+1,2kvi,2k+1vi+1,2k+1, vi,2k+1vi+1,2k+1vi+1,2k+2, vi,2k+1vi,2k+2vi+1,2k+2 are faces for
all i, j, k ∈ Z. Since M is connected {vi,j : i, j ∈ Z} is the vertex-set of M . Then
ϕ : V (M) → V (E), given by ϕ(vi,j ) = ui,j , is an isomorphism. This proves the lemma.

�

Proof of Theorem 1. Let K be a degree-regular triangulation of the torus. Since R
2 is the

universal cover of the torus, there exists a triangulationM of R
2 and a simplicial covering

map η : M → K (see p. 144 of [12]). Since the degree of each vertex inK is 6, the degree
of each vertex in M is 6. Because of Lemma 3.2, we may assume that M = E.

Let � be the group of covering transformations. Then |K| = |E|/�. For σ ∈ �,
η ◦ σ = η. So, σ maps the geometric carrier of a simplex to the geometric carrier of a
simplex. This implies that σ induces an automorphism σ of E. Thus, we can identify �
with a subgroup of Aut(E). So, K is a quotient of E by a subgroup � of Aut(E), where
� has no fixed element (vertex, edge or face). Hence � consists of translations and glide
reflections. Since K = E/� is orientable, � does not contain any glide reflection. Thus
� ≤ H (the group of translations). Now H is commutative. So, � is a normal subgroup
of H . Since H acts transitively on V (E), H/� acts transitively on the vertices of E/�.
Thus, K is weakly regular. �

Lemma 3.3. For a prime n ≥ 7, if M is an n-vertex weakly regular combinatorial 2-
manifold of Euler characteristic 0 then M is isomorphic to Tn,1,k for some k.

Proof. SinceM is weakly regular, it is degree-regular. Let d be the degree of each vertex.
Then nd = 2f1(M) and n − f1(M) + f2(M) = χ(M) = 0. Since each edge is in two
triangles, 2f1(M) = 3f2(M). These imply that d = 6.

LetG = Aut(M). ThenG is isomorphic to a subgroup of the permutation group Sn and
hence G is a finite group. Fix a vertex u of M . Let H be the stabilizer of u in G. Since
M is weakly regular, the orbit of u under the action of G contains all the n vertices and
hence the index ofH inG is n. Thus, n divides the order ofG. Since n is prime,G has an
element, say τ , of order n.

Let v be a vertex in M such that τ(v) �= v. Then V (M) = {v, τ (v), . . . , τ n−1(v)}.
Choose an edge e containing v. Let e = vτk(v). Then σ = τ k is again an automorphism
of order n and V (M) = {v0 = v, v1 = σ(v), . . . , vn−1 = σn−1(v)}. For each i =
0, . . . , n − 1, σ i is an automorphism. Thus, vkvl is an edge implies that vk+ivl+i is an
edge and vkvlvj is a face implies that vk+ivl+ivj+i is a face for each i. Since v0v1 is an
edge, vivi+1 is an edge for each i. (Addition in the subscripts are modulo n.)

Claim. v0v1v2, v0v1vn−1 and v0v1vn+1
2

are not faces.

If v0v1v2 is a face then vn−2vn−1v0, vn−1v0v1 are faces. Let v0v2vi (�= v0v1v2) be
the second face containing v0v2. Then vn−2v0vi−2 is a face and hence lk(v0) = C6(vi,

v2, v1, vn−1, vn−2, vi−2). Then vi−2viv0 is a face and hence v0v2vn−i+2 is a face. This
implies that n− i + 2 = 1 or i. Since i �= 1, n− i + 2 = i. Then n = 2i − 2. This is not
possible since n is a prime. So, v0v1v2 is not a face and hence v0v1vn−1 is not a face.
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Let c = n+1
2 . If v0v1vc is a face then vn−1v0vc−1, vc−1vcv0 are faces. Let v0v1vi

(�= v0v1vc) be the second face containing v0v1. Then vn−1v0vi−1 is a face and hence
lk(v0) = C6(vi, v1, vc, vc−1, vn−1, vi−1). Then vi−1viv0 is a face and hence v0v1vn−i+1 is
a face. This implies that n− i+1 = c or i. In either case, we get i = c. This is not possible
since v0v1vi �= v0v1vc. So, v0v1vc is not a face, where c = n+1

2 . This proves the claim.
Let v0v1vk be a face containing v0v1. Then, by the claim, k ∈ {3, . . . , n−1

2 , n+3
2 , . . . , n−

2}. Now, v0v1vk ∈ M implies vn−1v0vk−1, vn−kvn−k+1v0 ∈ M . Then V (lk(v0)) = {vk−1,
vn−1, vn−k, vn−k+1, v1, vk} and hence V (lk(v1)) = {vk, v0, vn−k+1, vn−k+2, v2, vk+1}.
Thus, V (lk(v0)) ∩ V (lk(v1)) = {vk, vn−k+1} and hence v0v1vn−k+1 ∈ M . This gives
vn−1v0vn−k ∈ M . Then lk(v0)=C6(vk−1, vn−1, vn−k, vn−k+1, v1, vk) and hence lk(vi)=
C6(vi+k−1, vn+i−1, vn+i−k, vn+i−k+1, vi+1, vi+k) for all i. Now, M ∼= Tn,1,k−1 by the
map ϕ : V (M) → {1, . . . , n} given by ϕ(vj ) = j for 1 ≤ i ≤ n− 1 and ϕ(v0) = n.

�

Lemma 3.4. LetG be a group of order 24 × 23. ThenG has a unique (and hence normal)
subgroup of order 23.

Proof. Clearly, the number of Sylow 23-subgroups of G is 24 or 1. If possible let there
be 24 Sylow 23-subgroups. Let H be a Sylow 23-subgroup. Let N(H) be the normalizer
of H in G. Since all the Sylow 23-subgroups are conjugates of H and |G| = |N(H)| ×
|{conjugates of H }|, |N(H)| = 23 and hence N(H) = H .

LetA be the set of Sylow 3-subgroups. ThenH acts onA by conjugation. Since there is
a Sylow 2-subgroup, the number of elements of order 3 is at most 16 and hence #(A) < 23.
This implies that the action of H on A is trivial. Let K ∈ A. Then xKx−1 = K for all
x ∈ H . So,H acts onK by conjugation. Since |K| = 3, this action ofH onK is trivial. So,
xy = yx for all x ∈ H and y ∈ K . This implies that K ⊆ N(H). This is a contradiction
since N(H) = H . This proves the lemma. �

Lemma 3.5. LetM be a connected combinatorial 2-manifold. Then the number of flags in
M is divisible by the order of Aut(M).

Proof. Let G = Aut(M) and let F denote the set of flags of M . Then G acts on F . Let
σ ∈ G. If there exists a flag F = (u, uv, uvw) such that σ(F ) = F then σ(v) = v and
σ(w) = w. This implies that σ |lk(u) ≡ Id. SinceM is connected, this implies that σ ≡ Id.
Thus, no element of F is fixed by a non-identity element of G. Therefore, the length of
each orbit in F is same as the order of G. This proves the lemma. �

Lemma 3.6. Let K be a degree-regular triangulation of the torus on 2p vertices. If p is
prime and ≥ 13 then Aut(K) has a normal subgroup of order p.

Proof. LetG = Aut(K). By Lemma 3.5, |G| is a factor of 2p×6×2 = 24p. By Theorem
1, G acts transitively on V (K). So, the index of the stabilizer of a vertex is 2p. Thus, 2p
(and hencep) divides the order ofG. Sincep is prime,G has an element, say σ , of orderp.

Since |G| is a factor of 24p, by Sylow’s theorem,G has a unique Sylow p-subgroup for
p = 13, 17, 19 or p > 23. If p = 23 and |G| < 24p then, by Sylow’s theorem, G has a
unique Sylow p-subgroup. Finally, if p = 23 and |G| = 24 × 23 then, by Lemma 3.4, G
has a unique Sylow 23-subgroup. Therefore, H = 〈σ 〉 is the unique (and hence normal)
subgroup of order p in G. �
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Proof of Theorem 2. Let n ≥ 9 be a composite number. Then either n = mk for some
m, k ≥ 3 or n = 2p for some primep ≥ 5. Form, k ≥ 3,Bm,k (defined in Example 4) is an
(mk)-vertex degree-regular triangulation of the Klein bottle. If p ≥ 5 is a prime thenQp,2
(defined in Example 6) is a (2p)-vertex degree-regular triangulation of the Klein bottle.

Let p ≥ 13 be a prime. If possible let there be a p-vertex degree-regular triangulationX
of the Klein bottle. Since the torus is an orientable double cover of the Klein bottle, there
exists a (2p)-vertex degree-regular triangulation K of the torus and a simplicial covering
map η: K → X. Then X is a quotient of K by a subgroup 〈τ 〉 of Aut(K), where τ is an
automorphism of order 2 without a fixed element (vertex, edge or face). Then uτ(u) is a
non-edge for each u ∈ V (K). If there exist u, v ∈ V (K) such that uv and uτ(v) are edges
in K then degX(η(v)) < 6, a contradiction. So, u and τ(u) are not adjacent to a common
vertex for all u ∈ V (K).

By Lemma 3.6, there exists a normal subgroup H ≤ Aut(K) of order p. Let H = 〈σ 〉.
Then 〈σ, τ 〉 = 〈σ 〉〈τ 〉 is a subgroup of order 2p. If σ ◦ τ = τ ◦ σ then 〈σ 〉 acts on K/〈τ 〉
non-trivially. This implies that X is weakly regular. But, this is not possible by Lemma
3.3. So, σ ◦ τ �= τ ◦ σ and hence 〈σ, τ 〉 ∼= Dp.

Claim 1. No vertex is fixed by σ .
If possible let σ has a fixed vertex. Since K is connected, there is an edge of the form

uv such that σ(u) = u and σ(v) �= v. This implies that uσ i(v) is an edge for all i. Then
deg(u) ≥ p > 6, a contradiction. This proves the claim.

Claim 2. There exists w ∈ V (K) and i �= 0 such that wσi(w) is an edge.
By Claim 1, σ can be written as σ = (u, σ (u), . . . , σp−1(u))(v, σ (v), . . . , σp−1(v))

(a permutation on V (K)). If uσ i(u) is a non-edge for all i then the link of u is of the form
C6(σ

i1(v), . . . , σ i6(v)). Then σ i1(v)σ i2(v) is an edge. This implies vσ i2−i1(v) is an edge.
This proves the claim.

By Claim 2, there exists i �= 0 and w0 ∈ V (K) such that w0σ
i(w0) is an edge. Let

α = σ i . Then w0α(w0) is an edge and hence αj−1(w0)α
j (w0) is an edge for all j . Since

p is prime, 〈α, τ 〉 = 〈σ, τ 〉 ∼= Dp. Then αj ◦ τ = τ ◦ αp−j for all j .
Since p is odd there exists i0 such that τ(αi0(w0)) �= αj (w0) for any j . Let u0 =

αi0(w0), v0 = τ(u0), ui = αi(u0) and vi = αi(v0) for 1 ≤ i ≤ p − 1. Therefore,
α = (u0, u1, . . . , up−1)(v0, v1, . . . , vp−1). Then τ(ui) = τ(αi(u0)) = αp−i (τ (u0)) =
αp−i (v0) = vp−i and τ(vi) = τ(αi(v0)) = αp−i (τ (v0)) = αp−i (u0) = up−i .

Since K is connected, there exists an edge of the form uivj and hence there exists an
edge of the form u0vk for some k ∈ {0, . . . , p−1}. If k is odd, let l = p−k

2 . Then α l(u0vk)

is an edge. But, α l(u0vk) = ulvk+l = ulvp−l = ulτ (ul) is a non-edge, a contradiction.
If k is even, let m = p−k−1

2 . Then αm(u0vk) is an edge. But, αm(u0vk) = umvk+m =
umvp−m−1 = umτ(um+1). This is not possible since umum+1 is an edge. This proves that
there is no p-vertex degree regular triangulation of the Klein bottle for a prime p ≥ 13.

If n = 7, 8 or 11 then, by Proposition 3, there does not exist any n-vertex degree regular
triangulation of the Klein bottle. This completes the proof. �

Proof of Theorem 3. Since Tn,1,k is a weakly regular orientable combinatorial 2-manifold
of Euler characteristic 0, Part (a) follows from Part (b) of Lemma 2.1 and Part (b) follows
from Parts (b), (c), (i) and ( j) of Lemma 2.1. Part (c) follows from Example 6. �

Proof of Theorem 4. Follows from Lemma 3.3. �
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Proof of Corollary 5. Let M be an n-vertex degree-regular combinatorial 2-manifold of
Euler characteristic 0. If n is prime then by Theorem 2,M triangulates the torus and hence,
by Theorem 1, M is weakly regular. Then, by Theorem 4, M is isomorphic to Tn,1,k for
some k. Now, Part (a) follows from Parts (a), (b), (e) and (h) of Lemma 2.1 and Part (b)
follows from Parts (a), (b) and ( j) of Lemma 2.1. �

Lemma 3.7. Let M be a combinatorial 2-manifold and a1, . . . ,a5 be five vertices. If the
degree of each vertex is 6 then the number of faces in st(a1) ∪ st(a2) ∪ st(a3) is ≥ 12 and
the number of faces in st(a1) ∪ · · · ∪ st(a5) is > 12.

Proof. Let n be the number of faces in st(a1) ∪ st(a2) ∪ st(a3). If a1a2a3 is a face in
M then clearly n = 13. If a1a2, a2a3, a1a3 are edges in M but a1a2a3 is not a face then
n = 12. In the other cases, n ≥ 14.

Let m be the number of faces in st(a1) ∪ · · · ∪ st(a5). By the above argument, m ≥ 12
and m = 12 if and only if the induced subcomplex on a set of any three vertices is a K3.
So, if m = 12 then the induced subcomplex of M on {a1, . . . , a5} is a K5 and hence the
induced subcomplex of lk(a1) on {a2, a3, a4, a5} is a null graph on four vertices. This is
not possible since deg(a1) = 6. This proves the lemma. �

Lemma 3.8. Let M be an n-vertex connected combinatorial 2-manifold. If the degree of
each vertex is 6 and n > 7 then for any vertex u there exist faces of the form uab, vab
where uv is a non-edge.

Proof. Let lk(u) = C6(1, . . . , 6). Since the degree of each vertex is 6, 123, . . . , 456, 561
are not faces. We want to show that there exists v �∈ {u, 1, . . . , 6} such that 12v, . . . , 56v
or 16v is a face. If not then 124 or 125 is a face. Assume, without loss of generality,
that 124 is a face. Then (since 146 ∈ M ⇒ deg(1) = 4) the second face containing 16
is 136. Inductively, 256, 145, 346 and 235 are faces. These imply that xy is an edge for
x �= y ∈ U : = {u, 1, . . . , 6}. Since the degree of each vertex is 6, for x ∈ U and z �∈ U ,
xz is a non-edge and hence (since M has more than 7 vertices) M is not connected. This
completes the proof. �

Lemma 3.9. Let M be a connected combinatorial 2-manifold and let U be a set of m
vertices of M . If the degree of each vertex in M is 6 and m < f0(M) then the number of
edges in M[U ] is at most 3m− 3.

Proof. Let V be the vertex-set of M . Let n be the number of edges in M[U ] and let k be
the number of edges of the form ab, where a ∈ U , b ∈ V \ U (i.e., k is the number of
connecting edge between U and V \ U ). Since M is connected and U �= V , k �= 0.

Now, for any connecting edge ab, there exists two faces (with vertices both in U and
V \ U ) containing ab. On the other hand, for each such face there exists exactly two
connecting edges. This implies k ≥ 3. If k ≤ 5 then clearly all faces containing the
connecting edges have to be of the form ab1b2, . . . , abk−1bk, abkb1, where a ∈ U and
b1, . . . , bk ∈ V \ U or a ∈ V \ U and b1, . . . , bk ∈ U . Then C5(b1, . . . , bk) ⊆ lk(a).
This is not possible. So, k ≥ 6.

Counting two ways the number of pairs of the form (u, e), where u ∈ U and e is an edge
containing u, we get 6m = n× 2 + k or 2n = 6m− k ≤ 6m− 6. This proves the lemma.

�

Lemma 3.10. IfM is a 12-vertex degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0 then M is isomorphic to T12,1,2, T12,1,3, T12,1,4, T6,2,2, B3,4, B4,3 or K3,4.
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Proof. Let M be a 12-vertex degree regular combinatorial 2-manifold of Euler character-
istic 0. Let the vertex set V of M be {0, . . . , 9, u, v}. Let ϕ : V → {1, . . . , 12} be given
by ϕ(i) = i for 1 ≤ i ≤ 9, ϕ(0) = 10, ϕ(u) = 11 and ϕ(v) = 12.

Since χ(M) = 0, the degree of each vertex is 6. Assume, without loss of generality, that
lk(0) = C6(1, . . . , 6). Since the degree of each vertex is 6, 123, . . . , 456, 561 �∈ M . Since
each component contains at least 7 vertices, M is connected. So, by Lemma 3.8, we may
assume that 127 is a face. Then lk(1) has the form C6(7, 2, 0, 6, x, y), for some x, y ∈ V .
It is easy to see that (x, y) = (3, 4), (3, 5), (3, 8), (4, 3), (4, 5), (4, 8), (8, 4), (8, 9), (8, 3),
(8, 5). The cases (x, y) = (8, 3) and (8, 5) are isomorphic to the case (x, y) = (4, 8) by
the map (0, 1)(2, 6)(3, 4, 8)(5, 7) and (0, 1)(3, 7)(4, 8, 5) respectively. So, we need not
consider the last two cases.

Claim. (x, y) = (3, 4), (3, 8), (4, 3), (4, 8), (8, 4) or (8, 9).
If (x, y) = (3, 5), then 045, 056, 135, 157 are faces and hence lk(5) = C6(4, 0, 6, 3,

1, 7). This implies that C3(1, 5, 6) ⊆ lk(3). This is not possible.
If (x, y) = (4, 5) then lk(4) = C6(6, 1, 5, 0, 3, z), where z = 7, 8, 9, u or v. If z = 7

then, as in the previous case, we get a contradiction. So, we may assume that lk(4) =
C6(6, 1, 5, 0, 3, 8) and hence lk(6) = C6(8, 4, 1, 0, 5, w), lk(5) = C6(7, 1, 4, 0, 6, w) for
somew ∈ V . It is easy to see thatw = 9, u or v. In any case, we get 15 faces not containing
any from {9, u, v} \ {w}. This is not possible since M has 24 faces. This proves the
claim.

Case 1. (x, y) = (3, 4), i.e., lk(1) = C6(7, 2, 0, 6, 3, 4). Now, lk(3) = C6(6, 1, 4, 0, 2, z)
for some z ∈ V . If z = 5 then C4(5, 3, 1, 0) ⊆ lk(6). If z = 7 then C4(7, 3, 0, 1) ⊆
lk(2). This implies that z ∈ {8, 9, u, v}. Assume, without loss of generality, that lk(3) =
C6(6, 1, 4, 0, 2, 8). Now, lk(2) = C6(8, 3, 0, 1, 7, w), for some w ∈ V . If w �∈ {9, u, v}
then we get 14 faces not containing any of 9, u, v. This is not possible by Lemma 3.7. So,
assume without loss of generality that z = 9, i.e., lk(2) = C6(8, 3, 0, 1, 7, 9).

Completing successively, we get lk(6) = C6(8, 3, 1, 0, 5, u), lk(8) = C6(u, 6, 3, 2,
9, v), lk(4) = C6(7, 1, 3, 0, 5, v), lk(5) = C6(v, 4, 0, 6, u, 9), lk(9) = C6(7, u, 5, v, 8, 2),
lk(u) = C6(7, 9, 5, 6, 8, v). Here M ∼= B3,4 by the map ϕ34 ◦ (0, 9, 3, 4, 7, u, 2, v)(1, 8)
(5, 6), where ϕ34 : V → V (B3,4) is given by ϕ34(i) = v1i , ϕ34(3 + i) = v2i ,
ϕ34(6 + i) = v3i , for 1 ≤ i ≤ 3, ϕ34(0) = v41, ϕ34(u) = v42, ϕ34(v) = v43.

Case 2. (x, y) = (3, 8), i.e., lk(1) = C6(7, 2, 0, 6, 3, 8). Now, 023, 034, 136 and 138 are
faces inM . So, lk(3) = C6(2, 0, 4, 8, 1, 6) or C6(2, 0, 4, 6, 1, 8). In the first case, lk(2) =
C6(6, 3, 0, 1, 7, z) for some z ∈ V . As in Case 1, z is a new vertex, say, 9. Then lk(2) =
C6(6, 3, 0, 1, 7, 9) and lk(6) = C6(9, 2, 3, 1, 0, 5). This gives 15 faces not containing u or
v. This is not possible. Thus, lk(3) = C6(2, 0, 4, 6, 1, 8). Now, lk(6) = C6(4, 3, 1, 0, 5, w)
for some w ∈ V . If w = 2, 7 or 8, then we get 14 faces not containing any of 9, u, v. This
is not possible by Lemma 3.7. So, assume without loss, that lk(6) = C6(4, 3, 1, 0, 5, 9).

Completing successively, we get lk(4) = C6(9, 6, 3, 0, 5, u), lk(5) = C6(4, 0, 6, 9,
v, u), lk(9) = C6(4, 6, 5, v, 7, u), lk(7) = C6(9, u, 8, 1, 2, v), lk(2) = C6(7, 1, 0, 3,
8, v), lk(8) = C6(2, 3, 1, 7, u, v). HereM ∼= T12,1,2 by the mapϕ◦(0, 4, 6, 5, 7, u, 9, 8, v)
(1, 2).

Case 3. (x, y) = (4, 3), i.e., lk(1) = C6(7, 2, 0, 6, 4, 3). Now, lk(4) = C6(6, 1, 3, 0, 5, z)
for some z ∈ V . If z = 2, then lk(2) has 7 vertices. If z = 7, then lk(4) =
C6(6, 1, 3, 0, 5, 7) and hence 127, 137, 457, 467 are faces in M . This implies that
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lk(7) = C6(2, 1, 3, 5, 4, 6) or C6(2, 1, 3, 6, 4, 5). In either cases we get 14 faces not con-
taining any of 8, 9, u or v. This is not possible by Lemma 3.7. This implies that z = 8, 9, u
or v. Assume, without loss, that z = 8. This case is now isomorphic to Case 2 by the map
(0, 3, 6, 2, 4, 1)(5, 8, 7)(9, v).

Case 4. (x, y) = (4, 8), i.e., lk(1) = C6(6, 0, 2, 7, 8, 4). This gives lk(4) = C6(8, 1,
6, 3, 0, 5).

Now, lk(6) = C6(3, 4, 1, 0, 5, z) for some z ∈ V . By using Lemma 3.7, z = 9, u or v.
So, assume that lk(6) = C6(3, 4, 1, 0, 5, 9). This implies that lk(5) = C6(9, 6, 0, 4, 8, u).
This case is now isomorphic to Case 1 by the map (1, 6)(2, 5)(3, 4)(9, 7, u).

Case 5. (x, y) = (8, 4), i.e., lk(1) = C6(6, 0, 2, 7, 4, 8). Now, 034, 045, 147 and 148 are
faces in M . So, lk(4) = C6(3, 0, 5, 7, 1, 8) or C6(3, 0, 5, 8, 1, 7).

Subcase 5.1. lk(4) = C6(3, 0, 5, 7, 1, 8). Then (by using Lemma 3.7) lk(7) = C6(5, 4,
1, 2, z,w), where z,w ∈ {9, u, v}. So, assume without loss, that lk(7) = C6(5, 4, 1, 2, 9, u).
Completing successively, we get lk(2) = C6(9, 7, 1, 0, 3, v), lk(3) = C6(2, 0, 4, 8, u, v),
lk(u) = C6(8, 9, 7, 5, v, 3), lk(8) = C6(9, u, 3, 4, 1, 6), lk(5) = C6(7, 4, 0, 6, v, u),
lk(6) = C6(5, 0, 1, 8, 9, v). HereM ∼= K3,4 by the mapψ34◦(0, 8)(1, 9)(2, v, 3, u)(4, 7),
where ψ34 is same as ϕ34 (of Case 1) on the vertex-set.

Subcase 5.2. lk(4) = C6(3, 0, 5, 8, 1, 7). Then lk(7) = C6(3, 4, 1, 2, z, w), for some
z,w ∈ V . As in the previous case, z,w ∈ {9, u, v}. So, assume without loss, that lk(7) =
C6(3, 4, 1, 2, 9, u). Then lk(2) = C6(9, 7, 1, 0, 3, a) for some a ∈ V . It is easy to see
that a = 8 or v. If a = 8 then, considering lk(8), we get 19 faces not containing v. This
is not possible since f2(M) = 24. So, lk(2) = C6(9, 7, 1, 0, 3, v) and hence lk(3) =
C6(2, 0, 4, 7, u, v). Then, lk(8) = C6(5, 4, 1, 6, b, c), where b, c ∈ {9, u, v}. Since the
set of known faces is invariant under (1, 4)(2, 3)(5, 6)(9, u), we may assume that (b, c) =
(9, u), (u, 9), (v, u) or (v, 9).

Subcase 5.2.1. lk(8)=C6(5, 4, 1, 6, 9, u). Completing successively, we get lk(9)=C6(2,
7, u, 8, 6, v), lk(6) = C6(9, 8, 1, 0, 5, v), lk(5) = C6(6, 0, 4, 8, u, v). Here M ∼= T12,1,4
by the map ϕ ◦ (0, 2, 4, u, 9, 6)(1, v, 8)(3, 5, 7).

Subcase 5.2.2. lk(8)=C6(5, 4, 1, 6, u, 9). Completing successively, we get lk(u)=C6(6,
8, 9, 7, 3, v), lk(9) = C6(5, 8, u, 7, 2, v), lk(v) = C6(6, u, 3, 2, 9, 5). Here M ∼= B4,3
by the map ϕ43 ◦ (0, 9, u, 7, 6, 8, v, 3, 2)(1, 5, 4), where ϕ43 : V → V (B4,3) is given by
ϕ43(i) = v1i , ϕ43(4 + i) = v2i , for 1 ≤ i ≤ 4, ϕ43(9) = v31, ϕ43(0) = v32, ϕ43(u) = v33,
ϕ43(v) = v34.

Subcase 5.2.3. lk(8) = C6(5, 4, 1, 6, v, 9). Completing successively, we get lk(v) =
C6(3, 2, 9, 8, 6, u), lk(9) = C6(8, v, 2, 7, u, 5), lk(u) = C6(6, 5, 9, 7, 3, v). Here M ∼=
T12,1,3 by the map ϕ ◦ (1, 0, 8, 6)(2, 5, u, 4, 3, v, 9).

Subcase 5.2.4. lk(8)=C6(5, 4, 1, 6, v, u). Completing successively, we get lk(v)=C6(3,
2, 9, 6, 8, u), lk(u) = C6(3, 7, 9, 5, 8, v), lk(9) = C6(6, 5, u, 7, 2, v). Here M ∼= B4,3 by
the map ϕ43 ◦ (1, 2, 9, 4, 6, 3, 5, u, v, 8, 7), where ϕ43 is as in Subcase 5.2.2.

Case 6. (x, y) = (8, 9), i.e., lk(1) = C6(6, 0, 2, 7, 9, 8). Now, lk(2) = C6(7, 1, 0, 3, z, w)
for some z,w ∈ V . It is easy to see that (z, w) = (5, 6), (6, 8), (5, 8), (5, u),
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(u, 8), (6, 5), (8, 6), (8, u), (u, 5), (9, u), (u, 4), (u, v). If (z, w) = (5, 8), i.e.,
lk(2) = C6(7, 1, 0, 3, 5, 8) then 045, 056, 235, 258 are faces in M . This implies that
lk(5) = C6(6, 0, 4, 8, 2, 3). Then deg(8) ≥ 7. Since the set of known faces are invariant
under (0, 1)(3, 7)(4, 9)(5, 8), we may assume that (z, w) = (5, 6), (5, u), (6, 5), (u, 5),
(9, u) or (u, v).

Subcase 6.1. lk(2) = C6(7, 1, 0, 3, 5, 6). Now, it is easy to see that lk(6) = C6(7, 2, 5, 0,
1, 8). Now, completing successively, we get lk(7) = C6(8, 6, 2, 1, 9, u), lk(8) = C6(u, 7,
6, 1, 9, v), lk(9) = C6(8, 1, 7, u, 4, v), lk(4) = C6(3, 0, 5, v, 9, u), lk(5) = C6(4, 0, 6, 2,
3, v), lk(3) = C6(5, 2, 0, 4, u, v). HereM ∼= T12,1,2 by the mapϕ◦(0, 9, 3, u, 2, 8, 4, v, 1,
6, 7, 5).

Subcase 6.2. lk(2) = C6(7, 1, 0, 3, 5, u). Now, it is easy to see that lk(5) = C6(4, 0, 6, 3,
2, u). Now, completing successively, we get lk(3) = C6(2, 0, 4, v, 6, 5), lk(4) = C6(3, 0,
5, u, 9, v), lk(9) = C6(8, 1, 7, v, 4, u), lk(7) = C6(9, 1, 2, u, 8, v), lk(8) = C6(1, 6, v, 7,
u, 9), lk(u) = C6(2, 5, 4, 9, 8, 7). HereM ∼= B3,4 by the mapϕ34◦(0, 9, 3, 4, v, 1, 6, 5, 8,
2, 7), where ϕ34 is as in Case 1.

Subcase 6.3. lk(2) = C6(7, 1, 0, 3, 6, 5). Completing successively, we get lk(6) = C6(5,
0, 1, 8, 3, 2), lk(3) = C6(2, 0, 4, u, 8, 6), lk(5) = C6(6, 0, 4, v, 7, 2), lk(8) = C6(3, 6,
1, 9, v, u), lk(7) = C6(2, 1, 9, u, v, 5), lk(4) = C6(5, 0, 3, u, 9, v), lk(u) = C6(4, 3, 8, v,
7, 9). Here M ∼= B3,4 by the map ϕ34 ◦ (0, 9, 3, 5, 7, u, 2, 8, 1, v)(4, 6), where ϕ34 is as
in Case 1.

Subcase 6.4. lk(2) = C6(7, 1, 0, 3, 9, u). Completing successively, we get lk(9) = C6(8,
1, 7, 3, 2, u), lk(3) = C6(2, 0, 4, v, 7, 9), lk(7) = C6(3, 9, 1, 2, u, v), lk(u) = C6(7, 2,
9, 8, 5, v), lk(8) = C6(5, u, 9, 1, 6, 4), lk(5) = C6(8, 4, 0, 6, v, u), lk(6) = C6(5, 0, 1, 8,
4, v). Here M ∼= B3,4 by the map ϕ34 ◦ (0, 7, 2)(1, u)(3, 6, 8, v, 5, 4, 9), where ϕ34 is as
in Case 1.

Subcase 6.5. lk(2) = C6(7, 1, 0, 3, u, 5). Now, it is easy to see that lk(5) = C6(4, 0, 6, u,
2, 7) or C6(4, 0, 6, 7, 2, u). The first case is isomorphic to Subcase 5.1 by the map
(0, 1, 7, 5)(2, 4, 6) (3, 8, u). The second case is isomorphic to Subcase 5.2 by the map
(0, 4, 5)(1, 7, 2)(3, 8, u, 6).

Subcase 6.6. lk(2) = C6(7, 1, 0, 3, u, v). Now, it is easy to see that lk(7) = C7(v, 2, 1, 9,
a, b), where (a, b) = (3, 4), (4, 3), (4, 5), (4, 8), (5, 4), (5, 6), (5, 8), (6, 5), (6, 8),
(u, 3), (u, 4), (u, 5), (u, 8). Since the set of known faces is invariant under the map
(1, 2)(3, 6)(4, 5)(8, u)(9, v), we may assume that (a, b) = (3, 4), (4, 3), (4, 5), (4, 8),
(5, 4), (5, 8), (6, 8), (u, 8).

Claim. (a, b) = (3, 4) or (5, 4).
If (a, b) = (4, 3) then, considering lk(3), we get C4(u, 3, 7, 2) ⊆ lk(v). If (a, b) =

(4, 5) then, lk(5) can not be a 6-cycle. If (a, b) = (4, 8) then, considering lk(9), we see
that 0, 1, 4, 7, 8, 9 �∈ lk(u). This is not possible. If (a, b) = (5, 8) then, considering lk(8),
we get C4(5, 8, 1, 0) ⊆ lk(6). If (a, b) = (6, 8) then, considering the links of 6, 9 and 8
successively, we get C4(u, 8, 7, 2) ⊆ lk(v). If (a, b) = (u, 8) then, considering lk(u), we
get 7 vertices in lk(8). These prove the claim.

Subcase 6.6.1. lk(7) = C6(v, 2, 1, 9, 3, 4). Completing successively, we get lk(3)
= C6(0, 2, u, 9, 7, 4), lk(9) = C6(1, 7, 3, u, 5, 8), lk(4) = C6(0, 3, 7, v, 8, 5),
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lk(5) = C6(0, 4, 8, 9, u, 6), lk(u) = C6(2, 3, 9, 5, 6, v), lk(6) = C6(0, 1, 8, v, u, 5).
Now, M ∼= K3,4 by the map ψ34 ◦ (0, 4, 5, 7, 3, 2, 1, v, 6, 9, u), where ψ34 is as in
Subcase 5.1.

Subcase 6.6.2. lk(7)=C6(v, 2, 1, 9, 5, 4). Now, it is easy to see that lk(4)=C6(3, 0, 5, 7,
v, 8). Now, 0, 1, 4, 7, 8 �∈ lk(u). So, 5 ∈ lk(u) and hence lk(5) = C6(6, 0, 4, 7, 9, u).
Then lk(3) = C6(8, 4, 0, 2, u, 6) or C6(8, 4, 0, 2, u, 9).

Subcase 6.6.2.1. lk(3) = C6(8, 4, 0, 2, u, 6). Completing successively, we get lk(6) =
C6(0, 1, 8, 3, u, 5), lk(8) = C6(1, 6, 3, 4, v, 9), lk(9) = C6(1, 7, 5, u, v, 8). Now,
M ∼= K3,4 by the map ψ34 ◦ (0, 8, 4, v, 1, 5, u)(2, 6, 7, 3, 9), where ψ34 is as in Subcase
5.1.

Subcase 6.6.2.2. lk(3) = C6(8, 4, 0, 2, u, 9). Completing successively, we get lk(9) =
C6(1, 7, 5, u, 3, 8), lk(8) = C6(1, 6, v, 4, 3, 9), lk(6) = C6(0, 1, 8, v, u, 5). Now, M ∼=
T6,2,2 by the map ψ ◦ (0, 1, u, 7, 4, 3, 8)(2, 6, v, 5), where ψ : V → V (T6,2,2) is given
by ψ(i) = ui , for 1 ≤ i ≤ 6, ψ(5 + i) = vi , for 2 ≤ i ≤ 4, ψ(0) = v5, ψ(u) = v6 and
ψ(v) = v7. �

Lemma 3.11. IfM is a 14-vertex degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0 then M is isomorphic to T14,1,2, T14,1,3 or Q7,2.

Proof. Let M be a 14-vertex degree regular combinatorial 2-manifold of Euler character-
istic 0. Let the vertex set V be {0, 1, . . . , 9, u, v,w, z}. Let ϕ : V → {1, . . . , 14} be given
by ϕ(i) = i, for 1 ≤ i ≤ 9, ϕ(0) = 10, ϕ(u) = 11, ϕ(v) = 12, ϕ(w) = 13 and ϕ(z) = 14.

Since χ(M) = 0, the degree of each vertex is 6. Assume without loss that lk(0) =
C6(1, 2, 3, 4, 5, 6). By Lemma 3.8, lk(1) = C6(6, 0, 2, 7, x, y), for some x, y ∈ V . It is
easy to see that (x, y) = (3, 4), (3, 8), (4, 3), (4, 8), (5, 3), (5, 4), (5, 8), (8, 3), (8, 4),
(8, 9). The case (x, y) = (3, 8) is isomorphic to the case (x, y) = (5, 8) by the map
(2, 6)(3, 5)(7, 8) and to the case (x, y) = (8, 4) by the map (0, 1)(2, 6)(3, 4, 8)(5, 7).
Hence we may assume that (x, y) = (3, 4), (3, 8), (4, 3), (4, 8), (5, 3), (5, 4), (8, 3), (8, 9).

Claim. (x, y) = (3, 4), (8, 3) or (8, 9)
If (x, y) = (4, 3) then, considering the links of 3, 6, 2, 4, 7, 8, u successively

we get C3(v, u, 7) ⊆ lk(w). So, (x, y) �= (4, 3). If (x, y) = (5, 3) then, lk(5) =
C6(1, 3, 6, 0, 4, 7). But then C4(0, 1, 3, 5) ⊆ lk(6). So, (x, y) �= (5, 3). Similarly,
(x, y) �= (3, 8), (4, 8) or (5, 4). This proves the claim.

Case 1. (x, y) = (3, 4), i.e., lk(1) = C6(6, 0, 2, 7, 3, 4). Now, it easy to see that lk(3) =
C6(7, 1, 4, 0, 2, 5) or C6(7, 1, 4, 0, 2, 8). In the first case, lk(5) = C6(4, 0, 6, 2, 3, 7) or
C6(4, 0, 6, 7, 3, 2). In both these cases we have 23 edges inM[{0, . . . 7}]. This is not pos-
sible by Lemma 3.9. Thus, lk(3) = C6(7, 1, 4, 0, 2, 8). Now, lk(2) = C6(7, 1, 0, 3, 8, b)
for some b ∈ V . It is easy to see that b = 5 or 9. If b = 5 then, considering the links of 4
and 5, we get ≥ 17 faces not containing any of 9, u, v,w, z. This is not possible by Lemma
3.7. Thus lk(2) = C6(7, 1, 0, 3, 8, 9). Again, by using Lemma 3.7, we successively get
lk(7) = C6(8, 3, 1, 2, 9, u), lk(8) = C6(9, 2, 3, 7, u, v), lk(9) = C6(u, 7, 2, 8, v, w),
lk(u) = C6(v, 8, 7, 9, w, z), lk(v) = C6(w, 9, 8, u, z, 5). Then 045, 056, 5vw and 5vz are
faces. So, lk(5) = C6(6, 0, 4, w, v, z) or C6(6, 0, 4, z, v,w). In the first case, considering
the links of 4 and 6, we get C5(w, 6, 5, v, u) ⊆ lk(z). Thus lk(5) = C6(6, 0, 4, z, v,w).
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Now, completing successively, we get lk(w) = C6(9, v, 5, 6, z, u) and lk(6) =
C6(1, 0, 5, w, z, 4). HereM is isomorphic to T14,1,2 by the map ϕ ◦ (0, 7, 3, 5)(1, 6, 9)(2,
4, 8)(u, z)(v,w).

Case 2. (x, y) = (8, 3). Since 023, 034, 136 and 138 are faces, lk(3) = C6(2, 0, 4, 8, 1, 6)
or C6(2, 0, 4, 6, 1, 8). In the first case, considering the links of 6, 2, 9, 7, 8 and 4 succes-
sively, we get 7 vertices in lk(u). Thus, lk(3) = C6(2, 0, 4, 6, 1, 8).

Now, completing successively, we get lk(6) = C6(5, 0, 1, 3, 4, 9), lk(4) = C6(5, 0, 3, 6,
9, u), lk(5) = C6(u, 4, 0, 6, 9, v), lk(9) = C6(u, 4, 6, 5, v, w), lk(2) = C6(8, 3, 0, 1,
7, z), lk(8) = C6(7, 1, 3, 2, z, w), lk(u) = C6(4, 5, v, z, w, 9), lk(z) = C6(2, 7, v, u,
w, 8) and lk(7) = C6(1, 2, z, v,w, 8). HereM ∼= T14,1,2 by the map ϕ◦(0, 6, 7, 1, 4, 8, 2,
3, 5, 9).

Case 3. (x, y) = (8, 9), i.e., lk(1) = C6(6, 0, 2, 7, 8, 9). Now, lk(6) = C6(9, 1, 0, 5,
a, b), for some a, b ∈ V . It is easy to see that (a, b) = (2, 3), (2, 7), (3, 2), (3, 4), (3, 7),
(3, u), (7, 2), (7, 3), (7, 4), (7, u), (8, 3), (8, 4), (8, 7), (8, u), (u, 3), (u, 4), (u, 7), (u, v).
Since the set of known faces is invariant under the map (0, 1)(3, 7)(4, 8)(5, 9), we may
assume that (a, b) = (2, 3), (2, 7), (3, 4), (3, 7), (3, u), (7, 3), (7, 4), (7, u), (8, 4), (8, u)
or (u, v).

By the similar arguments as in the previous claim one gets (a, b) = (2, 7) or (u, v).

Subcase 3.1. lk(6) = C6(9, 1, 0, 5, 2, 7). Completing successively, we get lk(2)
= C6(1, 0, 3, 5, 6, 7), lk(5) = C6(4, 0, 6, 2, 3, u), lk(3) = C6(2, 0, 4, v, u, 5),
lk(4) = C6(3, 0, 5, u,w, v), lk(u) = C6(3, 5, 4, w, z, v), lk(7) = C6(1, 2, 6, 9, z, 8),
lk(9) = C6(1, 6, 7, z, w, 8), lk(z) = C6(7, 8, v, u,w, 9) and lk(v) = C6(3, 4, w, 8, z, u).
Here M is isomorphic to T14,1,2 by the map ϕ ◦ (0, 4, 1, 7, 8)(2, 5, 3)(u, z)(v,w).

Subcase 3.2. lk(6) = C6(9, 1, 0, 5, u, v). Now, lk(5) = C6(u, 6, 0, 4, c, d), for some
c, d ∈ V . It is easy to see that (c, d) = (2, 3), (2, 7), (7, 2), (7, 3), (7, 8), (7, w), (8, 3),
(8, 7), (8, 9), (8, w), (9, 8), (v, 3), (v, 7), (v, 8), (v, 9), (v,w), (w, 3), (w, 7), (w, 8),
(w, z). Since the set of known faces is invariant under the map (0, 6)(2, 9)(3, v)(4, u)(7, 8),
we may assume that (c, d) = (2, 3), (2, 7), (7, 2), (7, 3), (7, 8), (7, w), (8, 3), (8, 7),
(8, w), (v, 3), (v,w) or (w, z).

Claim. (c, d) = (7, 8), (8, w) or (w, z).
If (c, d) = (2, 3) then, lk(5) = C6(u, 6, 0, 4, 2, 3). Considering the links of 2, 4, 3,

u, w successively, we get C5(8, w, 4, 2, 1) ⊆ lk(7). If (c, d) = (2, 7) then, considering
lk(2) we get C4(3, 2, 5, 0) ⊆ lk(4). If (c, d) = (7, 3) then, considering lk(3), we get
C4(7, 3, 0, 1) ⊆ lk(2). If (c, d) = (v, 3) then, considering lk(3), we get 7 vertices in
lk(v). So, (c, d) �= (2, 3), (2, 7), (7, 3) or (v, 3). Similarly, (c, d) �= (7, 2), (7, w), (8, 3),
(8, 7) or (v,w). This proves the claim.

Subcase 3.2.1. lk(5) = C6(u, 6, 0, 4, 7, 8). Now, lk(8) = C6(u, 5, 7, 1, 9, x), for some
x ∈ V . It is easy to check that x = 3, w. By using Lemma 3.7, we get x �= 3. So,
lk(8) = C6(u, 5, 7, 1, 9, w). This implies that lk(9) = C6(w, 8, 1, 6, v, y), for some
y ∈ V . It is easy to see that y = 3 or z.

Subcase 3.2.1.1. lk(9) = C6(w, 8, 1, 6, v, 3). This implies that lk(u) = C6(w, 8, 5, 6,
v, z). Again, by using Lemma 3.7, we get lk(7) = C6(4, 5, 8, 1, 2, z). Then lk(4) =
C6(3, 0, 5, 7, z, a), for some a ∈ V . Considering lk(3), we get a = v or w.
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Subcase 3.2.1.1.1. lk(4) = C6(3, 0, 5, 7, z, v). Completing successively we get
lk(z) = C6(2, 7, 4, v, u,w), lk(2) = C6(1, 0, 3, w, z, 7) and lk(3) = C6(2, 0, 4, v, 9, w).
Here M ∼= T14,1,3 by the map ϕ ◦ (0, 1, 4, v, w, 6, z, 9, 3, 2, 5, u)(7, 8).

Subcase 3.2.1.1.2. lk(4) = C6(3, 0, 5, 7, z, w). Completing successively, we get
lk(3) = C6(2, 0, 4, w, 9, v), lk(2) = C6(1, 0, 3, v, z, 7) and lk(v) = C6(2, 3, 9, 6, u, z).
Now, M ∼= Q7,2 by the map ϕ ◦ (0, 1, 9, u, v, 5, 2, 7, 8)(3, w, 4, z, 6).

Subcase 3.2.1.2. lk(9) = C6(w, 8, 1, 6, v, z). Then it follows that lk(u) = C6(v, 6, 5,
8, w, 3). This case is now isomorphic to the Subcase 3.2.1.1 by the map (1, 5)(2, 4)(u, 9).

Subcase 3.2.2. lk(5) = C6(u, 6, 0, 4, 8, w). Since, 178, 189, 458 and 58w are faces,
lk(8) = C6(4, 5, w, 9, 1, 7) or C6(4, 5, w, 7, 1, 9).

Subcase 3.2.2.1. lk(8) = C6(4, 5, w, 9, 1, 7). Then lk(4) = C6(3, 0, 5, 8, 7, x), for some
x ∈ V . It is easy to see that x = v, z. If x = v then, considering the links of 4, 7, v succes-
sively, we obtain 29 faces in M , which is not possible. Thus lk(4) = C6(3, 0, 5, 8, 7, z).

Completing successively, we get lk(7) = C6(2, 1, 8, 4, z, v), lk(2) = C6(3, 0, 1, 7,
v, u), lk(v) = C6(2, u, 6, 9, z, 7), lk(9) = C6(1, 6, v, z, w, 8), lk(z) = C6(3, 4, 7, v,
9, w) and lk(w) = C6(3, u, 5, 8, 9, z). HereM ∼= T14,1,3 by the map ϕ◦(0, 6, 2, 9, 1, 5, 3)
(4, 7, 8)(u,w, z).

Subcase 3.2.2.2. lk(8) = C6(4, 5, w, 7, 1, 9). Then lk(4) = C6(3, 0, 5, 8, 9, z) and
lk(9) = C6(1, 6, v, z, 4, 8). Now, lk(w) = C6(u, 5, 8, 7, a, b), for some a, b ∈ V . It is
easy to check that (a, b) = (3, 2), (3, z), (v, z) or (z, 3). The set of known faces is invariant
under the map (0, 9)(1, 6)(2, v)(3, z)(5, 8)(7, u). So, we may assume that (a, b) = (3, 2),
(3, z) or (z, 3). If (a, b) = (3, 2) then, considering the links of 2 and 3, we get 7 vertices
in lk(7). If (a, b) = (3, z) then, considering lk(3) we get C4(7, 3, 0, 1) ⊆ lk(2). So,
lk(w) = C6(u, 5, 8, 7, z, 3).

Completing successively, we get lk(3) = C6(2, 0, 4, z, w, u), lk(u) = C6(2, 3, w, 5,
6, v), lk(2) = C6(1, 0, 3, u, v, 7) and lk(z) = C6(3, 4, 9, v, 7, w). HereM ∼= Q7,2 by the
map ϕ ◦ (0, 1, w)(2, z, 4, 3)(5, 9)(6, 7, v)(8, u).

Subcase 3.2.3. lk(5) = C6(u, 6, 0, 4, w, z). This implies that lk(4) = C6(w, 5, 0, 3, x, y),
for some x, y ∈ V . It is easy to check that (x, y) = (7, 2), (7, 8), (7, v), (8, 7), (8, 9),
(9, v), (u, v), (v, 7), (v, 8), (v, 9), (v, u), (z, 7), (z, 8), (z, u) or (z, v). By similar argu-
ments as in the previous claims one gets (x, y) = (8, 7), (8, 9) or (9, v).

Subcase 3.2.3.1. lk(4) = C6(w, 5, 0, 3, 8, 9). Completing successively, we get lk(9)
= C6(w, 4, 8, 1, 6, v), lk(w) = C6(v, 9, 4, 5, z, 7), lk(8) = C6(3, 4, 9, 1, 7, z), lk(7) =
C6(2, 1, 8, z, w, v), lk(z) = C6(3, 8, 7, w, 5, u), lk(v) = C6(2, 7, w, 9, 6, u) and lk(u)
= C6(2, 3, z, 5, 6, v). HereM ∼= T14,1,3 by the mapϕ◦(0, 5, 1, 6, 2, 9, 3, 8, 7)(u, v,w, z).

Subcase 3.2.3.2. lk(4) = C6(w, 5, 0, 3, 9, v). Completing successively, we get lk(9)
= C6(3, 4, v, 6, 1, 8), lk(3) = C6(2, 0, 4, 9, 8, z), lk(v) = C6(u, 6, 9, 4, w, 7), lk(2) =
C6(1, 0, 3, z, u, 7), lk(8) = C7(1, 9, 3, z, w, 7), lk(z) = C6(2, 3, 8, w, 5, u), lk(w)
= C6(4, 5, z, 8, 7, v) and lk(7) = C6(1, 2, u, v,w, 8). Here M ∼= T14,1,3 by the map
ϕ ◦ (0, 1, 5, z, w)(3, v, 7, 6, 4, u)(8, 9).

Subcase 3.2.3.3. lk(4) = C6(w, 5, 0, 3, 8, 7). Completing successively we get lk(7)
= C6(w, 4, 8, 1, 2, v), lk(8) = C6(3, 4, 7, 1, 9, z), lk(9) = C6(z, 8, 1, 6, v, w), lk(v) =
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C6(2, 7, w, 9, 6, u), lk(z) = C6(5, w, 9, 8, 3, u), lk(u) = C6(2, v, 6, 5, z, 3) and lk(2) =
C6(1, 0, 3, u, v, 7). HereM ∼= Q7,2 by the map given byϕ ◦ (0, 1, 3, 7, u, 8, 5, z, 6, 2, 9, 4,
w, v). �

Lemma 3.12. IfM is a 15-vertex degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0 then M is isomorphic to T15,1,2, . . . ,T15,1,5, B3,5, B5,3 or Q5,3.

Proof. LetM be a 15-vertex degree regular combinatorial 2-manifold of Euler characteris-
tic 0. Let the vertex set V be {0, 1, . . . , 9, u, v,w, z, s}. Let ϕ : V → {1, . . . , 15} be given
by ϕ(i) = i, for 1 ≤ i ≤ 9, ϕ(0) = 10, ϕ(u) = 11, ϕ(v) = 12, ϕ(w) = 13, ϕ(z) = 14
and ϕ(s) = 15.

Since χ(M) = 0, the degree of each vertex is 6. As earlier, we may assume that lk(0) =
C6(1, 2, 3, 4, 5, 6). By Lemma 3.8, lk(1) = C6(7, 2, 0, 6, x, y), for some x, y ∈ V . It is
easy to see that (x, y) = (3, 4), (3, 5), (3, 8), (4, 3), (4, 5), (4, 8), (8, 3), (8, 4), (8, 5),
(8, 9).

If (x, y) = (3, 5) then, considering lk(3) we get 7 vertices in lk(5). The case (x, y) =
(8, 3) is isomorphic to the case (x, y) = (4, 8) by the map (0, 1)(2, 6)(3, 4, 8)(5, 7) and the
case (x, y) = (8, 5) is isomorphic to the case (x, y) = (8, 3) by the map (2, 6)(3, 5)(7, 8).
So, we may assume that (x, y) = (3, 4), (3, 8), (4, 3), (4, 5), (4, 8), (8, 4) or (8, 9).

Case 1. (x, y) = (3, 4), i.e., lk(1) = C6(7, 2, 0, 6, 3, 4). Then lk(3) = C6(2, 0, 4, 1,
6, 8), lk(6) = C6(5, 0, 1, 3, 8, 9), lk(4) = C6(5, 0, 3, 1, 7, u) and lk(2) = C6(8, 3, 0, 1,
7, v). Now, it is easy to see that lk(8) = C6(9, 6, 3, 2, v, u) or C6(9, 6, 3, 2, v, w). In the
first case, we get 34 edges inM[{0, . . . , 9, u, v}], a contradiction to Lemma 3.9. So, lk(8)
= C6(9, 6, 3, 2, v, w). Now, completing successively, we get lk(7) = C6(u, 4, 1, 2, v, z),
lk(v) = C6(w, 8, 2, 7, z, s), lk(5) = C6(4, 0, 6, 9, s, u), lk(s) = C6(5, 9, z, v,w, u),
lk(u) = C6(7, 4, 5, s, w, z) and lk(9) = C6(5, 6, 8, w, z, s). Here M ∼= B3,5 by the map
ψ35 ◦ (2, 9, z)(0, v, 6, u, 1, 8)(3, 7, 5, s), where ψ35 : V → V (B3,5) given by ψ35(i) =
v1i , ψ35(3 + i) = v2i , ψ35(6 + i) = v3i , 1 ≤ i ≤ 3, ψ35(0) = v41, ψ35(u) = v42,
ψ35(v) = v43, ψ35(w) = v51, ψ35(z) = v52 and ψ35(s) = v53.

Case 2. (x, y) = (3, 8). Then lk(3) = C6(2, 0, 4, 8, 1, 6) or C6(2, 0, 4, 6, 1, 8).

Subcase 2.1. lk(3) = C6(2, 0, 4, 8, 1, 6). Completing successively, we get lk(2) = C6(7,
1, 0, 3, 6, 9), lk(6) = C6(5, 0, 1, 3, 2, 9), lk(9) = C6(5, 6, 2, 7, v, u), lk(5) = C6(4, 0,
6, 9, u,w), lk(7) = C6(8, 1, 2, 9, v, z), lk(8) = C6(4, 3, 1, 7, z, s), lk(4) = C6(5, 0, 3, 8,
s, w), lk(u) = C6(5, 9, v, s, z, w), lk(s) = C6(4, 8, z, u, v,w) and lk(z) = C6(7, 8, s, u,
w, v). HereM is isomorphic toQ5,3 by the mapψ◦(5, 8, s, v, 9, 7, 6) (0, 1, 3, 2, 4, z, w, u),
where ψ : V → V (Q5,3) is given by ψ(i) = ui1, ψ(5 + i) = ui2, 1 ≤ i ≤ 3,
ψ(3 + j) = vj1, 1 ≤ j ≤ 2, ψ(9) = v12, ψ(0) = v22, ψ(u) = u13, ψ(v) = u23,
ψ(w) = u33, ψ(z) = v13 and ψ(s) = v23.

Subcase 2.2. lk(3) = C6(2, 0, 4, 6, 1, 8). Completing successively, we get lk(2)
= C6(7, 1, 0, 3, 8, 9), lk(8) = C6(7, 1, 3, 2, 9, u), lk(6) = C6(5, 0, 1, 3, 4, v),
lk(4) = C6(5, 0, 3, 6, v, w), lk(7) = C6(9, 2, 1, 8, u, z), lk(5) = C6(v, 6, 0, 4, w, s),
lk(9) = C6(8, 2, 7, z, s, u), lk(v) = C6(6, 4, w, z, s, 5), lk(s) = C6(u,w, 5, v, z, 9)
and lk(u) = C6(7, 8, 9, s, w, z). Here M ∼= T15,1,2 by the map ϕ ◦ (0, 7, 2, 4, 9, 1,
5)(3, 6, 8)(u, s, w, v).

Case 3. (x, y) = (4, 3), i.e., lk(1) = C6(7, 2, 0, 6, 4, 3). Then lk(4) = C6(5, 0, 3, 1,
6, 8), lk(3) = C6(2, 0, 4, 1, 7, 9), lk(6) = C6(5, 0, 1, 4, 8, u), lk(2) = C6(9, 3, 0, 1, 7, v),
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lk(7) = C6(9, 3, 1, 2, v, w), lk(5) = C6(8, 4, 0, 6, u, z), lk(8) = C6(u, 6, 4, 5, z, s),
lk(9) = C6(v, 2, 3, 7, w, s). Thus, lk(s) = C6(v, 9, w, z, 8, u) or C6(v, 9, w, u, 8, z).
In the first case, considering the links of s, u, v successively, we get 7 vertices
in lk(v). So, lk(s) = C6(v, 9, w, u, 8, z). Now, completing successively, we get
lk(u) = C6(5, 6, 8, s, w, z) and lk(z) = C6(5, 8, s, v, w, u). Here M ∼= T15,1,2 by the
map ϕ ◦ (0, 5, 2, 8, 1, 6, 3, 7, 9)(u, s, w, v).

Case 4. (x, y) = (4, 5), i.e., lk(1) = C6(7, 2, 0, 6, 4, 5). Now, completing suc-
cessively, we get lk(4) = C6(3, 0, 5, 1, 6, 8), lk(6) = C6(5, 0, 1, 4, 8, 9), lk(5)
= C6(7, 1, 4, 0, 6, 9), lk(7) = C6(2, 1, 5, 9, v, u), lk(2) = C6(3, 0, 1, 7, u,w),
lk(3) = C6(8, 4, 0, 2, w, z), lk(8) = C6(9, 6, 4, 3, z, s), lk(9) = C6(7, 5, 6, 8, s, v),
lk(v) = C6(u, 7, 9, s, w, z), lk(z) = C6(w, 3, 8, s, u, v) and lk(u) = C6(2, 7, v, z, s, w).
Now, M ∼= Q5,3 by the map ψ ◦ (0, 1, 2, z)(3, 8, 7, s, 9, 6, 4, 5)(u, v, w), where ψ is as
in Subcase 2.1.

Case 5. (x, y) = (4, 8), i.e., lk(1) = C6(7, 2, 0, 6, 4, 8). Now, completing suc-
cessively, we get lk(4) = C6(5, 0, 3, 6, 1, 8), lk(6) = C6(5, 0, 1, 4, 3, 9), lk(3)
= C6(2, 0, 4, 6, 9, u), lk(2) = C6(7, 1, 0, 3, u, v), lk(5) = C6(8, 4, 0, 6, 9, w),
lk(8) = C6(7, 1, 4, 5, w, z), lk(9) = C6(u, 3, 6, 5, w, s), lk(7) = C6(v, 2, 1, 8, z, s),
lk(s) = C6(w, 9, u, z, 7, v), lk(w) = C6(8, 5, 9, s, v, z) and lk(z) = C6(7, 8, w, v, u, s).
Now,M is isomorphic to B3,5 by the map ψ35 ◦ (1, u)(2, s)(5, 9)(0, v, 3, 4, 7, z, w, 6, 8),
where ψ35 is as in Case 1.

Case 6. (x, y) = (8, 4), i.e., lk(1) = C6(7, 2, 0, 6, 8, 4). Now, lk(4) = C6(5, 0, 3, 8, 1, 7)
or C6(5, 0, 3, 7, 1, 8). In the first case, we get lk(3) = C6(8, 4, 0, 2, a, b), for some
a, b ∈ V . Using Lemma 3.9, we may assume that (a, b) = (9, u). Considering the
links of 2, 7, 5, 6, 8, 9, s, u and v successively, we get 7 vertices in lk(v). Thus,
lk(4) = C6(5, 0, 3, 7, 1, 8).

Again, by using Lemma 3.9, we get lk(3) = C6(7, 4, 0, 2, 9, u), lk(2) = C6(7, 1, 0, 3,
9, v), lk(7) = C6(2, 1, 4, 3, u, v), lk(9) = C6(2, 3, u, z, w, v), lk(v) = C6(u, 7, 2, 9,
w, s), lk(u) = C6(9, 3, 7, v, s, z). Then lk(z) = C6(s, u, 9, w, a, b), for some a, b ∈ V .
It is easy to see that (a, b) = (5, 6), (5, 8), (6, 5), (6, 8), (8, 5) or (8, 6). Since the set of
known faces remain invariant under the map (0, 4)(2, 7)(6, 8)(9, u)(w, s), we can assume
that (a, b) = (5, 6), (5, 8), (6, 8) or (8, 6).

Subcase 6.1. (a, b) = (5, 6). Completing successively, we get lk(5) = C6(8, 4, 0, 6,
z, w), lk(6) = C6(8, 1, 0, 5, z, s) and lk(8) = C6(5, 4, 1, 6, s, w). Now, M is isomorphic
to B5,3 by the map ψ53 ◦ (0, s, 3, 1)(2, 6, 9, 7, u)(4, 5, z, 8), where ψ53 : V → V (B5,3)

is given by ψ53(i) = v1i , for 1 ≤ i ≤ 5, ψ53(5 + i) = v2i , for 1 ≤ i ≤ 4, ψ53(0) = v25,
ψ53(u) = v31, ψ53(v) = v32, ψ53(w) = v33, ψ53(z) = v34, ψ53(s) = v35.

Subcase 6.2. (a, b) = (5, 8). Completing successively, we get lk(5) = C6(w, z, 8, 4,
0, 6), lk(8) = C6(6, 1, 4, 5, z, s) and lk(6) = C6(5, 0, 1, 8, s, w). Here M is isomorphic
to T15,1,5 by the map ϕ ◦ (0, 2, 1, 7, 6, 8, w, 9)(3, u, 5)(4, v, s, z).

Subcase 6.3. (a, b) = (6, 8). Completing successively, we get lk(6) = C6(5, 0, 1, 8, z,
w), lk(8) = C6(1, 4, 5, s, z, 6) and lk(5) = 4, 0, 6, w, s, 8). Here M ∼= B5,3 by the map
ψ53 ◦ (1, 9)(0, z, 2, s, v, 6, 8, 3, 5, w, 7), where ψ53 is as in Subcase 6.1.

Subcase 6.4. (a, b) = (8, 6). Completing successively, we get lk(6) = C6(5, 0, 1, 8, z, s),
lk(8) = C6(5, 4, 1, 6, z, w) and lk(5) = C6(8, 4, 0, 6, s, w). Here M is isomorphic to
T15,1,4 by the map given by ϕ ◦ (0, 7, 1, 2, 6, 3, u, s, 4, v, 5, 8, w, 9).
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Case 7. (x, y) = (8, 9), i.e., lk(1) = C6(7, 2, 0, 6, 8, 9). Now, lk(6) = C6(8, 1, 0, 5,
a, b). It is easy to check that (a, b) = (2, 3), (2, 7), (3, 2), (3, 7), (3, 4), (3, u), (7, 2),
(7, 3), (7, 4), (7, u), (9, 3), (9, 4), (9, 7), (9, u), (u, 3), (u, 4), (u, 7), (u, v).

If (a, b) = (3, 7) then, considering links of 3 and 7, we get 7 vertices in lk(7). If
(a, b) = (7, 3), (7, 4) or (9, 4) then, considering lk(b), we get 7 vertices in lk(a). Since
the set of known faces remain invariant under that map (0, 1)(3, 7)(4, 9)(5, 8), we may
assume that (a, b) = (2, 3), (2, 7), (3, 4), (3, u), (7, u), (9, u), (u, v).

Subcase 7.1. lk(6) = C6(8, 1, 0, 5, 2, 3). Completing successively, we get lk(2) =
C6(1, 0, 3, 6, 5, 7), lk(5) = C6(4, 0, 6, 2, 7, u), lk(3) = C6(4, 0, 2, 6, 8, v), lk(8)
= C6(9, 1, 6, 3, v, w), lk(4) = C6(u, 5, 0, 3, v, z), lk(v) = C6(w, 8, 3, 4, z, s), lk(7) =
C6(9, 1, 2, 5, u, s), lk(9) = C6(w, 8, 1, 7, s, z), lk(z) = C6(4, v, s, 9, w, u) and lk(s) =
C6(w, u, 7, 9, z, v). Here M ∼= B3,5 by the map ψ35 ◦ (0, 7, 5, 9, 1, 4)(2, 8, s)(3, u, 6, v,
z, w), where ψ35 is as in Case 1.

Subcase 7.2. lk(6) = C6(8, 1, 0, 5, 2, 7). Completing successively, we get lk(2)
= C6(5, 6, 7, 1, 0, 3), lk(5) = C6(4, 0, 6, 2, 3, u), lk(3) = C6(4, 0, 2, 5, u, v), lk
(4) = C6(u, 5, 0, 3, v, w), lk(u) = C6(v, 3, 5, 4, w, z), lk(7) = C6(9, 1, 2, 6, 8, s),
lk(v) = C6(w, 4, 3, u, z, s), lk(8) = C6(9, 1, 6, 7, s, z), lk(9) = C6(8, 1, 7, s, w, z) and
lk(s) = C6(8, 7, 9, w, v, z). HereM ∼= T15,1,2 by the map ϕ ◦ (0, 7, 3, 9, 1, 4)(2, 6, 5, 8).

Subcase 7.3. lk(6) = C6(8, 1, 0, 5, 3, 4). Completing successively, we get lk(3)
= C6(2, 0, 4, 6, 5, u), lk(4) = C6(5, 0, 3, 6, 8, v), lk(5) = C6(3, 6, 0, 4, v, u), lk(2)
= C6(7, 1, 0, 3, u,w), lk(u) = C6(v, 5, 3, 2, w, z), lk(v) = C6(8, 4, 5, u, z, s), lk(8) =
C6(9, 1, 6, 4, v, s), lk(9) = C6(7, 1, 8, s, w, z), lk(w) = C6(2, 7, s, 9, z, u) and lk(7) =
C6(9, 1, 2, w, s, z). HereM ∼= Q5,3 by the mapψ ◦ (0, 1, 8, 7, u, s, 9)(2, z, w, v, 6, 5, 3),
where ψ is as in Subcase 2.1.

Subcase 7.4. lk(6) = C6(8, 1, 0, 5, 3, u). Completing successively, we get lk(3)
= C6(4, 0, 2, 5, 6, u), lk(2) = C6(7, 1, 0, 3, 5, v), lk(5) = C6(4, 0, 6, 3, 2, v), lk(4)
= C6(u, 3, 0, 5, v, w), lk(u) = C6(8, 6, 3, 4, w, z), lk(8) = C6(9, 1, 6, u, z, s), lk(v) =
C6(7, 2, 5, 4, w, s), lk(7) = C6(9, 1, 2, v, s, z), lk(s) = C6(9, w, v, 7, z, 8) and lk(z) =
C6(w, 9, 7, s, 8, u). HereM ∼= B3,5 by the mapψ35 ◦ (0, 7, z, 2, u, 5, v, s, 3, 8, 6, 9, w, 1),
where ψ35 is as defined in Case 1.

Subcase 7.5. lk(6) = C6(8, 1, 0, 5, 7, u). Now, it is easy to see that lk(7) = C6(9, 1, 2, 5,
6, u) or C6(9, 1, 2, u, 6, 5). The first case is isomorphic to Subcase 6.2 by that map
(0, 3, 9, 6, 4, u, 8, 5, 7, 1). The second case is isomorphic to Subcase 6.1 by the map
(0, 3, 9, 6, 4, u, 7, 1)(5, 8).

Subcase 7.6. lk(6) = C6(8, 1, 0, 5, 9, u). Completing successively, we get lk(9)
= C6(8, 1, 7, u, 6, 5), lk(5) = C6(4, 0, 6, 9, 8, v), lk(8) = C6(6, 1, 9, 5, v, u), lk(u)
= C6(7, 9, 6, 8, v, w), lk(7) = C6(2, 1, 9, u,w, z), lk(v) = C6(4, 5, 8, u,w, s), lk(2) =
C6(3, 0, 1, 7, z, s), lk(s) = C6(3, 2, z, 4, v,w), lk(4) = C6(3, 0, 5, v, s, z) and lk(3) =
C6(4, 0, 2, s, w, z). HereM ∼= B3,5 by the mapψ35◦(1, z, v, 5, 6, w, 4, 9, 3, 7, s, 8, 2, u),
where ψ35 is as in Case 1.

Subcase 7.7. lk(6) = C6(8, 1, 0, 5, u, v). Then, lk(5) = C6(u, 6, 0, 4, c, d), for
some c, d ∈ V . It is easy to see that (c, d) = (2, 3), (2, 7), (7, 2), (7, 3), (7, 9),
(7, w), (8, 9), (9, 3), (9, 7), (9, 8), (9, w), (v, 3), (v, 7), (v, 8), (v, 9), (v,w), (w, 3),
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(w, 7), (w, 9), (w, z). Since the set of known faces remain invariant under the map
(0, 6)(2, 8)(3, v)(4, u)(7, 9), we may assume that (c, d) = (2, 3), (2, 7), (7, 2), (7, 3),
(7, 9), (7, w), (9, 3), (9, 7), (9, w), (v, 3), (v,w), (w, z).

Claim. (c, d) = (2, 3), (9, w), (v,w) or (w, z).
If (c, d) = (2, 7) then, considering lk(2)we getC4(3, 2, 5, 0) ⊆ lk(4). If (c, d) = (7, 3)

then, considering lk(3), we get C4(7, 3, 0, 1) ⊆ lk(2).
If (c, d) = (7, 2) then, considering the links of 2, u, 3, 4, 7, w, 9, v successively, we get

7 vertices in lk(8). If (c, d) = (9, 3) or (v, 3) then, considering lk(3), we get 7 vertices
in lk(c) . If (c, d) = (9, 7) then, considering the links of 9, 4, 7, 2, v, 8, s successively,
we get 7 vertices in lk(u). If (c, d) = (7, 9) then, considering the links of 5, 7, 2, 4, 3, v
successively, we get lk(u) = C6(9, 5, 6, v, z, x), where x = z or s. In either case lk(x)
has ≥ 7 vertices.

If (c, d) = (7, w) then, lk(7) = C6(2, 1, 9, w, 5, 4) or C6(2, 1, 9, 4, 5, w). In the first
case, considering the links of 4 and 2 we get C4(z, 2, 0, 4) ⊆ lk(3). In the second case,
considering links of 7, 4, 2, w, z, u successively, we get 7 vertices in lk(3). This proves
the claim.

Subcase 7.7.1. lk(5) = C6(u, 6, 0, 4, 2, 3). Now, completing successively we get lk(2)
= C6(1, 0, 3, 5, 4, 7), lk(4) = C6(3, 0, 5, 2, 7, w), lk(3) = C6(5, 2, 0, 4, w, u), lk(u) =
C6(6, 5, 3, w, s, v), lk(7) = C6(9, 1, 2, 4, w, z), lk(w) = C6(3, 4, 7, z, s, u), lk(8) =
C6(9, 1, 6, v, z, s), lk(9) = C6(8, 1, 7, z, v, s) and lk(v) = C6(8, 6, u, s, 9, z). HereM is
isomorphic to Q5,3 by the map ψ ◦ (0, 1, z, w, 6, 8, u, 7, s, 9, v)(3, 4), where ψ is as in
Subcase 2.1.

Subcase 7.7.2. lk(5) = C6(u, 6, 0, 4, 9, w). This implies that lk(9) = C6(7, 1, 8, 4, 5, w)
or C6(7, 1, 8, w, 5, 4). In the first case, considering links of 9, 4, 8, v successively we see
that lk(v) can not be a 6-cycle. Thus lk(9) = C6(7, 1, 8, w, 5, 4).

Now, completing successively, we get lk(4) = C6(3, 0, 5, 9, 7, z), lk(7) = C6(2, 1, 9,
4, z, s), lk(2) = C6(3, 0, 1, 7, s, v), lk(3) = C6(z, 4, 0, 2, v, u), lk(u) = C6(5, 6, v, 3,
z, w), lk(v) = C6(6, u, 3, 2, s, 8), lk(8) = C6(9, 1, 6, v, s, w) and lk(z) = C6(7, 4, 3, u,
w, s). Here M ∼= T15,1,3 by the map ϕ ◦ (0, 5, 8)(1, 6, 9, 7, 3)(u, v,w)(z, s).

Subcase 7.7.3. lk(5) = C6(u, 6, 0, 4, v, w). Now, completing successively we get lk(v)
= C6(8, 6, u, 4, 5, w), lk(4) = C6(3, 0, 5, v, u, z), lk(u) = C6(5, 6, v, 4, z, w), lk(w) =
C6(8, v, 5, u, z, s), lk(8) = C6(9, 1, 6, v, w, s), lk(z) = C6(3, 4, u,w, s, 7), lk(7) =
C6(2, 1, 9, 3, z, s), lk(3) = C6(2, 0, 4, z, 7, 9) and lk(2) = C6(7, 1, 0, 3, 9, s). HereM is
isomorphic to B3,5 by the map ψ35 ◦ (1, 9, 8, 5, w)(2, 7, v)(3, u)(4, z, s), where ψ35 is as
in Case 1.

Subcase 7.7.4. lk(5) = C6(u, 6, 0, 4, w, z). Then lk(4) = C6(w, 5, 0, 3, x, y), for some
x, y ∈ V . It is easy to see that (x, y) = (7, 2), (7, 9), (7, v), (7, s), (8, 9), (8, v), (9, 8),
(9, v), (9, s), (u, v), (v, 8), (v, 9), (v, u), (v, s), (z, 9), (z, u), (z, v), (z, s), (s, 9), (s, v).
By the similar arguments as before one gets (x, y) = (7, 2), (9, 8) or (z, u).

Subcase 7.7.4.1. lk(4) = C6(w, 5, 0, 3, 9, 8). Completing successively, we get lk(8)
= C6(6, 1, 9, 4, w, v), lk(9) = C6(7, 1, 8, 4, 3, s), lk(3) = C6(2, 0, 4, 9, s, z), lk(2) =
C6(7, 1, 0, 3, z, u), lk(u) = C6(5, 6, v, 7, 2, z), lk(7) = C6(9, 1, 2, u, v, s), lk(v) =
C6(8, 6, u, 7, s, w) and lk(w) = C6(5, 4, 8, v, s, z). Here M ∼= T15,1,3 by the map
ϕ ◦ (0, 6, 9, 4, 7, 1, 5)(u,w).
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Subcase 7.7.4.2. lk(4) = C6(w, 5, 0, 3, z, u). Completing successively, we get lk(u)
= C6(6, 5, z, 4, w, v), lk(z) = C6(w, 5, u, 4, 3, s), lk(w) = C6(u, 4, 5, z, s, v), lk(3) =
C6(2, 0, 4, z, s, 9), lk(9) = C6(3, 2, 8, 1, 7, s), lk(s) = C6(w, z, 3, 9, 7, v), lk(v) =
C6(6, u,w, s, 7, 8) and lk(7) = C6(2, 1, 9, s, v, 8). Here M ∼= Q5,3 by the map ψ ◦
(0, z, w, 9, 3, s, 6, 8, 5, u)(4, v, 7), where ψ is as in Subcase 2.1.

Subcase 7.7.4.3. lk(4) = C6(w, 5, 0, 3, 7, 2). Then, completing successively, we get
lk(2) = C6(3, 0, 1, 7, 4, w), lk(3) = C6(7, 4, 0, 2, w, s), lk(7) = C6(1, 2, 4, 3, s, 9),
lk(w) = C6(5, 4, 2, 3, s, z), lk(s) = C6(9, 7, 3, w, z, v), lk(v) = C6(u, 6, 8, z, s, 9),
lk(z) = C6(5, w, s, v, 8, u) and lk(8) = C6(9, 1, 6, v, z, u). Here M ∼= B3,5 by the map
ψ35 ◦ (0, 9, 1, 5)(2, 8)(3, v)(4, 7)(u,w), where ψ35 is as in Case 1. �

Proof of Theorem 6. Let M be an n-vertex degree-regular combinatorial 2-manifold of
Euler characteristic 0. Let d be the degree of each vertex. Then nd = 2f1(M) = 3f2(M)

and n− f1(M)+ f2(M) = 0. These imply that d = 6. Now, if n ∈ {12, 14, 15} then, by
Lemmas 3.10 –3.12, M is isomorphic to T12,1,2, . . . , T12,1,4, T6,2,2, T14,1,2, T14,1,3, Q7,2,
T15,1,2, . . . , T15,1,5, Q5,3, B3,4, B4,3, B3,5, B5,3 or K3,4.

Since B3,4, B4,3, B3,5, B5,3, Q7,2, Q5,3 and K3,4 are non-orientable and remaining 10
are orientable, the second and third statements follow from Lemma 2.1(b), (d), (f), Lemma
2.3(b) and Lemma 2.5(a), (b).

The last statement follows from the fact thatBm,n,Km,2k ,Q2k+1,n are not weakly regular
and Q2k+1,2 is weakly regular for all m, n ≥ 3 and k ≥ 2. �
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