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Abstract. A triangulation of a connected closed surface is called weakly regular
if the action of its automorphism group on its vertices is transitive. A triangulation
of a connected closed surface is called degree-regular if each of its vertices have the
same degree. Clearly, a weakly regular triangulation is degree-regular. In [8], Lutz has
classified all the weakly regular triangulations on at most 15 vertices. In [5], Datta and
Nilakantan have classified all the degree-regular triangulations of closed surfaces on at
most 11 vertices.

In this article, we have proved that any degree-regular triangulation of the torus is
weakly regular. We have shown that there exists an n-vertex degree-regular triangulation
of the Klein bottle if and only if n is a composite number > 9. We have constructed
two distinct n-vertex weakly regular triangulations of the torus for each n > 12 and a
(4m + 2)-vertex weakly regular triangulation of the Klein bottle for each m > 2. For
12 < n < 15, we have classified all the n-vertex degree-regular triangulations of the
torus and the Klein bottle. There are exactly 19 such triangulations, 12 of which are
triangulations of the torus and remaining 7 are triangulations of the Klein bottle. Among
the last 7, only one is weakly regular.

Keywords. Triangulations of 2-manifolds; regular simplicial maps; combinatorially
regular triangulations; degree-regular triangulations.

1. Introduction and results

Recall that a simplicial complex is a collection of non-empty finite sets (set of vertices)
such that every non-empty subset of an element is also an element. Fori > 0, the elements
of size i + 1 are called the i-simplices of the simplicial complex. 1-simplices are also
called the edges of the simplicial complex. For a simplicial complex X, the maximum of
k such that X has a k-simplex is called the dimension of X. The set V (X) of vertices of X
is called the vertex-set of X. A simplicial complex X is called finite if V (X) is finite.

If X and Y are two simplicial complexes, then a (simplicial) isomorphism from X to
Y is a bijection ¢: V(X) — V(Y) such that for ¢ C V(X), o is a simplex of X if and
only if ¢(o) is a simplex of Y. Two simplicial complexes X, Y are called (simplicially)
isomorphic (and is denoted by X = Y) when such an isomorphism exists. We identify
two complexes if they are isomorphic. An isomorphism from a simplicial complex X to
itself is called an automorphism of X. All the automorphisms of X form a group, which
is denoted by Aut(X).

A simplicial complex X is usually thought of as a prescription for constructing a topo-
logical space (called the geometric carrier of X and is denoted by | X |) by pasting together
geometric simplices. Formally, | X| is the subspace of [0, 1]1¥X) consisting of the functions
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f: V(X)) — [0, 1] such that the support {v € V(X): f(v) # 0} is a simplex of X and
> vevixy f() = L. 1f o is asimplex then |o|: = {f € |X|: 3, f(v) = 1} is called
the geometric carrier of 0. We say that a simplicial complex X triangulates a topological
space P (or X is a triangulation of P) if P is homeomorphic to | X|. A simplicial complex
X is called connected if | X| is connected. A 2-dimensional simplicial complex is called a
combinatorial 2-manifold if it triangulates a closed surface. A combinatorial 2-manifold
X is called orientable if | X| is an orientable 2-manifold.

If v is a vertex of a simplicial complex X, then the number of edges containing v is
called the degree of v and is denoted by degy (v) (or deg(v)). If the number of i-simplices
of an m-dimensional finite simplicial complex X is f;(X) (0 < i < m), then the number
x(X): = Z?"zo(—l)i fi(X) is called the Euler characteristic of X. A simplicial complex
is called neighbourly if each pair of vertices form an edge.

A combinatorially regular combinatorial 2-manifold is a connected combinatorial 2-
manifold with a flag-transitive automorphism group (a flag is a triple (u, e, F'), where e is
an edge of the face F' and u is a vertex of ¢). A connected combinatorial 2-manifold X is
said to be weakly regular (or a weakly regular triangulation of | X|) if the automorphism
group of X acts transitively on V (X). Clearly, a combinatorially regular combinatorial
2-manifold is weakly regular. Well-known examples of combinatorially regular combina-
torial 2-manifolds are the boundaries of the tetrahedron, the octahedron, the icosahedron
and the 6-vertex real projective plane [4, 5]. The combinatorial manifolds 73 3,0 and 7 2 2
(in Examples 2 and 3) are combinatorially regular. Schulte and Wills [10, 11] have con-
structed two combinatorially regular triangulations of the orientable surface of genus 3.
In [8], Lutz has shown that there are exactly 14 combinatorially regular combinatorial
2-manifolds on at most 22 vertices. By using computer, Lutz has shown the following:

PROPOSITION 1

There are exactly 77 weakly regular combinatorial 2-manifolds on at most 15 vertices; 42 of
these are orientable and 35 are non-orientable. Among these 17 combinatorial 2-manifolds,
20 are of Euler characteristic 0. These 20 are T712,...,T15.12, T12.13,--.,115.13,
T12,1,4,T15,1,4» T15,1,5, T6,2,2, 13,3,0, Q5,2 and Q72 of Examples 1,2,3,6.

A connected combinatorial 2-manifold X is said to be degree-regular of type d if each
vertex of X has degree d. A combinatorial 2-manifold X is said to be degree-regular (or a
degree-regular triangulation of | X|) if it is degree-regular of type d for some d. So, trivial
examples of degree-regular combinatorial 2-manifolds are weakly regular and neighbourly
combinatorial 2-manifolds.

If K is an n-vertex degree-regular of type d combinatorial 2-manifold then nd = 2 f1(K)
= 3/2(K) and x(K) = fo(K) = fi(K) + fa(K) = n — % 4+ 2 = 204 5o, if
X (K) # Othen only finitely many (n, d) satisfies the above equation and hence only finitely
many degree-regular combinatorial 2-manifolds of a given non-zero Euler characteristic.
If K is degree-regular and x (K) > O then (n,d) = (4, 3), (6,4), (6,5) or (12, 5). For
each (n,d) € {(4, 3), (6,4), (6,5), (12, 5)}, there exists unique combinatorial 2-manifold,
namely, the 4-vertex 2-sphere, the boundary of the octahedron, the 6-vertex real projective
plane and the boundary of the icosahedron (see [4, 5]). These 4 combinatorial 2-manifold
are combinatorially regular. For the existence of degree-regular of type d combinatorial
2-manifolds of negative Euler characteristic, d must be at least 7. Since @ # —1 for
n > d > 7, there does not exist any degree-regular combinatorial 2-manifolds of Euler
characteristic —1. If x(K) = —2 then (fo(K),d) = (12,7). In [6], we have seen that
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there are exactly 6 degree-regular triangulations of the orientable surface of genus 2, three
of which are weakly regular and none of them are combinatorially regular.

For the existence of an n-vertex neighbourly combinatorial 2-manifold, n(n — 1) must
be divisible by 6, equivalently, » = 0 or 1 mod 3. Ringel and Jungerman [7, 9] have
shown that there exists neighbourly combinatorial 2-manifolds on 3k and 3k + 1 vertices,
for each k > 2. By using computer, Altshuler et al [3] have shown that there are exactly
59 orientable neighbourly combinatorial 2-manifolds on 12 vertices. In [2], Altshuler
describe two operations by which one gets many neighbourly combinatorial 2-manifolds
from one such combinatorial 2-manifold on the same number of vertices. Using this he
has constructed 40615 distinct non-orientable neighbourly combinatorial 2-manifolds on
12 vertices.

Here we are interested in the cases when the Euler characteristic is O (i.e., triangulations
of the torus and the Klein bottle). Clearly, if K is an n-vertex degree-regular combinatorial
2-manifold and x (K) = 0 then n > d = 6. From [5], we know the following:

PROPOSITION 2

(a) Foreachn >, there exists an n-vertex weakly regular triangulation of the torus.
(b) For each k,l > 3, there exists a kl-vertex degree-regular triangulation of the Klein
bottle.

PROPOSITION 3

There are exactly 27 degree-regular combinatorial 2-manifolds on at most 11 vertices; 8
of which are of Euler characteristic 0. These 8 are T7 12, ..., T11,1,2, 13,3,0, B3,3 and Qs 2
of Examples 1,3,4,6.

Here we prove the following.
Theorem 1. Any degree-regular triangulation of the torus is weakly regular.

Theorem 2. There exists an n-vertex degree-regular triangulation of the Klein bottle if
and only if n is a composite number > 9.

Theorem 3.

(a) Foreachn > 12 there exists atleast two distinct n-vertex weakly regular triangulations
of the torus.

(b) For each n > 18 there exists atleast three distinct n-vertex weakly regular triangula-
tions of the torus.

(c) For each m > 2 there exists a (4m + 2)-vertex weakly regular triangulation of the
Klein bottle.

Theorem 4. Let T, | i be as in Example 1. For a prime n > 1, if M is an n-vertex weakly
regular triangulation of the torus then M is isomorphic to T, 1 i for some k.
COROLLARY 5

(a) Forn = 13 or 17, there are exactly 2 distinct n-vertex degree-regular combinatorial
2-manifolds of Euler characteristic 0. These are T, 12 and T, 1 3.
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(b) There are exactly 3 distinct 19-vertex degree-regular combinatorial 2-manifolds of
Euler characteristic 0. These are Ti9.1,2, T19.1,3 and Ti9.1.7.

From Theorem 1 and Proposition 1 we know all the degree-regular triangulations of the
torus on at most 15 vertices. Here we present (without using computer) the following:

Theorem 6. Let M be an n-vertex degree-regular combinatorial 2-manifold of Euler
characteristic 0. If n = 12,14 or 15 then M is isomorphic to T12,12, ...,T12,1.4, 16,22,
Ti4,1,2, Ta1,3, Tis,1,2, -+ -, T1s,1,5, 97,2, O5.3, B34, Ba3, B35, Bs3 or K3 4. These 17
combinatorial 2-manifolds are pairwise non-isomorphic. The first 10 triangulate the torus
and the remaining 7 triangulate the Klein bottle. Among the last 7, only Q72 is weakly
regular.

2. Examples

In this section we present some degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0. First we give some definitions and notations which will be used throughout
the paper.

A 2-simplex in a 2-dimensional simplicial complex is also said to be a face. We denote
a face {u, v, w} by uvw. We also denote an edge {u, v} by uv.

A graph is a simplicial complex of dimension at most one. The complete graph on
n vertices is denoted by K. Disjoint union of m copies of K, is denoted by mK,,.
A graph without any edge is called a null graph. An n-vertex null graph is denoted
by @,.

If G is a graph and n > 0 is an integer then we define the graph G, (G) as follows. The
vertices of G,(G) are the vertices of G. Two vertices u and v form an edge in G, (G) if
the number of common neighbours of u# and v is n. Clearly, if G and H are isomorphic
then G, (G) and G, (H) are isomorphic for all n > 0.

A connected finite graph is called a cycle if the degree of each vertex is 2. An

n-cycle is a cycle on n vertices and is denoted by C, (or by Cy(ay,...,a,) if the
edges are ajap,...,an—1ay,ayay). Disjoint union of m copies of C, is denoted
by mC,.

For a simplicial complex K, the graph consisting of the edges and vertices of K is
called the edge-graph of K and is denoted by EG(K). The complement of EG(K) is
called the non-edge graph of K and is denoted by NEG(K). Let K be a simplicial com-
plex with vertex-set V(K). If U C V(K) then the induced subcomplex of K on U,
denoted by K[U], is the subcomplex whose simplices are those of K which are subsets
of U.

If v is a vertex of a simplicial complex X, then the link of v in X, denoted by lkx (v)
(or 1k(v)), is the simplicial complex {t € X: v &€ 7, {v}Ut € X}. If v is a ver-
tex of a simplicial complex X, then the star of v in X, denoted by stx (v) (or st(v)), is
the simplicial complex {{v}, t,t U {v}: t € lkx(v)}. Clearly, a finite simplicial com-
plex K is a combinatorial 2-manifold if and only if lkg (v) is a cycle for each vertex v
of K.

Example 1. A series of weakly regular orientable combinatorial 2-manifolds of Euler
characteristic 0. For eachn > 7 and each k € {2, ..., L%J} U {(%1, .., n— 3},

Toax=Uii+ki+k+1}{i+1i+k+1}:1<i<n}
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where V(T,,,1.k) = {l,...,n}.Sincelk(i) = Ce(i + k,n+i—1,n+i—-k—1,n+i—
k,i+1,i+k+1), T, 1 is a combinatorial 2-manifold. Clearly, T}, 1 x triangulates the
torus and hence it is orientable. Since Z,, acts transitively (by addition) on vertices, T}, 1 k
is weakly regular. (Here addition is modulo n.) In [1], Altshuler has shown that 7}, 1 x is a
subcomplex of an n-vertex cyclic polytopal 3-sphere.

Lemma 2.1. Let T, 1 x be as above. We have the following:

@ Tn1.k = Tn1n—k—1foralln and k.

(b) Thi12% Thazforalln > 12.

©) Twi12F Thaa #E Tha3foralln > 20.

(d) Tiza2# Ti21,4 ZTi2,13

© Ti3,1,4 =Ti3,12 = Ti3,1,5

() Tis,k # Tis,,j for j.k €{2,3,4,5}and j # k.

(@ Te1,5 = Tie,1,2 Z Te,1.6 Z T16,1,3 = T16,1,4-

(h) Th7,1,5 = Ti7,1,7 = T2 and Tiz04 = Ti7,1,6 = T17,1,3-

(i) Tig,1,6 = T1s,1,5 and Tig,1 1 Z Tis1,j for j.k € {2,3,4,5,7}, j #k.
() T9.1.6 =T191,8 =T9,12 Z T19,1,7 F T19,1.3 = T19,1.4 = T19,1,5.
&) T20,1,6 = T20,1,2> 120,1,7 = T20,1,3 and Tro,1,x Z Too0,1,j for j,k € {2,3,4,5,8}, j # k.

Proof. Observe that lan,l,k(i) =Cei+1,i+k+1,i+kn+i—1,n+i—k—
I,n+i—k)=Ikg,,, ,_,@). So, the faces in both 7}, 1 x and T, 1 ,—x—1 are same. This
proves (a). '

Then G4(EG(Ty,1,2)) = Cn(1, ..., n)forn > 11 and G4(EG(T},1,3)) is anull graph for
n = 13 and for n > 15. Also, G4(EG(T14,12)) is 7K2. S0, Ty, 1.2 #& Tp,13 foralln > 13.

Observe that G4(EG(T12,1.3)) is a 12-cycle with edges {i,i + 5}, 1 <i < 12. So, the
edges of G4(EG(T12,1,3)) are non-edges of 712 1.2. But G4(EG(T12,1,2)) is a subgraph of
EG(T12.1,2)- So, T12,1,2 Z T12,1,3- This proves (b).

Foralln > 20, G3(EG(T},1,4)) isanull graph, but {i, i 42} is anedge in G3(EG(T},,1,3)).
So, G3(EG(T,,1.4)) # G3(EG(Ty.1,3)) and hence Ty, 1.4 # Ty.1,3 forn > 20.

Again, for all n > 20, G4(EG(T;,.1.4)) = Dn. So, G4(EG(Ty,1.4)) # G4(EG(T,.12))
and hence T, 1 4 # T,.1.2 for n > 20. This proves (c).

Observe that G4(EG(T12,1.4)) = 3K4 (with edges {i, j}, i — j = 0 (mod 3)). Since,
G4(EG(T12,1,2)) and G4(EG(T12,1,3)) are 12-cycles, Ti2,12 # Ti2,1,4 #F Ti2,1,3. This
proves (d).

The map i — 4i (mod 13) defines an isomorphism from 773 12 to 713,14 and the map
i = 7i (mod 13) defines an isomorphism from 773,12 to 713 1,5. This proves (e).

Observe that Go(EG(T15,1,2)) is a 15-cycle (with edges {i,i + 7}, 1 < i < 15) and
Go(EG(T15,1,;)) is a null graph for i = 3,4,5. So, T15,1,; # Ti5,12 fori = 3,4 or 5.
Again, G4(EG(T15,1,3)) is a null graph, G4(EG(T1s5,1,4)) = 3Cs (with edges {i, i + 6},
1 < i < 15) and G4(EG(T15,15)) = Ci5 (with edges {i,i +4}, 1 < i < 15). So,
Tis13 # Tisa.4 # Tis,1,5 # Tis,1,3- These prove (f).

The map i — 3i (mod 16) defines an isomorphism from Ti¢ 14 to 716,13 and an
isomorphism from 7’61 5 to T16,1,2.

Observe that G4(EG(T16,1,6)) = 8K (with edges {i,i + 8}, 1 < i < 8). Since
G4(EG(T16,1,2)) = Ci6 and G4(EG(T16,1,3)) is a null graph, T16,1,2 Z Ti6,1,6 Z T16,1,3-
This proves (g).
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The map i — 14i (mod 17) defines an isomorphism from 7771 5 to T17,1,2. The map
i — 2i (mod 17) defines an isomorphism from 777,17 to T17,1,2. The map i — 13i (mod
17) defines an isomorphism from 777,14 to T17,1,3. The map i > 3i (mod 17) defines an
isomorphism from 7717,1,6 to T17,1,3. This proves (h).

The map i — 5i (mod 18) defines an isomorphism from 773 1,6 to Ti3,1.5.

Now, G3(EG(T13,1,3)) = 2C9 (withedges {i, i+2},1 <i < 18)and G3(EG(T1g,1,7)) =
9K, (with edges {i,i +9}, 1 <i <9). So, T18,1.3 Z T13,1,7- Again, G4(EG(T13,1,2)) =
Cis(1,2,...,18) € EG(T1s,1,2), G4(EG(T13,1,3)) and G4(EG(T13,1,7)) are null graphs,
G4(EG(T13,1,4)) = 9K> (with edges {i,i +9}, 1 <i < 9)and G4(EG(T13,1,5)) = Cis
(withedges {i, i+7},1 <i < 18). Thus, G4(EG(T13,1 5)) isnotasubgraph of EG(T13,1 5).
These imply (i).

The map i + 3i (mod 19) defines an isomorphism from 779 1,5 to T19.1,3. The map
i = 15i (mod 19) defines an isomorphism from Ti9 1 4 to T9,1,3. The map i — 6i (mod
19) defines an isomorphism from 7Tj9 1,2 to T19,1,6. The map i > 9i (mod 19) defines an
isomorphism from 719,12 to 719 1,8.

The graph G4(EG(T19’1,7)) is null, whereas G4(EG(T19,1,2)) = C19. SO, T19,1,7 %
T9,1,2. Again, Go(EG(T19,1,7)) is null, whereas Go(EG(T19,1,3)) = Cio (with edges
{i,i +9},1 <i <19).So, Th9,1,7 Z T19,1,3. This proves (j).

The map i — 3i (mod 20) defines an isomorphism from 720,16 to T20,1,2 and an
isomorphism from 759,1,7 to T20.1.3-

Observe that G4(EG(T20,12)) = Co, G4(EG(T20,1,3)), G4(EG(T20,1,4)), G4
(EG(T20,1,5)) are null graphs and G4(EG(T20,18)) = 10K (with edges {i,i + 10},
1 <i <10).So, T20,1,2 Z Tro,1,; fori =3,4,5,8 and Tx9,1,8 Z T20,1,; fori =3,4,5.

Again, G3(EG(T20,1,3)) = 2Cjo (withedges {i, i4+2},1 < i < 20) but G3(EG(T20,1,4))
and G3(EG(T»0,1,5)) are null graphs. So, T29,1,3 Z T20,1,; fori =4, 5.

Finally, if possible, let ¢ be an isomorphism from 729 1,4 to T59,1,5. Then ¢ induces iso-
morphism between G, (EG(T20,1,4)) and G, (EG(T20,1,5)) for each n. Since, Aut(729,1,4)
acts transitively on V (T29,1,4), we can assume that ¢ (20) = 20. Since Go(EG(T20,1.4)) =
C20(20,7,14, ...,13) and Go(EG(T20,1,5)) = C20(20,3,6,...,17), (7) = 17 or 3. If
@(7) = 17 then ¢(14) = 14, (1) = 11,.... In that case, ¢ ({20, 1}) = {20, 11}. This
is a contradiction since {20, 1} is an edge in 729 1 4 but {20, 11} is not an edge in T»9 1 5.
Similarly, we get a contradiction if ¢(7) = 3. This proves (k). O

m2—m+1 —

Let D,, denote the dihedral group of order 2n and Z,,2_,,,,  : Z¢: = {p, u: p
1 = ub, ulpu = p™) for m > 3. In [8], Lutz has shown that Aut(7,, 1) = D,
for (n,k) = (9,2),...,(15,2),(12,3), (14,3), (15,5), Aut(T12,1,4) = D4 x D3,
Aut(T1s5,14) = Ds x D3 for k = 3,4 and Aut(T,2 1 1 1) = Zy2_py1 Le for
m = 3, 4. Here we prove the following.

Lemma 2.2.

(a) Dy, acts face-transitively on T, 1 i for all n > T and for all k.
(b) Aut(7,.1,2) = Dy foralln = 9.

(©) Dom X Dint1 < Aut(Ty240.1.0m) Jor m > 2.

(d) Dypy1 X Dy—y < Aut(T2_y 4 ,y—1) form > 4.

©) Dmt1 X Dm—1 < Aut(T,2_y 1 ) for m > 4.

) Zyp2_pyr1: Ze < Aut(Ty2_ iy 1) form > 3.

Here H < G means G has a subgroup isomorphic to H.
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Proof. Letoy, Bn: V(Th1k) = V(Th1k) be givenby o, (i) =i+ 1and B,(i) =n —i
(modulo n). Let Ay xi: = {i,i +1,i +k+ 1} and By y;: = {i,i +k, i +k+ 1}.
Then an(An ki) = Anki+1> @n(Bnki) = Buki+1, Bn(Anki) = Bnin—i—k—1 and
Bn(Buk,i) = Ankn—i—k—1. S0, oy, By € Aut(T, 1 k). Clearly, the order of «;, is n, the
order of B, is2 and B, 8, = @, 1 Thus, (ay, B, is isomorphic to D,,. Clearly, the action
of (o, Bn) on Ty 1 i 18 transitive on the faces. This proves (a).

Forn > 11, G4(EG(Ty,12)) = Cn(1,2, ..., n). Therefore, (o0, Bn) < Aut(Ty,12) <
Aut(G4(EG(Ty,1,2))) = Aut(Cp(1,...,n)) = (an, Bn). Thus, Aut(T,12) = (an, Bn)
for n > 11. Since G2(EG(T10,1,2)) = Ci0(1,4,7,10,3,6,9,2, 5,8), (ozfo,,Blo) <
Aut(Tio,12) < Aut(G2(EG(T10,1,2))) = Aut(Cio(1,4,...,5,8)) = (&, Bio). Thus,
Aut(T10,12) = ((Xfo, B1o) = (@10, B1o). Observe that NEG (79 12) = Co(1,5,9,4,8, 3,
7,2, 6). Therefore, (053, Bo) < Aut(To,12) < Aut(NEG(T9,12)) = Aut(Co(1,5,9,4,8, 3,
7,2,6)) = (ag, Bo). Thus, Aut(To,1 2) = (g, o) = (@9, Bo). This proves (b).

Leta, B,y,8: V(To2i0m1.0m) = V(w2 i0m.1.0m) bE given by (i) =i +m + 1,
B@i) =i+2m,y (i) = @m+1)iand8(i) = (2m2—.1)i (e,a = ag’n;;;m,ﬁ = a§$2+2m).
Then o, B,y,6§ € Aut(Tyy2 100 1.2m)> order of « is 2m, order of B8 is m + 1, order of y
is 2, order of § is 2, aff = Ba, ay = ya, B8 = 88, y§ = 8y = Boy2iom, 608 = a !,
yBy = B~!. Therefore, (o, B, v, 8) = (&, 8) x (B, ¥) = Doy X Dpy1. This proves (c).

Claim. If m? = 1 (mod n), then u(i) = mi and v(i) = (n — m)i define two distinct
involutions (automorphisms of order 2) of 7}, | x for each k € {m — 1, m}.

Let Apk,; and B,k ; be as above. Then w(Anm-1,) = Anm—1,mi> W(Bum—1,i) =
Bn,m—l,m[—m+l’ M(An,m,i) = Bn,m,mi and /L(Bn,m,i) = An,m,mi- Thus n e AUt(Tn,l,k)
and hence v = B, 0 = upfn € Aut(T,,1.x) for k = m — 1, m. Since wl=pvi=v
and uv = B, # the identity, u # v. This proves the claim.

Fork =m —1,m,leta, A, n,v: V(T,2_1 1) = V(T,2_11) be given by a(i) =

i+m+1,43) =i+m—1,u@) =miandv(i) = (n—m)i (ie.a =" 1= an’j;_ll).
Then « and A are automorphisms of T2y 14 Also, by the above claim, © and v are
distinct automorphisms of Tmz_l’L «- Clearly, the orders of &, A, wand varem — 1, m +1,

2 and 2 respectively. Again, ¢t = po, ¥A = A, AV = VA, WV = VU, VAV = a1 and

urip = A~L Thus, (o, A, , v) = (A, 1) X (&, V) = Dyy1 X Dyy_y1. This proves (d) and
(e).

Let o: V(T2 pmi11m—1) = V(Tp2_mi1.1.m—1) be given by o (i) = mi. Then
(A2 mytm—1.) = B2yt m—tmi A 0Bz iy 1) = Ap2 it m—1mi—1-
Thus, o € Aut(T,,2_,,11.1,m—1)- Since 6 is the smallest positive integer n for which m” — 1
is divisible by m? — m + 1, the order of o is 6. Now, if p = A2y (€, p(@) =i+ 1)
then p is an automorphism of orderm? —m+1 and (o op oo H() =m(Q=-m)i+1) =
i+m=p"(@). Thus, (p,0) =Z,2_,,,: Ze. This proves (f). O

Example 2. A series of weakly regular orientable combinatorial 2-manifolds of Euler
characteristic 0. Foreachn >4 andeachk =1, ...,n — 3,

Thok = {Uilli 1041, WiViVig 1, Uik Uitk+1Vis Uitk+1ViVi41: 1 <0 < n},

where V(T,24) = {u1,...,un} U {vy,...,v,}. (Addition in the subscripts are mod-
ulo n.) Since lk(u;) = Ceui—1, Vi, Vit1, Ui+1, Vnti—k—1, Un+i—k) and lk(v;) =
Co(vj_1,uj1,Uj, Vjt1, Ujrk+1, Ujrk), Tnok is a degree-regular combinatorial 2-
manifold on 2n vertices. Clearly, T, 2  triangulates the torus and hence it is orientable.
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Ifa, B: V(Th2k) = V(Tu2k) are the maps given by a(u;) = uit1, a¢(v;) = vit1,
Bu;) = v, B(v;) = ujqx for 1 <i < n, then o and B are automorphisms of 7, » x and
hence («, B) is a subgroup of Aut(7; 2 ). Clearly, (o, B) acts transitively on vertices.
Thus 7}, » x is weakly regular.

Lemma 2.3. Let T, 1 ;j and Ty 2 . be as in Examples 1, 2. We have the following:

(a) If n and k are relatively prime or n and k + 2 are relatively prime then T, 2 is
isomorphic to Ty 1, j for some j.

() Te22 F Ti2,1,i foralli.

(©) T34 =T3,22 # Tie,1,i foralli.

Proof. If (n,k) = 1 and k < n — 3, then there exists p € {1,...,n — 2} such that
pk = 1 (mod n). Since k < n—3andn > 4,2p # n,n — 1. 2p = n implies
2 = 2pk = 0 (mod n), a contradiction. 2p = n — 1 implies 2 = 2pk = n — k. This
implies k = n —2 (mod n) and hence k = n — 2.) Let ¢: V(T 24) — {1,...,2n}
be given by ¢(u;) = 1 +2p(@i — 1) and ¢(v;) = 2 + 2p(i — 1) (modulo 2#r). Since
(n, p) = 1, ¢ is a bijection. Now, ¢(u;uj+1vi+1) = {1 +2G — Dp, 1 + 2ip,2 + 2ip},
eiviviyr) = {14260 -1 p, 2420 — D p, 2+2ip}, o(Witkuivi+1v;) = {1+2(¢ -1 p+
2, 14+2ip+2, 242 —Dp} = 20— D) p+2,2( — 1) p+3, 2ip+3}, 0 (Ui 4k+1ViVix1) =
{2ip+3,20 - Dp+2,24+2ip} =20 — Dp +2,2ip+2,2ip + 3} € Tay,1,2p- This
shows that ¢: T, 2 x — T2p,1,2p is an isomorphism.

If (n, k +2) = 1 then assume that (n, k) # 1 (otherwise there is nothing to prove). Let
p(k +2) =1 (mod n). Observe that2p # n,n — 1. 2p = nimplies 2 =2pk +2) =0
(mod n), a contradiction. 2p = n— 1l implies2 =2p(k+2) = n—1)(k+2) =n—k—2.
This implies k = n — 4 (mod n) and hence k = n — 4. Since (n, k) # 1, n and k are even
and hence (n, k + 2) # 1, a contradiction.) Let ¥ : V(T,24) — {1,...,2n} be given
by ¥(u;) = 1+2p@i — 1) and ¥ (v;) = 2 + 2p(i — 2) (modulo 2n). Since (n, p) = 1,
Y is a bijection. Similar argument as before shows that ¥: Ty, 2 — T24,1,2p—1 18 an
isomorphism. This proves (a).

Since G4(EG(T6,2,2)) = 3K4 and G4(EG(T12,1,;)) = Craofori =2,3,T522 Z T12,1.i
fori =2, 3.

Now, G3(EG(T12,1,4)) = 4C5 (withedges {i,i +4}, 1 <i < 12). So, G3(EG(T12,1,4))
is a subgraph of EG(T12,1,4). Whereas, G3(EG(T¢2,2)) = 4C3 (with edges {u;, u;},
{vi, v;}, where i — j = 0 (mod 2)). So, edges of G3(EG(T5 7)) are not in EG(T¢2,2).
Thus, Ts 2.2 Z T12.1,4. This proves (b).

Uiz U4 Ul U2 ui3

1 2 3 4 5 n—2 n—1 n 1
T U4 U4 U43,/ U44 U4
n,1,2
u u u u u u u
3 4 5 6 1 2 3 U3 U3y U33/ Uz4 U3
v vV V. v v,
] 2 3 4 5 6 o Uy U2/ U3, U4 usy
Te22 Taap

up uz U3z U4 Us U Ul uir u12 U1z U4 Ui
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The map u; — u;, v; — v;43 defines an isomorphism from 7g 2 2 to 73 2 4. (As usual,
addition in the subscripts are modulo 8.) Observe that G| (EG(Tg22)) is a null graph,
whereas G1(EG(T16,1,2)) = 2Cg, G1(EG(T16,1,3)) = 2Cs, G1(EG(T16,1,6)) = 4C4.
Thus T3 22 Z Tie,1,j for j = 2,3 and 6. Therefore, by Lemma 2.1 (g), T3 2,2 Z Ti6,1,i
for all i. This proves (c). O

Example 3. Some more weakly regular orientable combinatorial 2-manifolds of Euler
characteristic 0. Forn,m >3 andk =0,...,n — 1,

Tk = {Wi jui j1Uis1, jr1, i juie1 jiiv,j+1: 1 <i <m—1, 1< j <n}
U {tm, jim, j 1101, j k1 U, jUL, j+k U1, jrks1: 1 < j < n},

where V(T m i) = {u; j: 1 <i <m,1 < j < n}. (Addition in the second subscripts are
modulo n.) Clearly, T, ,, x triangulates the torus and hence it is an orientable combinatorial
2-manifold on mn vertices. Since the degree of each vertex is 6, T;, ,,, x is degree-regular.
(T, m,0 was earlier defined in [5] as A,y ».) If o, v V(T mk) = V(T m k) are the maps
givenby y(u; j) = ujyy1,jforl <i <m— 1,y ;) = ui jyr and o (u; ;) = u; j4+1
then o and y are automorphisms of 7}, ,, x and hence (o, y) is a subgroup of Aut(7}, k).
For any vertex u;_;, /-1 yi_l (u1,1) = u; ;. This implies that the action of (o, y) is vertex-
transitive. Thus 7}, ,, x is weakly regular.

Lemma 2.4. Let T, ,,  be as in Examples 1,2, 3. Then

(a) If n and k are relatively prime or n and k 4+ m are relatively prime then T, p i is
isomorphic to Ty 1, for some j.

(b) Ty42=Tg2 0.

©) Tie,1.k Z Taao Z Tsp,j forall k and j.

Proof. Since (n,k) = 1, there exists p € {l,...,n — 1} such that pk = 1 (mod n).
Leto: V(T mi) — {1,..., mn} be given by ¢(u; ;) =i +mp(j — 1) (modulo mn).
Since (n, p) = 1, ¢ is a bijection. By the similar argument as in the proof of Lemma 2.3,
©: Tymk = Tinn,1,mp 18 an isomorphism.

Let (n,k+m) = 1 wherem > 3.Let p € {1,...,n — 1} be such that p(k +m) = 1
(modn).Let: V(T 24) — {1,...,mn} be givenby ¥ (u; ;) =i -+mp(j—i) (modulo
mn). Since (n, p) = 1, ¢ is abijection. Now, ¥ (u; ju; jr1uiy1,j+1) = {i+mp(j—i), i+
mp(j+1—=i),i+14+mp(j—i)}, ¥ jui1, juiv1,j+1) = {i+mp(j—i),i+14+mp(j—
i—1,i+14+mp(j—D}, ¥um, jum, jr1u1,jrk+1) = (m+mp(j —m),m +mp(j +
L=m), 1+mp(j+k)}={m+mp(j—m),m+mp(j+1—m),1+m+mp(j—m)},
Y (um, jur, ki1 jrk+1) = {m +mp(j —m), L +mp(j +k —1),1 +mp(j +k)} =
m+mp(j—m), 1+m~+mp(j—m—1), 1+m+mp(j —m)} € Tiyn1,mp—1.(Clearly, if
mniseventhenmn/2—1 7% mp—1 # mn/2 andif mn isoddthenmp —1 # (mn—1)/2.)
Thus v : Ty m.k = Tinn,1,mp—1 is an isomorphism. This proves (a).

The map u; | — u;, u;3 — ujta, uj2 — v; and u; 4 — vj44 for 1 <i < 4 defines an
isomorphism from 73 4,2 to T3 2 2. This proves (b).

Since G1(EG(T16,12)) = 2Cs, G1(EG(Tis,13)) = 2Cs, G1(EG(Ti6,1,6)) = 4C4 and
G1(EG(T4,4,0)) is a null graph, T4 40 is not isomorphic to any of Tie 12, T16,1,3 and
T16.1,6). Again G4(EG(T4,4,0)) is a null graph whereas G4(EG(732,2)) = 8K». Thus
T4.4,0 % T3 2,2 (c) now follows from parts (a), (c) of Lemma 2.3 and part (g) of Lemma 2.1.

O
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Now, we will present three series of degree-regular triangulations of the Klein bottle.
Among these, B, , were defined earlier in [5]. The smallest among Q, »’s, namely Qs 7,
also defined in [5] as Q.

Example 4. A series of degree-regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. For m, n > 3,

B = {Vi jUig1,jVig1,j+1, Vi, jUi j+1Vig1,j+1: 1 <i<n, 1 < j<m—1}
U {Vi mUn42—i,1Vn+1—i, 15 ViymVi+1,mVn+1—i,1: 1 < i <n},

where V(B n) = {vij: 1 <i < n,1 < j < m}. (Addition in the first subscripts
are modulo n.) Clearly, By, , triangulates the Klein bottle and hence it is a non-
orientable combinatorial 2-manifold. Since the degree of each vertex is 6, By, is
degree-regular.

Example 5. A series of degree-regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. Form > 3 andn > 2,

Kinon = {vijVi j41Vit1,j, Vi j+1Vig1,jVis1,j+1: 1 <i<n, 1 < j <m-—1}
U {VimVit1,mV2n42—i,1, Vit l,mV2n+2—i,1V2n+1-i,1: 1 < i < n}
U {i jVigt1, jVitt, j+1, Vi jVi j+1Vigl,j+1in+1 <i <2n, 1 < j <m—1}
U Vi m Vit 1mV2n41-i,1, VimVant2—i,1V2n+1—i,1: 0 + 1 <1 < 2n},

where V(K 2,) = {vi,j: 1 <i <2n,1 < j < m}. (Addition in the first subscripts are
modulo 2n.) Clearly, K, 2, triangulates the Klein bottle and hence it is a non-orientable
combinatorial 2-manifold. Since the degree of each vertex is 6, K, 2, is degree-regular.

9 2 9
1 8
7 14 7 vip V12 V13 V11
13 6
12 vy Y42 V43 V21
5 5
11 4
10 vy Y32 V33 V31
3 3
vy KL V22/ V23 Va1
o 072 B; 4
1 9 2 1 V11 V12 V13 V11
v v v v
V1] V13 V12 V11 11 12 13 11
Ui U3 Ui
U3 usj v Y42 V43 Va1
U3l usip
V2] v22 v23 Dl 033
v ()
U U 31 31
u u
21 21 o1 NN
Ui ui3
Ui U1l V12 V13 Uiy

Q5,3 K3,4 Vi1 V2 Vi3 Vi1
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Example 6. A series of weakly regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. For eachm > 2,

O =i, i+1,i+2},{i,i +2,i +2m+2}: 1 <i <4m+ 2},

where V(Qom+1.2) = {1, ...,4m + 2}. (Addition modulo 4m + 2.) Clearly, Q2,u+12
triangulates the Klein bottle and hence it is a non-orientable combinatorial 2-manifold.
Since Za;, 2 acts transitively (by addition) on vertices, Q2,,+1,2 is weakly regular.

More generally, for each n > 2 we define the following.

Example 7. A series of degree-regular non-orientable combinatorial 2-manifolds of Euler
characteristic 0. Form, n > 2,

Ooma1,n = Wi jUip1,jVij, i jr1tip1,jr1v;j: 1 <i <m,1 < j <n}
U {vi jvit1,jUi+1,j, Vi, jVitl, jUi+1,j+1: 1 S <m—1,1 < j <n}
U {1, ji 1 n42—jV1n42— > Umtl, j+141,04+2—jV1n+1—j>

Um+1,jULn+2—jVm,js Um+1, j+1U1n4+2—jUm,j: 1 < j <n},

where V(Qomy1,n) ={uij: 1 <i <m+1,1<j<njU{y;:1<i<m,1=<j=<n}
(Addition in the second subscripts are modulo n.) Clearly, Q2,,+1., triangulates the Klein
bottle and hence it is a non-orientable combinatorial 2-manifold. Since the degree of each
vertex is 6, Q2u+1,, 18 degree-regular.

For n > 3 there are two induced 3-cycles (induced subcomplexes which are 3-cycles)
through v 1 in Qs ,, namely, C3(v2 1, u1,1, u2,1) and C3(v2,1, u3,1, v1,1). But there is no
induced 3-cycle through v; ,,. So, there does not exist any automorphism of Qs , which
sends vy 1 to v2 5. Thus, Qs , is not weakly regular for n > 3.

Observe that G3(EG(Q7,2:—1)) = C7(u1,1, u3,1, v1,1, V3,1, U2,1, 4,1, v2,1) U C7(u1 141,
U3,141, V1,rs Us,rs U241, Udr 11, V2,r) and G3(EG(Q7,2:—2)) = C7(u1,1, u3,1, v1,1, v3,1,
uz 1, u4,1, v2,1) U Cr(u1 s, U3y, Vi, V37, Uy, Ugy, V2) Tor ¢ > 2. So, for n > 2,
G3(EG(Q7,,)) consists of two disjoint 7-cycles. This implies that G3(EG(Q7,,)) is not
regular for n > 3 and hence Q7 , is not weakly regular for n > 3.

Foreachm > 2, there are exactly two (2m+-1)-cycles (namely, Coj 1 (41,1, - - -, Um+1.15
Vs Um1)s Coma1 W41y ooy Win 1,415 V1t + -5 Umnyr) 10 Q2ig1,20—1 and Copppg
@115y Umt 1,1, V01 -5 Um 1) Comp1 U141, ooy Wng 114415 VL,e415 -+ -5 Unye1) 1D

Q2m+1,2¢) each of which is the boundary of a (2m + 1)-vertex Mdbius strip. In other
words, there are exactly two (2m + 1)-cycle, say C and C, such that |Q2m—1.4| \ |Ci| is
the union of two disjoint open Mdbius strips for i = 1, 2. Thus, if n > 3 and u is a vertex
in C1 and v is a vertex outside C1 U C; then there does not exist any automorphism of
Qom+1,, Which sends u to v. So, Q2,+1,, is not weakly regular for allm > 2 and n > 3.

Lemma 2.5. Let By, n, Kp.on and Qom+1.n be as above. We have the following:

(a) B34 Z Ba3 Z K34 % B3 g
(b) B35 % Bs3 Z 053 % Bss.
(c) None of B3 4, B4 3, K34, B35, Bs 3, Q53 are weakly regular.
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Proof. Observe that G4(EG(B3,4)) = C3(v11, v42, v23) UC3(v41, V12, v13) UC3(V31, V22,
v43) U C3(v21, v32, v33), G4(EG(B43)) = Cg(vi1, v32, V23, V14, V21, V12, V33, V24) U
K4({v31, v22, v13,v34}) and G4(EG(K3 4)) = Ka({v11, v22, V33, va2}) U K4({v12, v23, V31,
v43}) U K4({v13, v21, v32, v41}). These prove (a) (since M = N implies G4(EG(M)) =
G4(EG(N))).

It is easy to see the following: (i) G4(EG(Bs3)) = Cs(va1, vi2, V33, V24, V15) U
Cio(v11, v32, V23, V14, V35, V31, V22, V13, V34, V25), (i) G4(EG(B3 5)) is C3(v11, v52, v23)
U C3(v31, v32, v43) U C3(v21, va2, v33) U C3(vs1, V12, v13) together with the three iso-
lated vertices v41, v22, vs3 and (iii) G4(EG(Q5,3)) is Cs(uiy, uo21, us1, vi1, v21) U
Cs(u13, ug3, u33, vi2, vy2) together with five isolated vertices. These prove (b).

If M is weakly regular then Aut(M) acts vertex-transitively on G, (EG(M)) foralln > 0.
Since G4(EG(B4,3)) = Cg U K4, no group can act vertex-transitively on G4(EG(B4,3)).
So, B4 3 is not weakly regular. Similarly, Bs 3 is not weakly regular. Since G4(EG(B35))
and G4(EG(Qs.3)) are not regular graphs, B3 5 and Qs 3 are not weakly regular.

Observe that G3(EG(B34)) N EG(B3.4) = Ce(v11, V12, V23, V41, V42, v13) U Ce(v31,
V32, V43, V21, V22, v33). If possible let there be o € Aut(B3 4) suchthato (v11) = vi2. Since
Aut(Bs 4) acts vertex-transitively on the graph G3(EG(B3.4)) NEG(B3,4),0 (v12) = vi1 0Or
vo3. Inthe first case, o (v41) = v4p and hence o (V11V12V41) = V11V12V42. Butvijvpvgisa
face, whereas v{1v12v42 is not a face, a contradiction. In the second case, (vi1, vi2, V23, V41,
V42, v13) is a cycle in (the permutation) o. Then o (v11v12v41) = V12V23V42. But v11v12v41
is a face, whereas vi2v23v4 is not a face, a contradiction. So, there is no automorphism
which maps vy to vi2. Therefore, Bs 4 is not weakly regular.

If possible let there be T € Aut(K3 4) such that T(vi1) = v2;. Since G3(EG(K34)) =
C3(v11, v12, v13) U C3(v21, V23, v42) U C3(v31, v32, v33) U C3(v41, V22, V43), T(V12) = 123
or v42. In either case T maps the edge vi1v12 of K3 4 to anon-edge of K3 4, a contradiction.
So, there is no automorphism which maps v;; to va1. Thus, K3 4 is not weakly regular. O

Example 8. A triangulation (E) of the plane R2. The vertex-set V(E) = {umon =

(m, nv/3), Umom—1 = (m + %, M): m,n € 7} and the faces are {u 24Um+1,2n
Um,2n+15 Um+1,2nUm 2n+1Um+1,2n+1> Um 2n—1Um+12n—1Um~+1,2ns Um2n—1Um 2nUm+1,2n"
m, n € Z}. The group H of translations generated by o1 : u — u+uq0andoa: i — u-+uo 1
is a subgroup of Aut(E). Clearly, H acts transitively on V (E). The stabilizer of any vertex
u in Aut(E) is isomorphic to the dihedral group Dg (of order 12) which acts transitively
on the set of flags containing u. So, E is combinatorially regular. Let G denote the stabi-
lizer of ug . Since H acts transitively on V(E), Aut(E) = (H, Gg). This implies that if
o € Aut(E) has no fixed element in E (vertex, edge or face) then either 0 € H \ {Id} or

U_12 Uo2 U Uzn Uz Ugn Uso U2

U_20 U_1,0 Uo,0 Ui U0 Us,o0 Uq,0 Us,o Ue,0

U_2 -1 U—1,\1 Uo,—1 Uyp,—1 Uz —1 Uz | Ug 1 Us 1
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is a glide reflection (i.e., an automorphism of the form ¢, o r;, where r; € Aut(E) is the
reflection about a line / through some vertex and of slope a multiple of 7 /6 and 7, € H is
the translation by a nonzero vector a parallel to /).

3. Proofs

Lemma 3.1. There is no triangulation of the closed 2-disk such that (i) the degree of each
vertex (except one) in the boundary is 4 and (ii) the degree of each interior vertex is 6.

Proof. If possible let there be a triangulation K of the closed 2-disk on m +n + 1 vertices
with 7 interior vertices such that the degree of each interior vertex is 6, the degree of
one vertex in the boundary is k (> 2) and the degree of each of the remaining m vertices
in the boundary is 4. Then fo(K) = n+m + 1, f1i(K) = G”'MT’”'HC and fr(K) =
bnt3mth=] Therefore, | = x(K) = fo(K) — fi(K) + fo(K) =n+m+1— (3n +
2m+k/2)+ (2n+m—+ (k—1)/3). This implies that k = —2, a contradiction. This proves
the lemma. O

Lemma 3.2. Let E be as in Example 8 and let M be a triangulation of the plane R>. If the
degree of each vertex of M is 6 then M is isomorphic to E.

Proof. Choose an edge, say vg ov1,0. Then there exists a unique vertex, say vz o, in Ik(vy o)
such that each side of the segment vg gv; ov2,0 (union of two line segments) contains three
faces from st(vy o) (i.e., k(v 0) is of the form Cg(vo .0, X, ¥, v2,0, 2, w)). Now, given vj o
and vy o there exists unique vertex v3 o in lk(v,0) such that each side of the segment
v1,0V2,003,0 contains three faces from st(vz ). Similarly, given vy o and v o there exists
unique vertex v_1,9 in lk(vg ) such that each side of the segment v gvp ov—1,0 contains
three faces from st(vp o). Continuing this way we get vertices v; 9, i € Z, such that each
side of the segment v;_1 ov; ov;i+1,0 contains three faces from st(v; o). Because of Lemma
3.1, all these vertices are distinct. So, we get a triangulation of a line (see the figure).

Let Ik(v1,0) = Ce(v0.,0, V0.1, V1,1, V2,0, V1,—1, V0,—1). By the same argument as above,
there exists a unique vertex, say vz 1, in lk(vy,1) such that each side of the segment
vp,1V1,1v2,1 contains three faces from st(vy, ;). This implies that lk(v2 o) is of the form
Cs(v1,0, V1,1, V2,1, V3,0, X, v1,—1). If we continue this way we get vertices v; 1, i € Z,
such that each side of the segment v;_1 1v; 1v;+1,1 contains three faces from st(v; 1) and
Vi 0Vi+1,0Vi1, Vi+1,0Vi 1Vi+1,1 are faces for all i € Z.
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Similarly, we get: (i) vertices v;2, i € Z, such that each side of the segment
V;—1,2Vi2Vi+1,2 contains three faces from st(v;2) and v; 1Vi+1,1Vi41,2, Vi, 1Vi2Vi+1.2
are faces for all i € Z, (ii) vertices v; —1, i € Z, such that each side of the seg-
ment v;_1 _1v; —1V;j+1,—1 contains three faces from st(v; —1) and v; —1vj4+1,—1Vi+1,0,
Vi —1Vi,0Vi+1,0 are faces for all i € Z.

Continuing this way we get vertices v; j, i, j € Z, of M such that each side of
the segment v;_1 jv; jv;41,; contains three faces from st(v; ;) and v; 2k Viy1,2kVi 2k +1,
Vi 1,2k Vi, 2k+1Vi+1,2k+1> Vi,2k+1Vi+1,2k-+1Vi+1,2k+25 Vi, 2k-+1Vi 2k+2Vi+1,2k+2 are faces for
all i, j,k € Z. Since M is connected {vi,j:i,j € 7} is the vertex-set of M. Then
¢: V(M) — V(E), given by ¢(v; j) = u; j, is an isomorphism. This proves the lemma.

O

Proof of Theorem 1. Let K be a degree-regular triangulation of the torus. Since R? is the
universal cover of the torus, there exists a triangulation M of R? and a simplicial covering
map n: M — K (see p. 144 of [12]). Since the degree of each vertex in K is 6, the degree
of each vertex in M is 6. Because of Lemma 3.2, we may assume that M = E.

Let I" be the group of covering transformations. Then |K| = |E|/T. Foro € T,
n oo = n. So, 0 maps the geometric carrier of a simplex to the geometric carrier of a
simplex. This implies that o induces an automorphism ¢ of E. Thus, we can identify I
with a subgroup of Aut(E). So, K is a quotient of E by a subgroup I' of Aut(E), where
I" has no fixed element (vertex, edge or face). Hence I" consists of translations and glide
reflections. Since K = E/ T is orientable, I' does not contain any glide reflection. Thus
I' < H (the group of translations). Now H is commutative. So, I" is a normal subgroup
of H. Since H acts transitively on V(E), H/T" acts transitively on the vertices of E/T.
Thus, K is weakly regular. O

Lemma 3.3. For a prime n > 7, if M is an n-vertex weakly regular combinatorial 2-
manifold of Euler characteristic 0 then M is isomorphic to T, 1 k for some k.

Proof. Since M is weakly regular, it is degree-regular. Let d be the degree of each vertex.
Then nd = 2 fi(M) and n — fi(M) + fo(M) = x(M) = 0. Since each edge is in two
triangles, 2 f1(M) = 3 fo(M). These imply that d = 6.

Let G = Aut(M). Then G is isomorphic to a subgroup of the permutation group S, and
hence G is a finite group. Fix a vertex u of M. Let H be the stabilizer of # in G. Since
M 1is weakly regular, the orbit of u under the action of G contains all the n vertices and
hence the index of H in G is n. Thus, n divides the order of G. Since n is prime, G has an
element, say t, of order n.

Let v be a vertex in M such that 7(v) # v. Then V(M) = {v, t(v), ..., " ' (v)}.

Choose an edge e containing v. Let ¢ = vt¥(v). Then o = ¥ is again an automorphism
of order n and V(M) = {vg = v,v; = o(v),...,vp—1 = 0" '(v)}. For each i =
0,...,n — 1, o' is an automorphism. Thus, viv; is an edge implies that vg4;v;4; is an

edge and viv;v; is a face implies that vy v;4;v;4; is a face for each i. Since vov; is an
edge, v;v;4+1 is an edge for each i. (Addition in the subscripts are modulo n.)

Claim. vgvivy, voviv,—1 and vovq v% are not faces.

If vovivy is a face then v,_pv,—1v0, vy,—1voVU; are faces. Let vovov; (5% voviv2) be
the second face containing vgv,. Then v,_>vov;—> is a face and hence lk(vg) = Ce(v;,
v2, V1, Un—1, Un—2, Vi—2). Then v;_v;vg is a face and hence vovov,—i4+2 is a face. This
implies thatn —i +2 =1ori.Sincei # 1,n —i +2 =i. Then n = 2i — 2. This is not
possible since 7 is a prime. So, vgvv; is not a face and hence vovjv,— is not a face.
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Let ¢ = % If vovive is a face then v,_1vgv.—1, ve—1V:vg are faces. Let vov;v;
(# vovive) be the second face containing vovy. Then v,_jvgv;_; is a face and hence
Ik(vp) = Ce(v;i, v1, V¢, Ve—1, Un—1, Vi—1). Then v;_1v;vg is a face and hence vovy v, —;+1 is
aface. This implies thatn —i 41 = c ori. In either case, we get i = c. This is not possible
since vov1v; # vov1Ve. SO, Vo1 Ve 1s not a face, where ¢ = % This proves the claim.

Let vgv vy be a face containing vgvy. Then, by the claim, k € {3, ..., "—51, #, e, n—
2}. Now, vovi v € M implies v, —1voVk—1, Un—kVUn—k+1v0 € M. Then V (Ik(vp)) = {vk—1,
Un—1, Vn—k> Vn—k+1, V1, Vk} and hence V(k(vy)) = {vk, vo, Vi1, Vn—ks2, V2, Vky1).
Thus, V (Ik(vg)) N V(k(vy)) = {vk, vy—k+1} and hence voviv,—r4+1 € M. This gives
Un—1VoUn—k € M. Thenlk(vo) =Ce(vk—1, Vn—1, Vn—k, Vn—k+1, V1, V) and hence Ik (v;) =
Co(Vitk—1, Vnti—1»> Unti—k> Unti—k+1, Vit1, Viyi) for all i. Now, M = T, | x| by the
map ¢: V(M) — {1,...,n} givenby ¢(v;) = jfor1 <i <n —1and ¢(vo) = n.

O

Lemma 3.4. Let G be a group of order 24 x 23. Then G has a unique (and hence normal)
subgroup of order 23.

Proof. Clearly, the number of Sylow 23-subgroups of G is 24 or 1. If possible let there
be 24 Sylow 23-subgroups. Let H be a Sylow 23-subgroup. Let N (H) be the normalizer
of H in G. Since all the Sylow 23-subgroups are conjugates of H and |G| = |[N(H)| x
|[{conjugates of H}|, |N(H)| = 23 and hence N(H) = H.

Let A be the set of Sylow 3-subgroups. Then H acts on A by conjugation. Since there is
a Sylow 2-subgroup, the number of elements of order 3 is at most 16 and hence #(A) < 23.
This implies that the action of H on A is trivial. Let K € A. Then xKx~! = K for all
x € H.So, H acts on K by conjugation. Since |K | = 3, this action of H on K is trivial. So,
xy =yx forallx € H and y € K. This implies that K € N(H). This is a contradiction
since N(H) = H. This proves the lemma. O

Lemma 3.5. Let M be a connected combinatorial 2-manifold. Then the number of flags in
M is divisible by the order of Aut(M).

Proof. Let G = Aut(M) and let F denote the set of flags of M. Then G acts on F. Let
o € G. If there exists a flag F = (u, uv, uvw) such that o (F) = F then o (v) = v and
o (w) = w. This implies that o |jx(,) = Id. Since M is connected, this implies that o = Id.
Thus, no element of F is fixed by a non-identity element of G. Therefore, the length of
each orbit in F is same as the order of G. This proves the lemma. O

Lemma 3.6. Let K be a degree-regular triangulation of the torus on 2p vertices. If p is
prime and > 13 then Aut(K) has a normal subgroup of order p.

Proof. Let G = Aut(K).ByLemma3.5, |G|isafactorof 2p x 6 x 2 = 24 p. By Theorem
1, G acts transitively on V (K). So, the index of the stabilizer of a vertex is 2p. Thus, 2p
(and hence p) divides the order of G. Since p is prime, G has an element, say o, of order p.

Since |G| is a factor of 24 p, by Sylow’s theorem, G has a unique Sylow p-subgroup for
p=13,17,190r p > 23.If p = 23 and |G| < 24p then, by Sylow’s theorem, G has a
unique Sylow p-subgroup. Finally, if p = 23 and |G| = 24 x 23 then, by Lemma 3.4, G
has a unique Sylow 23-subgroup. Therefore, H = (o) is the unique (and hence normal)
subgroup of order p in G. a
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Proof of Theorem 2. Let n > 9 be a composite number. Then either n = mk for some
m, k > 3orn = 2pforsomeprime p > 5.Form, k > 3, By, x (defined in Example 4) is an
(mk)-vertex degree-regular triangulation of the Klein bottle. If p > 5is a prime then Q, »
(defined in Example 6) is a (2 p)-vertex degree-regular triangulation of the Klein bottle.

Let p > 13 be a prime. If possible let there be a p-vertex degree-regular triangulation X
of the Klein bottle. Since the torus is an orientable double cover of the Klein bottle, there
exists a (2p)-vertex degree-regular triangulation K of the torus and a simplicial covering
map 1: K — X. Then X is a quotient of K by a subgroup (t) of Aut(K), where t is an
automorphism of order 2 without a fixed element (vertex, edge or face). Then ut (1) is a
non-edge for each u € V(K). If there exist u, v € V (K) such that uv and ut (v) are edges
in K then degy (n(v)) < 6, a contradiction. So, u# and 7 (1) are not adjacent to a common
vertex for all u € V(K).

By Lemma 3.6, there exists a normal subgroup H < Aut(K) of order p. Let H = (o).
Then (o, 7) = (0)(t) is a subgroup of order 2p. If 6 o T = 7 0 ¢ then (o) acts on K /(1)
non-trivially. This implies that X is weakly regular. But, this is not possible by Lemma
3.3.S0,0 o T # 7 oo and hence (o, T) = D).

Claim 1. No vertex is fixed by o.

If possible let o has a fixed vertex. Since K is connected, there is an edge of the form
uv such that o (u) = u and o (v) # v. This implies that uo’ (v) is an edge for all i. Then
deg(u) > p > 6, a contradiction. This proves the claim.

Claim 2. There exists w € V(K) and i # 0 such that wo' (w) is an edge.

By Claim 1, ¢ can be written as 0 = (u, 6 (), ...,o? ') (v, 0 (v), ...,oP " (v))
(a permutation on V (K)). If uol(u)isa non-edge for all i then the link of u is of the form
Co(c'1(v), ..., o' (v)). Then o'l (v)o2(v) is an edge. This implies voi27 (v) is an edge.
This proves the claim.

By Clalm 2, there exists i % 0 and wo € V(K) such that woo' (wp) is an edge. Let
o = o'. Then woa(wp) is an edge and hence ol (wo)erd (wo) is an edge for all j. Since
p is prime, (o, T) = (0, T) = D). Thena/ ot =1 0P~ fforall]

Since p is odd there exists zo such that 7 (% (wo)) #* ad (wg) for any j. Let ug =

@0 (wg), vo = t(ug), u; = a'(up) and v; = o' (vg) for 1 < i < p — 1. Therefore,
o = (uo, ui, ..., up_l)(vo, Vi, ..., Up—1). Then 7(u;) = 7 (o _(uo)) = P (1 (up)) =
aP™ (vo) = vp—; and T(v;) = T(a' (v0)) = P (T (v0)) = P ™" (uo) = up—;.

Since K is connected, there exists an edge of the form u;v; and hence there exists an
edge of the form ugvg forsome k € {0, ..., p—1}. If kisodd, let! = prk Then o/ (ugvy)
is an edge. But, (xl(uovk) = ujvpy; = uvp—; = u;t(uy) is a non-edge, a contradiction.
If k is even, let m = p_lzc_l. Then o™ (ugvy) is an edge. But, o™ (uovr) = ty Vkym =
UmVp—_m—1 = U T (Up41). This is not possible since u,, 1,41 is an edge. This proves that
there is no p-vertex degree regular triangulation of the Klein bottle for a prime p > 13.

If n =7, 8 or 11 then, by Proposition 3, there does not exist any n-vertex degree regular
triangulation of the Klein bottle. This completes the proof. O

Proof of Theorem 3. Since T, 1 is a weakly regular orientable combinatorial 2-manifold
of Euler characteristic 0, Part (a) follows from Part (b) of Lemma 2.1 and Part (b) follows
from Parts (b), (c), (i) and (j) of Lemma 2.1. Part (c) follows from Example 6. O

Proof of Theorem 4. Follows from Lemma 3.3. O
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Proof of Corollary 5. Let M be an n-vertex degree-regular combinatorial 2-manifold of
Euler characteristic 0. If n is prime then by Theorem 2, M triangulates the torus and hence,
by Theorem 1, M is weakly regular. Then, by Theorem 4, M is isomorphic to 7}, 1 x for
some k. Now, Part (a) follows from Parts (a), (b), (¢) and (h) of Lemma 2.1 and Part (b)
follows from Parts (a), (b) and (j) of Lemma 2.1. O

Lemma 3.7. Let M be a combinatorial 2-manifold and ay, . .. ,as be five vertices. If the
degree of each vertex is 6 then the number of faces in st(ay) U st(az) Ust(as) is > 12 and
the number of faces in st(a;) U - - - U st(as) is > 12.

Proof. Let n be the number of faces in st(a;) U st(az) U st(az). If ajazas is a face in
M then clearly n = 13. If a1as, aza3, ajasz are edges in M but ajazas is not a face then
n = 12. In the other cases, n > 14.

Let m be the number of faces in st(aj;) U - - - U st(as). By the above argument, m > 12
and m = 12 if and only if the induced subcomplex on a set of any three vertices is a K3.

So, if m = 12 then the induced subcomplex of M on {ay, ..., as}is a K5 and hence the
induced subcomplex of lk(aj) on {az, a3, a4, as} is a null graph on four vertices. This is
not possible since deg(a;) = 6. This proves the lemma. O

Lemma 3.8. Let M be an n-vertex connected combinatorial 2-manifold. If the degree of
each vertex is 6 and n > 7 then for any vertex u there exist faces of the form uab, vab
where uv is a non-edge.

Proof. Letlk(u) = Ce(1, ..., 6). Since the degree of each vertex is 6, 123, ..., 456, 561
are not faces. We want to show that there exists v & {u, 1, ..., 6} such that 12v, ..., 56v
or 16v is a face. If not then 124 or 125 is a face. Assume, without loss of generality,
that 124 is a face. Then (since 146 € M = deg(1) = 4) the second face containing 16
is 136. Inductively, 256, 145, 346 and 235 are faces. These imply that xy is an edge for
x#yeU: ={u,l,...,6}. Since the degree of each vertex is 6, forx € U and z & U,
xz is a non-edge and hence (since M has more than 7 vertices) M is not connected. This
completes the proof. a

Lemma 3.9. Let M be a connected combinatorial 2-manifold and let U be a set of m
vertices of M. If the degree of each vertex in M is 6 and m < fo(M) then the number of
edges in M[U] is at most 3m — 3.

Proof. Let V be the vertex-set of M. Let n be the number of edges in M[U] and let k be
the number of edges of the form ab, where a € U, b € V \ U (i.e., k is the number of
connecting edge between U and V \ U). Since M is connected and U # V, k # 0.

Now, for any connecting edge ab, there exists two faces (with vertices both in U and
V \ U) containing ab. On the other hand, for each such face there exists exactly two
connecting edges. This implies k > 3. If k < 5 then clearly all faces containing the
connecting edges have to be of the form ab1b,, ..., aby_1bk, abyb1, where a € U and
bi,....bp e VN\Uorae V\Uandb,...,bp € U. Then Cs5(by,...,br) < lk(a).
This is not possible. So, k > 6.

Counting two ways the number of pairs of the form (u, e), where u € U and e is an edge
containing u, we get bm = n x 2+ k or 2n = 6m — k < 6m — 6. This proves the lemma.

0O

Lemma 3.10. If M is a 12-vertex degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0 then M is isomorphic to T12,1 2, T12,1.3, T12.1.4, T6,2,2, B3.4, Ba 3 or K3 4.
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Proof. Let M be a 12-vertex degree regular combinatorial 2-manifold of Euler character-
istic 0. Let the vertex set V of M be {0, ...,9,u,v}. Letgp: V — {1,..., 12} be given
by (i) =iforl <i <9,¢(0) =10, ¢(u) =11 and ¢(v) = 12.

Since x (M) = 0, the degree of each vertex is 6. Assume, without loss of generality, that
1k(0) = Ce(1, ..., 6). Since the degree of each vertex is 6, 123, . .., 456, 561 ¢ M. Since
each component contains at least 7 vertices, M is connected. So, by Lemma 3.8, we may
assume that 127 is a face. Then k(1) has the form C¢(7, 2, 0, 6, x, y), forsome x, y € V.
Itis easy to see that (x, y) = (3,4), (3,5), (3, 8), 4, 3), (4,5), (4, 8), (8,4), (8,9), (8, 3),
(8,5). The cases (x, y) = (8, 3) and (8, 5) are isomorphic to the case (x, y) = (4, 8) by
the map (0, 1)(2, 6)(3, 4, 8)(5,7) and (0, 1)(3,7)(4, 8, 5) respectively. So, we need not
consider the last two cases.

Claim. (x,y) = (3,4), (3,8),4,3), (4,8),(8,4) or (8,9).

If (x,y) = (3,5), then 045, 056, 135, 157 are faces and hence 1k(5) = C¢(4, 0, 6, 3,
1, 7). This implies that C3(1, 5, 6) < 1k(3). This is not possible.

If (x,y) = (4,5) then 1k(4) = Cs(6,1,5,0,3,z), where z = 7,8, 9, uorv.If z =7
then, as in the previous case, we get a contradiction. So, we may assume that 1k(4) =
Ce(6,1,5,0,3, 8) and hence 1k(6) = C¢(8,4, 1,0, 5, w),1k(5) = C¢(7, 1, 4,0, 6, w) for
somew € V.Itiseasytoseethatw = 9, u or v. In any case, we get 15 faces not containing
any from {9, u, v} \ {w}. This is not possible since M has 24 faces. This proves the
claim.

Case 1. (x,y) = (3,4),ie.,lk(1) = C4(7,2,0, 6, 3,4).Now,1k(3) = C4(6,1,4,0, 2, 2)
for some z € V. If z = 5 then C4(5,3,1,0) C 1k(6). If z = 7 then C4(7,3,0,1) C
Ik (2). This implies that z € {8, 9, u, v}. Assume, without loss of generality, that 1k(3) =
Ce(6,1,4,0,2,8). Now, Ik(2) = C4(8,3,0,1,7, w), forsome w € V.If w & {9, u, v}
then we get 14 faces not containing any of 9, u, v. This is not possible by Lemma 3.7. So,
assume without loss of generality that z = 9, i.e., 1k(2) = C¢(8, 3,0, 1,7,9).

Completing successively, we get 1k(6) = Cg(8,3,1,0,5,u), 1k(8) = Cq(u, 6,3, 2,
9,v),lIk(4) = C¢(7,1,3,0,5,v),Ik(5) = C¢(v,4,0,6,u,9),Ik(9) = C¢(7, u, 5, v, 8,2),
Ik(u) = C¢(7,9,5,6,8,v). Here M = B3 4 by the map ¢34 0 (0,9, 3,4, 7, u, 2, v)(1, 8)
(5,6), where @34: V. — V(B34) is given by ¢34(i) = vi;, 9343 + i) = v,
©34(6 +1) = v3;, for 1 <i <3, 034(0) = v41, @34(u) = v42, P34 (V) = v43.

Case?2. (x,y) = (3,8),i.e., k(1) = Cq(7,2,0,06, 3, 8). Now, 023, 034, 136 and 138 are
facesin M. So, 1k (3) = C6(2,0,4, 8, 1,6) or Cs(2, 0, 4, 6, 1, 8). In the first case, 1k(2) =
Ce(6,3,0,1,7, z) for some z € V. As in Case 1, z is a new vertex, say, 9. Then 1k(2) =
Ce(6,3,0,1,7,9)and 1k(6) = C(9, 2, 3, 1, 0, 5). This gives 15 faces not containing u or
v. Thisisnotpossible. Thus, 1k (3) = C4(2, 0, 4, 6, 1, 8). Now, 1k(6) = C¢(4,3, 1,0, 5, w)
for some w € V.If w = 2,7 or 8, then we get 14 faces not containing any of 9, u, v. This
is not possible by Lemma 3.7. So, assume without loss, that 1k(6) = C¢(4, 3, 1,0, 5,9).

Completing successively, we get 1k(4) = Cg(9, 6, 3,0,5,u), Ik(5) = C¢(4,0,6,9,
v,u), Ik(9) = C¢4,6,5,v,7,u), Ik(7) = C¢(9,u,8,1,2,v), 1k12) Cs(7,1,0,3,
8,v),1k(8) = C6(2,3,1,7,u,v).Here M = T12,1,2 by themap ¢o(0, 4, 6,5,7,u,9, 8, v)
(1,2).

Case3. (x,y) = (4,3),i.e.,1k(1) = Ce(7,2,0,6,4, 3).Now,1k(4) = C4(6, 1, 3,0, 5, 7)
for some z € V. If z = 2, then 1k(2) has 7 vertices. If z = 7, then 1k(4) =
Cs(6,1,3,0,5,7) and hence 127, 137, 457, 467 are faces in M. This implies that
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Ik(7) = C¢(2,1,3,5,4,6) or Cs(2, 1, 3, 6,4, 5). In either cases we get 14 faces not con-
taining any of 8, 9, u or v. This is not possible by Lemma 3.7. This implies that z = 8, 9, u
or v. Assume, without loss, that z = 8. This case is now isomorphic to Case 2 by the map
0,3,6,2,4,1)(5,8,7)(9, v).

Case4. (x,y) = (4,8),1i.e., k(1) = C¢(6,0,2,7,8,4). This gives Ik(4) = Ce(8, 1,
6,3,0,5).

Now, 1k(6) = C¢(3,4,1,0,5, z) for some z € V. By using Lemma 3.7,z = 9, u or v.
So, assume that 1k(6) = C¢(3, 4, 1,0, 5, 9). This implies that Ik(5) = C¢(9, 6, 0, 4, 8, u).
This case is now isomorphic to Case 1 by the map (1, 6)(2, 5)(3,4)(9, 7, u).

Case 5. (x,y) = (8,4),i.e.,1k(1) = Cq(6,0,2,7, 4, 8). Now, 034, 045, 147 and 148 are
faces in M. So, Ik(4) = C¢(3,0,5,7,1,8) or Cs(3,0,5,8, 1, 7).

Subcase 5.1. 1k(4) = C¢(3,0,5,7, 1, 8). Then (by using Lemma 3.7) 1k(7) = Cg(5, 4,

1,2, z,w),wherez, w € {9, u, v}.So, assume withoutloss, thatlk(7) = C¢(5,4, 1,2, 9, u).
Completing successively, we get 1k(2) = C¢(9,7, 1,0, 3, v), Ik(3) = C¢(2,0, 4, 8, u, v),

Ik(u) = C6(8,9,7,5,v,3), Ik(8) = C(9,u,3,4,1,6), Ik(5) = Cs(7,4,0,6,v,u),

Ik(6) = C¢(5,0, 1, 8,9,v). Here M = K3 4 by the map y340(0, 8)(1,9)(2, v, 3, u)(4,7),

where 34 is same as ¢34 (of Case 1) on the vertex-set.

Subcase 5.2. 1k(4) = C¢(3,0,5,8,1,7). Then 1k(7) = C¢(3,4,1, 2, z, w), for some
z, w € V. As in the previous case, z, w € {9, u, v}. So, assume without loss, that k(7)) =
Ce(3,4,1,2,9,u). Then 1k(2) = C(9,7, 1,0, 3,a) for some a € V. It is easy to see
that a = 8 or v. If a = 8 then, considering 1k(8), we get 19 faces not containing v. This
is not possible since f>(M) = 24. So, 1k(2) = C¢(9,7, 1,0, 3, v) and hence 1k(3) =
Ce(2,0,4,7,u,v). Then, 1k(8) = C¢(5,4,1,6, b, c), where b, ¢ € {9, u, v}. Since the
set of known faces is invariant under (1, 4)(2, 3)(5, 6)(9, u), we may assume that (b, c) =
O, un), u,9), (v,u)or (v,9).

Subcase 5.2.1. 1k(8)=C¢(5, 4, 1, 6,9, u). Completing successively, we get1k(9) = Cg(2,
7,u,8,6,v),1k(6) = C6(9,8,1,0,5,v), Ik(5) = Cs(6,0,4,8,u,v). Here M = T12.1 4
by the map ¢ 0 (0,2,4,u,9,6)(1,v,8)(3,5,7).

Subcase 5.2.2. 1k(8)=Ce(5, 4, 1, 6, u, 9). Completing successively, we get Ik (1) = Cg (6,
8,9,7,3,v), 1k(9) = C6(5,8,u,7,2,v), Ik(v) = Cs(6,u,3,2,9,5). Here M = By 3
by the map @43 0 (0,9,u,7,6,8, v, 3,2)(1,5,4), where g43: V — V(B43) is given by
043(i) = v1;, @a3(d +1) = vy, for 1 <i <4, 943(9) = v31, 943(0) = v32, Pa3(u) = v33,
@43(v) = v34.

Subcase 5.2.3. 1k(8) = Ce(5,4,1,6,v,9). Completing successively, we get lk(v) =
C6(3,2,9,8,6,u),1k(9) = Ce(8,v,2,7,u,5), k() = C¢(6,5,9,7,3,v). Here M =
Ti2,13bythemap ¢ o (1,0,8,6)(2,5,u,4,3,v,9).

Subcase 5.2.4. 1k(8)=Cs(5, 4, 1, 6, v, u). Completing successively, we getlk(v) = Cg (3,
2,9,6,8,u),lk(u) =Cs(3,7,9,5,8,v),1k(9) = Ce(6,5,u,7,2,v). Here M = Bs 3 by
the map @43 0 (1,2,9,4,6,3,5,u, v, 8,7), where @43 is as in Subcase 5.2.2.

Case 6. (x,y) = (8,9),i.e.,1k(1) = Cx(6,0,2,7,9,8).Now,1k(2) = C4(7, 1,0, 3, z, w)
for some z,w € V. It is easy to see that (z,w) = (5,6), (6,8), (5,8), (5, u),
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u,8), (6,5), (8,6), 8,u), u,5), O, u), u,4), (w,v). If (z,w) = (5,8), ie.,
Ik(2) = Cq(7,1,0,3,5, 8) then 045, 056, 235, 258 are faces in M. This implies that
Ik(5) = Cs(6, 0, 4, 8, 2, 3). Then deg(8) > 7. Since the set of known faces are invariant
under (0, 1)(3,7)(4,9)(5, 8), we may assume that (z, w) = (5, 6), (5, u), (6,5), (u,5),
9, u) or (u, v).

Subcase 6.1. 1k(2) = C¢(7, 1,0, 3,5, 6). Now, it is easy to see that 1k(6) = C¢(7, 2, 5, 0,
1, 8). Now, completing successively, we get 1k(7) = C¢(8, 6,2, 1,9, u), 1k(8) = Cq(u, 7,
6,1,9,v),1k(9) = C¢(8,1,7,u,4,v),l1k(4) = C¢(3,0,5,v,9, u),1k(5) = C¢(4, 0,6, 2,
3,v),1k(3) = Ce(5,2,0,4, u,v). Here M = T5,1 2 by themap ¢0(0,9,3,u,2,8,4,v, 1,
6,7,5).

Subcase 6.2. 1k(2) = C¢(7, 1,0, 3,5, u). Now, it is easy to see that Ik(5) = C¢(4, 0, 6, 3,
2, u). Now, completing successively, we get 1k(3) = C¢(2, 0, 4, v, 6, 5),1k(4) = Ce(3, 0,
5,u,9,v),lIk(9) = Ce(8,1,7,v,4,u),1k(7) = C6(9, 1,2, u, 8, v),1k(8) = Cq(1, 6, v, 7,
u,9), k() = Ce(2,5,4,9,8,7). Here M = B3 4 by themap ¢340(0, 9, 3,4,v, 1, 6,5, 8,
2,7), where @34 is as in Case 1.

Subcase 6.3. 1k(2) = Ce(7, 1,0, 3, 6, 5). Completing successively, we get 1k(6) = Cg(5,
0,1,8,3,2),1k(3) = C6(2,0,4,u,8,6), Ik(5) = C4(6,0,4,v,7,2),1k(8) = C¢(3, 6,
1,9,v,u),lk(7) = C¢(2, 1,9, u, v,5),1k(4) = C6(5,0,3,u,9,v),Ik(u) = C¢(4, 3,8, v,
7,9). Here M = B3 4 by the map ¢34 0 (0,9,3,5,7,u,2,8,1,v)(4, 6), where @34 is as
in Case 1.

Subcase 6.4. 1k(2) = Ce(7, 1,0, 3,9, u). Completing successively, we get 1k(9) = Cg(8,
1,7,3,2,u),1k(3) = C6(2,0,4,v,7,9),1k(7) = C6(3,9,1,2,u,v), Ik(u) = Co(7, 2,
9,8,5,v),Ik(8) = C¢(5,u,9,1,6,4),1k(5) = C6(8,4,0,6, v,u),lk(6) = C¢(5,0,1, 8,
4,v). Here M = B3 4 by the map ¢34 0 (0,7,2)(1,u)(3,6, 8,v,5,4,9), where ¢34 is as
in Case 1.

Subcase 6.5. 1k(2) = C¢(7, 1,0, 3, u,5). Now, itis easy to see that Ik(5) = C¢(4, 0, 6, u,
2,7) or Ce(4,0,6,7,2,u). The first case is isomorphic to Subcase 5.1 by the map
0,1,7,5)(2,4,6) (3,8, u). The second case is isomorphic to Subcase 5.2 by the map
0,4,5(1,7,2)(@3, 8, u, 6).

Subcase 6.6. 1k(2) = Ce(7, 1,0, 3, u, v). Now, itis easy to see that Ik(7) = C7(v, 2, 1,9,
a,b), where (a,b) = (3,4), 4,3), 4,5), 4,8), (5,4), (5,6), (5,8), (6,5), (6,8),
u,3), (u,4), (u,5), (u,8). Since the set of known faces is invariant under the map
(1,2)(3,6)(4, 5)(8, u)(9, v), we may assume that (a,b) = (3,4), 4, 3), 4,5), (4,8),
5,4), (5,8), (6,8), (u, 8).

Claim. (a,b) = (3,4) or (5,4).

If (a, b) = (4, 3) then, considering 1k(3), we get C4(u, 3,7,2) C lk(v). If (a,b) =
(4, 5) then, 1k(5) can not be a 6-cycle. If (a, b) = (4, 8) then, considering 1k(9), we see
that 0, 1, 4,7, 8,9 ¢ lk(u). This is not possible. If (a, b) = (5, 8) then, considering 1k(8),
we get C4(5, 8, 1,0) C 1k(6). If (a, b) = (6, 8) then, considering the links of 6,9 and 8
successively, we get C4(u, 8,7,2) C lk(v). If (a, b) = (u, 8) then, considering lk(u), we
get 7 vertices in 1k(8). These prove the claim.

Subcase 6.6.1. 1k(7) = Cg(v,2,1,9,3,4). Completing successively, we get 1k(3)
= (40,2, u,9,7,4), IkO) = Ce¢(1,7,3,u,5,8), k@4 = Ce0,3,7,0,8,5),
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Ik(5) = C4(0,4,8,9,u,6), Ikk(u) = C¢(2,3,9,5,6,v), Ik(6) = C¢(0, 1,8, v,u,5).
Now, M = K34 by the map ¥34 0 (0,4,5,7,3,2,1,v,6,9,u), where y34 is as in
Subcase 5.1.

Subcase 6.6.2. 1k(7)=Cgs(v,2, 1,9, 5, 4). Now, it is easy to see that Ik(4) =C¢(3, 0, 5, 7,
v, 8). Now, 0, 1,4,7,8 & lk(u). So, 5 € lk(u) and hence 1k(5) = C4(6,0,4,7,9, u).
Then 1k(3) = C4(8,4,0,2,u,6) or C4(8,4,0,2,u,9).

Subcase 6.6.2.1. 1k(3) = C¢(8,4,0,2, u, 6). Completing successively, we get lk(6) =
C6(0,1,8,3,u,5), k@®) = C¢(1,6,3,4,v,9), Ik(9) = Ce(1,7,5,u,v,8). Now,
M = K3 4 by the map 34 0 (0, 8,4,v,1,5,u)(2,6,7,3,9), where 34 is as in Subcase
5.1.

Subcase 6.6.2.2. 1k(3) = C¢(8,4,0, 2, u,9). Completing successively, we get 1k(9) =
Ce(1,7,5,u,3,8),1k(8) = Cq(1,6,v,4,3,9), 1k(6) = C¢(0, 1,8, v,u,5). Now, M =
Ts,2,2 by the map ¢ o (0, 1,u,7,4,3,8)(2,6,v,5), where : V — V(Ts22) is given
by v (@) =u;,forl <i <6, ¥y (5+i)=v;,for2 <i <4,y (0) = vs, (1) = vg and
Y (v) = v7. o

Lemma 3.11. If M is a 14-vertex degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0 then M is isomorphic to T4,12, Tha,1,3 or Q7.

Proof. Let M be a 14-vertex degree regular combinatorial 2-manifold of Euler character-
istic 0. Let the vertex set V be {0, 1, ... ,9,u, v, w, z}. Letp: V — {1, ..., 14} be given
by (i) =i, forl <i <9,¢0(0) =10,pu) =11,¢() = 12, p(w) = 13 and ¢(z) = 14.

Since x (M) = 0, the degree of each vertex is 6. Assume without loss that 1k(0) =
Ce(1,2,3,4,5,6). By Lemma 3.8, Ik(1) = C¢(6,0,2,7, x,y), forsome x,y € V. Itis
easy to see that (x, y) = (3,4), (3,8), (4, 3), (4,8), (5, 3), (5,4), (5,8), (8,3), (8,4),
(8,9). The case (x,y) = (3, 8) is isomorphic to the case (x,y) = (5,8) by the map
(2,6)(3,5)(7, 8) and to the case (x, y) = (8,4) by the map (0, 1)(2, 6)(3, 4, 8)(5, 7).
Hence we may assume that (x, y) = (3, 4), (3, 8), (4, 3), (4, 8),(5,3),(5,4), (8, 3),(8,9).

Claim. (x,y) = (3,4), (8,3)or (8,9)

If (x,y) = (4,3) then, considering the links of 3,6,2,4,7,8, u successively
we get C3z(v,u,7) C lk(w). So, (x,y) # (4,3). If (x,y) = (5,3) then, Ik(5) =
Cs(1,3,6,0,4,7). But then C4(0,1,3,5) € 1k(6). So, (x,y) # (5,3). Similarly,
(x,y) # (3,8), (4, 8) or (5, 4). This proves the claim.

Case 1. (x,y) = (3,4),1.e.,1k(l) = C¢(6,0, 2,7, 3,4). Now, it easy to see that k(3) =
Ce(7,1,4,0,2,5) or Cg(7,1,4,0,2,8). In the first case, 1Ik(5) = C¢(4,0,6,2,3,7) or
Ce(4,0, 6,7, 3,2). In both these cases we have 23 edges in M[{0, . ..7}]. This is not pos-
sible by Lemma 3.9. Thus, 1k(3) = C4(7, 1, 4, 0, 2, 8). Now, 1k(2) = C¢(7, 1,0, 3, 8, b)
for some b € V. Itis easy to see that b = 5 or 9. If b = 5 then, considering the links of 4
and 5, we get > 17 faces not containing any of 9, u, v, w, z. This is not possible by Lemma
3.7. Thus 1k(2) = Cg(7, 1,0, 3, 8,9). Again, by using Lemma 3.7, we successively get
Ik(7) = C6(8,3,1,2,9,u), Ik@®) = Cs(9,2,3,7, u,v), k(9 = C¢(u,7,2,8, v, w),
Ik(u) = C¢(v,8,7,9, w, 2),lk(v) = C¢(w, 9, 8, u, z,5). Then 045, 056, Svw and Svz are
faces. So, 1k(5) = C4(6, 0, 4, w, v, 7) or Cg(6, 0, 4, z, v, w). In the first case, considering
the links of 4 and 6, we get C5(w, 6, 5, v, u) € lk(z). Thus 1k(5) = Cg(6, 0, 4, z, v, w).
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Now, completing successively, we get lk(w) = Cg(9,v,5,6, z,u) and 1k(6) =
Cs(1,0,5, w, z,4). Here M is isomorphic to T14,1,2 by the map ¢ 0 (0, 7, 3, 5)(1, 6, 9)(2,
4, 8)(u, 2)(v, w).

Case 2. (x,y) = (8,3).Since 023,034, 136 and 138 are faces, 1k(3) = C¢(2,0,4, 8, 1, 6)
or Ce(2,0,4,6, 1, 8). In the first case, considering the links of 6, 2, 9, 7, 8 and 4 succes-
sively, we get 7 vertices in lk(u). Thus, 1k(3) = C¢(2, 0, 4, 6, 1, 8).

Now, completing successively, we getlk(6) = Ce(5,0, 1, 3,4, 9),1k(4) = Cs(5, 0, 3, 6,
9,u), Ik(5) = C¢u,4,0,6,9,v), k(9 = C¢(u,4,6,5,v,w), Ik(2) = C¢(8,3,0,1,
7,2), 1k8) = C¢(7,1,3,2,z,w), Ik(u) = C¢4,5,v,z,w,9), Ik(z) = C¢(2,7,v,u,
w, 8) and1k(7) = Ce(1,2,z, v, w, 8). Here M = T14,12 by themap 0 (0,6,7,1,4,8,2,
3,5,9).

’

Case3. (x,y) = (8,9), ie., k(1) = C4(6,0,2,7,8,9). Now, 1k(6) = C¢(9, 1,0,5,
a, b), for some a, b € V. Itis easy to see that (a, b) = (2, 3), (2,7), 3,2),(3,4), 3,7,
B,u),(71,2),,3),(7,4), (T,u), (8,3), (8,4), (8,7), (8, u), (u, 3), u,4), (u,7), (u,v).
Since the set of known faces is invariant under the map (0, 1)(3, 7)(4, 8)(5,9), we may
assume that (a, b) = (2,3), 2,7), (3,4), 3,7, 3,u), (7,3), (7,4), (7,u), (8,4), (8, u)
or (i, v).

By the similar arguments as in the previous claim one gets (a, b) = (2, 7) or (u, v).

Subcase 3.1. Ik(6) = C¢(9,1,0,5,2,7). Completing successively, we get 1k(2)
= (C¢(1,0,3, 5,6,7), Ik(5) = Ce(4,0,6,2,3,u), Ik(3) = C¢(2,0,4,v,u,5),
Ik(4) = C6(3,0,5,u, w,v), Ik(u) = Ce(3,5,4, w, z,v), Ik(7) = C¢(1,2,6,9, z, 8),
1k(9) = C¢(1,6,7, z, w, 8),1k(z) = Ce(7, 8, v, u, w,9) andlk(v) = C¢(3, 4, w, 8, z, u).
Here M is isomorphic to T14,1,2 by the map ¢ 0 (0,4, 1,7, 8)(2, 5, 3)(u, 2) (v, w).

Subcase 3.2. 1k(6) = C¢(9,1,0,5,u,v). Now, Ik(5) = Ce(u, 6,0,4,c,d), for some
c,d € V. Itis easy to see that (c,d) = (2, 3), 2,7), (7,2), (7,3), (7,8), (7, w), (8, 3),
3,7, (8,9, (8, w), (9,8), (v,3), (v,7), (v,8), (v,9), (v, w), (w,3), (w,7), (w, ),
(w, z). Since the set of known faces is invariant under the map (0, 6)(2, 9)(3, v)(4, u)(7, 8),
we may assume that (c,d) = (2,3), 2,7), (7,2), (7,3), (7,8), (7, w), (8,3), (8,7),
8, w), (v, 3), (v, w) or (w, z).

Claim. (c,d) = (7,8), (8, w) or (w, 2).

If (c,d) = (2, 3) then, 1k(5) = Cg(u, 6,0, 4,2, 3). Considering the links of 2, 4, 3,
u, w successively, we get C5(8, w, 4,2, 1) C k(7). If (c,d) = (2, 7) then, considering
1k(2) we get C4(3,2,5,0) C 1k#4). If (¢, d) = (7, 3) then, considering 1k(3), we get
C4(7,3,0,1) C Ik(2). If (¢, d) = (v, 3) then, considering 1k(3), we get 7 vertices in
Ik(v). So, (¢, d) # (2,3), (2,7), (7, 3) or (v, 3). Similarly, (c, d) # (7,2), (7, w), (8, 3),
(8,7) or (v, w). This proves the claim.

Subcase 3.2.1. 1k(5) = Ce(u,6,0,4,7,8). Now, 1k(8) = Ce¢(u,5,7, 1,9, x), for some
x € V. Itis easy to check that x = 3, w. By using Lemma 3.7, we get x # 3. So,
1k(8) = Co(u,5,7,1,9, w). This implies that 1k(9) = Cg(w, 8, 1, 6, v, y), for some
y € V. Itis easy to see that y = 3 or z.

Subcase 3.2.1.1. 1k(9) = Cg(w, 8, 1, 6, v, 3). This implies that Ik(u) = C¢(w, 8,5, 6,
v, 7). Again, by using Lemma 3.7, we get Ik(7) = C¢(4,5,8,1,2,z). Then lk(4) =
C6(3,0,5,7, z,a), for some a € V. Considering 1k(3), we geta = v or w.
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Subcase 3.2.1.1.1. k@) = C¢(3,0,5,7,z,v). Completing successively we get
Ik(z) = C6(2,7,4,v,u, w),lIk(2) = C¢(1,0, 3, w, z, 7) and 1k(3) = C4(2,0,4, v, 9, w).
Here M = T14,13 by themap ¢ 0 (0, 1,4, v, w,6,2,9,3,2,5,u)(7, 8).

Subcase 3.2.1.1.2. 1k(4) = C¢(3,0,5,7,z, w). Completing successively, we get
Ik(3) = C¢(2,0,4, w,9,v),1k(2) = C¢(1,0,3,v,z,7) and Ik(v) = C¢(2, 3,9, 6, u, 2).
Now, M = Q72 bythemap ¢ o (0,1,9,u,v,5,2,7,8)(3, w, 4, z, 6).

Subcase 3.2.1.2. 1k(9) = Cg(w, 8, 1, 6, v, z). Then it follows that k() = Ce(v, 6, 5,
8, w, 3). This case is now isomorphic to the Subcase 3.2.1.1 by the map (1, 5)(2, 4)(u, 9).

Subcase 3.2.2. 1k(5) = Ce¢(u,6,0,4,8, w). Since, 178, 189, 458 and 58w are faces,
Ik(8) = Ce¢(4,5, w,9,1,7)or Ce(4,5, w,7,1,9).

Subcase 3.2.2.1. 1k(8) = C¢(4,5, w,9,1,7). Thenlk(4) = C¢(3,0, 5,8, 7, x), for some
x € V.Itis easy to see that x = v, z. If x = v then, considering the links of 4, 7, v succes-
sively, we obtain 29 faces in M, which is not possible. Thus k(4) = C¢(3, 0, 5, 8,7, 2).

Completing successively, we get Ik(7) = Ce(2, 1, 8,4, z,v), Ik(2) = C¢(3,0,1,7,
v,u), kk(v) = C¢(2,u,6,9,2,7), 1k(9) = Ce(1,6,v,z,w,8), Ik(z) = C¢(3,4,7,v
9, w)andlk(w) = C6(3, u, 5, 8,9, z). Here M = T14,1,3 by themap ¢0(0,6,2,9,1,5,3
4,7,8)(u, w, 2).

)

Subcase 3.2.2.2. 1k(8) = C¢(4,5,w,7,1,9). Then 1k(4) = C¢(3,0,5,8,9,2) and
1k(9) = Cg(1,6, v, z,4, 8). Now, lIk(w) = Cg(u,5,8,7,a,b), forsome a,b € V. Itis
easy to check that (a, b) = (3, 2), (3, 2), (v, z) or (z, 3). The set of known faces is invariant
under the map (0, 9)(1, 6)(2, v)(3, 2)(5, 8)(7, u). So, we may assume that (a, b) = (3, 2),
(3, z) or (z, 3). If (a, b) = (3, 2) then, considering the links of 2 and 3, we get 7 vertices
in 1k(7). If (a,b) = (3, z) then, considering 1k(3) we get C4(7,3,0,1) € 1k(2). So,
lk(w) = C¢(u, 5, 8,7, z,3).

Completing successively, we get 1k(3) = C¢(2, 0,4, z, w, u), Ikk(u) = Ce(2,3, w, 5,
6,v),1k(2) = Ce(1,0,3,u,v,7) and lk(z) = C¢(3,4,9,v,7, w). Here M = Q75 by the
map ¢ o (0, 1, w)(2, z,4,3)(5,9)(6, 7, v)(8, u).

Subcase 3.2.3. 1k(5) = Cg(u, 6,0, 4, w, 7). Thisimplies thatlk(4) = Cg(w, 5,0, 3, x, y),
for some x,y € V. Itis easy to check that (x, y) = (7,2), (7, 8), (7,v), (8,7), (8,9),
9, v), (u,v), (v,7), (v,8), (v,9), (v,u), (z,7), (z,8), (z,u) or (z, v). By similar argu-
ments as in the previous claims one gets (x, y) = (8,7), (8,9) or (9, v).

Subcase 3.2.3.1. 1k(4) = Cg(w, 5,0, 3, 8,9). Completing successively, we get 1k(9)
= C¢(w,4,8,1,6,v), Ik(w) = Cs(v,9,4,5,2,7), 1k(8) = C¢(3,4,9,1,7,2),1k(7) =
Ce(2,1,8,z, w,v), Ik(z) = C¢@3,8,7, w, 5, u), lkk(v) = C¢2,7, w, 9,6, u) and l1k(u)
=Ce(2,3,2,5,6,v).Here M = T14,1 3 bythemap ¢o(0,5,1,6,2,9,3,8,7)(u, v, w, 2).

Subcase 3.2.3.2. 1k(4) = Ce¢(w, 5,0, 3,9, v). Completing successively, we get 1k(9)
= C6(3,4,v,6,1,8),1k(3) = C6(2,0,4,9,8, 2), Ik(v) = Ce(u, 6,9,4, w,7), 1k(2) =
Ce(1,0,3,z, u,7), k(8 = C7(1,9,3,z, w,7), l[k(z) = Ce(2,3,8, w,5,u), k(w)
= C¢(4,5,2,8,7,v) and 1k(7) = Ce(1,2,u,v, w,8). Here M = Ty4,1,3 by the map
9o(0,1,5,z,w)3,v,7,6,4,u)(8,9).

Subcase 3.2.3.3. Ik(4) = Ce(w, 5,0, 3,8,7). Completing successively we get 1k(7)
= Co(w,4,8,1,2,v),1k(8) = C6(3,4,7,1,9,2),1k9) = Ce¢(z,8, 1,6, v, w), Ik(v) =
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Ce(2,7,w,9,6,u),lk(z) = Cs(5,w,9,8,3,u),lk(u) = Ce(2,v,6,5,z,3) and k(2) =
Ce(1,0,3,u,v,7).Here M = Q7o bythemapgivenbypo (0,1,3,7,u4,8,5,2,6,2,9,4,
w, v). O

Lemma 3.12. If M is a 15-vertex degree-regular combinatorial 2-manifolds of Euler char-
acteristic 0 then M is isomorphic to Tis,12, ...,T15,1,5, B35, Bs3 or Os3.

Proof. Let M be a 15-vertex degree regular combinatorial 2-manifold of Euler characteris-
tic 0. Let the vertex set V be {0, 1, ...,9,u, v, w, z,s}. Letp: V — {1, ..., 15} be given
by p(i) =i,forl <i <9,¢(0) =10, p(u) = 11, p(v) = 12, p(w) = 13, p(z) = 14
and ¢(s) = 15.

Since x (M) = 0, the degree of each vertex is 6. As earlier, we may assume that 1k (0) =
Ce(1,2,3,4,5,6). By Lemma 3.8, Ik(1) = C¢(7, 2,0, 6, x, y), for some x,y € V. Itis
easy to see that (x,y) = (3,4), (3,5), (3,8), (4,3), 4,5), 4,8), (8, 3), (8,4), (8,5),
8,9).

If (x, y) = (3,5) then, considering 1k(3) we get 7 vertices in lk(5). The case (x, y) =
(8, 3) isisomorphic to the case (x, y) = (4, 8) by themap (0, 1)(2, 6)(3, 4, 8)(5, 7) and the
case (x, y) = (8, 5) is isomorphic to the case (x, y) = (8, 3) by the map (2, 6)(3, 5)(7, 8).
So, we may assume that (x, y) = (3,4), (3, 8), (4,3), 4,5), (4,8), (8,4) or (8, 9).

Casel. (x,y) = (3,4), i.e., k(1) = C¢(7,2,0,6,3,4). Then 1k(3) = C¢(2,0,4,1,
6,8), 1k(6) = C4(5,0,1,3,8,9),1k(4) = C¢(5,0,3,1,7,u) and Ik(2) = C¢(8, 3,0, 1,
7, v). Now, it is easy to see that 1k(8) = C¢(9, 6, 3,2, v, u) or Ce(9, 6, 3,2, v, w). In the
first case, we get 34 edges in M[{0, ..., 9, u, v}], a contradiction to Lemma 3.9. So, 1k(8)
= C¢(9, 6, 3,2, v, w). Now, completing successively, we get 1k(7) = C¢(u, 4, 1, 2, v, 2),
k(v) = C¢(w, 8,2,7,z,5), Ik(5) = C(4,0,6,9,s,u), Ik(s) = Ce(5,9,z,v, w, u),
lk(u) = Ce(7,4,5,s,w, z) and 1k(9) = Ce(5, 6, 8, w, z,5). Here M = Bj 5 by the map
¥350(2,9,2)(0,v,6,u,1,8)(3,7,5,s), where Y35: V — V(B35) given by y35(i) =
Vi, Y353 + i) = v, Y3s(6 + i) = w3, 1 <0 < 3, ¥35(0) = war, ¥3s(u) = van,
Y35(v) = va3, Y35(w) = vs1, ¥35(2) = vsy and Yr3s5(s) = vsa.

Case?2. (x,y) = (3,8). Then1lk(3) = C¢(2,0,4,8,1,6) or Cs(2,0,4,6, 1, 8).

Subcase 2.1. 1k(3) = C¢(2, 0,4, 8, 1, 6). Completing successively, we get 1k(2) = Cg(7,

1,0,3,6,9),1k(6) = Ce(5,0,1,3,2,9),1k(9) = C6(5,6,2,7,v,u),1k(5) = Cg4,0,

6,9, u,w),lk(7) = Ce(8,1,2,9,v,2),1k(8) = Cs(4,3,1,7, z,5),1k(4) = C¢(5, 0, 3, 8,

s, w), lk(u) = C¢(5,9, v, s, z, w),lk(s) = C¢(4, 8, z, u, v, w) and Ik(z) = C¢(7, 8, s, u,

w, v). Here M isisomorphicto Qs 3 by themap yo(5, 8,5,v,9,7,6) (0, 1, 3,2, 4, z, w, u),
where ¥: V. — V(Qs3) is given by ¥ (i) = wuj1, ¥S +i) = ujp, 1 < i < 3,

Y@+ j)=v1,1 <j <2, %0 = v, ¥(0) = v, ¥ = uz, y(v) = uj,

Y (w) = u33, ¥(z) = vi3 and ¥ (s) = vo3.

Subcase 2.2. 1k(3) = C¢(2,0,4,6,1,8). Completing successively, we get 1k(2)
= C¢(7,1,0, 3,8,9), Ik(8) = C¢(7,1,3,2,9,u), Ik(6) = C¢(5,0,1,3,4,v),
Ik(4) = C4(5,0,3,6,v,w), Ik(7) = C¢(9,2,1,8,u,z), k() = Ce(v,6,0,4,w,s),
1k(9) = C¢(8,2,7,z,5,u), Ik(v) = C¢(6,4,w, z,s,5), Ik(s) = Ce(u,w,5,v,2z,9)
and lk(u) = C¢(7,8,9,5, w,z). Here M = Ti512 by the map ¢ o (0,7,2,4,9,1,
5)(3,6,8)(u, s, w, v).

Case 3. (x,y) = (4,3), ie., k(1) = Cg(7,2,0,6,4,3). Then k(4) = Cs(5,0,3, 1,
6,8),1k(3) = C6(2,0,4,1,7,9),1k(6) = Cs(5,0, 1,4, 8, u),1k(2) = Cs(9, 3,0, 1,7, v),
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Ik(7) = C4(9,3,1,2,v,w), Ik(5) = C¢(8,4,0,6,u,z), Ik(B) = Cq(u,6,4,5,2z,5),
1k(9) = Cg(v,2,3,7, w,s). Thus, Ik(s) = Cg(v,9, w, z,8,u) or C¢(v,9, w, u, 8, z).
In the first case, considering the links of s, u, v successively, we get 7 vertices
in lk(v). So, lk(s) = Ce(v,9,w,u,8,z). Now, completing successively, we get
lk(u) = Ce(5,6,8, s, w,z) and lk(z) = Cs(5,8, s, v, w,u). Here M = Ti5,12 by the
map ¢ 0 (0,5,2,8,1,6,3,7,9)(u, s, w, v).

Case4d. (x,y) = 4,5), ie., k(1) = Cq(7,2,0,6,4,5). Now, completing suc-
cessively, we get lIk(4) = C(3,0,5,1,6,8), Ik(6) = C¢(5,0,1,4,8,9), 1k(5)
= C4(7,1,4,0,6,9), Ik(7) = Cs(2,1,5,9,v,u), Ik(2) = Ce¢3,0,1,7,u, w),
Ik(3) = C¢(8,4,0,2,w,z), Ik(®) = C¢(9,6,4,3, z,5), Ik(9) = Ce(7,5,6,8, s, v),
Ik(v) = Co(u,7,9, s, w, z),l1k(z) = Ce(w, 3,8, s,u,v)and lk(u) = C¢(2,7, v, z, s, w).
Now, M = Q53 by themap ¥ 0 (0,1,2,2)(3,8,7,5,9, 6,4, 5)(u, v, w), where ¥ is as
in Subcase 2.1.

Case5. (x,y) = 4,8), ie., k(1) = Cq(7,2,0,6,4,8). Now, completing suc-
cessively, we get lIk(4) = C¢(5,0,3,6,1,8), Ik(6) = C¢(5,0,1,4,3,9), 1k(3)
= (C4(2,0,4,6,9,u), IkR) = Cq(7,1,0,3,u,v), Ik(5) = C¢(8,4,0,6,9, w),
k@®) = C¢(7,1,4,5,w,2), 1k(9) = Ce(u,3,6,5, w,s), k(7)) = Ce(v,2,1,8, z,5),
Ik(s) = Co(w, 9, u, z,7,v), Ik(w) = C¢(8, 5,9, s, v, z) and Ik(z) = C4(7, 8, w, v, u, s).
Now, M is isomorphic to B3 5 by the map yr35 o (1, u)(2, 5)(5,9)(0,v,3,4,7,z, w, 6, 8),
where 35 is as in Case 1.

Case 6. (x,y) = (8,4),i.e.,1k(1) = C4(7,2,0,6,8,4).Now,1k(4) = C4(5,0,3,8,1,7)
or C¢(5,0,3,7,1,8). In the first case, we get Ik(3) = C¢(8,4,0,2,a,b), for some
a,b € V. Using Lemma 3.9, we may assume that (a,b) = (9, u). Considering the
links of 2, 7, 5, 6, 8, 9, s, u and v successively, we get 7 vertices in lk(v). Thus,
k4) = Ce(5,0,3,7,1,8).

Again, by using Lemma 3.9, we get Ik(3) = C¢(7, 4,0, 2,9, u),1k(2) = C¢(7, 1,0, 3,
9,v), Ik(7) = C¢(2,1,4,3,u,v), 1k(9) = Ce12,3,u,z, w,v), kk(v) = Ce(u,7,2,9,
w,s), lku) = Ce(9,3,7,v,s,z). Then lk(z) = Ce¢(s, u,9, w, a, b), forsomea,b € V.
It is easy to see that (a, b) = (5, 6), (5, 8), (6,5), (6, 8), (8,5) or (8, 6). Since the set of
known faces remain invariant under the map (0, 4)(2, 7)(6, 8)(9, u)(w, s), we can assume
that (a, b) = (5, 6), (5, 8), (6, 8) or (8, 6).

Subcase 6.1. (a,b) = (5,6). Completing successively, we get Ik(5) = C¢(8,4,0, 6,
z, w), Ik(6) = C6(8, 1,0, 5, z,5) and Ik(8) = C4(5,4, 1, 6, s, w). Now, M is isomorphic
to Bs 3 by the map 53 0 (0,s,3,1)(2,6,9,7,u)(4, 5, z, 8), where ¥53: V. — V(Bs3)
is given by ¥53() = vy, for 1 <i <5, ¥53(5 +1i) = vy, for 1 <i <4, Y53(0) = vys,
Ys3(u) = v31, Ys3(v) = v32, Ys3(w) = v33, ¥s3(2) = V34, Ys53(s) = v3s.

Subcase 6.2. (a,b) = (5, 8). Completing successively, we get 1k(5) = Cg(w, z, 8, 4,
0,6), 1k(8) = C4(6, 1,4, 5, z,s) and 1k(6) = C¢(5,0, 1, 8, s, w). Here M is isomorphic
to Tis,1,5 by the map ¢ 0 (0,2,1,7,6,8, w, 93, u,5)(4, v, s, 2).

Subcase 6.3. (a,b) = (6, 8). Completing successively, we get Ik(6) = C4(5,0, 1,8, z,
w), Ik(8) = Ce(1,4,5,s,z,6) and 1k(5) = 4,0,6, w, s, 8). Here M = Bs 3 by the map
Ys3 o0 (1,9)(0,z,2,s,v,6,8,3,5, w,7), where {53 is as in Subcase 6.1.

Subcase 6.4. (a, b) = (8, 6). Completing successively, we getlk(6) = C¢(5,0, 1, 8, z, s),
Ik(8) = C¢(5,4,1,6,z,w) and 1k(5) = C¢(8,4,0,6,s, w). Here M is isomorphic to
T15.1,4 by the map given by ¢ 0 (0,7,1,2,6,3,u,s,4,v,5,8, w,9).
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Case7. (x,y) = (8,9), i.e, k(1) = C4(7,2,0,6,8,9). Now, Ik(6) = C¢(8, 1,0, 5,
a, b). It is easy to check that (a, b) = (2, 3), (2,7), (3,2), (3,7), (3,4), (3, u), (7,2),
(7,3),(7,4), (7,u),(9,3),9,4), 9,7), (9, u), (u,3), (u,4), (u,7), (u, v).

If (a,b) = (3,7) then, considering links of 3 and 7, we get 7 vertices in k(7). If
(a,b) = (7,3), (7,4) or (9, 4) then, considering lk(b), we get 7 vertices in lk(a). Since
the set of known faces remain invariant under that map (0, 1)(3, 7)(4, 9)(5, 8), we may
assume that (a, b) = (2,3), 2,7), 3,4), 3, u), (7,u), 9, u), (u, v).

Subcase 7.1. 1k(6) = C¢(8,1,0,5,2,3). Completing successively, we get lk(2) =
Ce(1,0,3, 6,5,7), Ik(5) = C¢(4,0,6,2,7,u), Ik3) = C¢(4,0,2,6,8,v), 1k(8)
= C(9,1,6,3,v,w), Ik(4) = C¢(u, 5,0, 3, v, 2), Ik(v) = Cg(w, 8,3,4,z,5), k(7)) =
C6(9,1,2,5,u,s),1k(9) = C¢(w, 8,1,7, s, 2), Ik(z) = C¢(4, v,s,9, w, u) and Ik(s) =
Co(w,u,7,9,z,v). Here M = B3 5 by the map 35 0 (0,7,5,9,1,4)(2,8,5)(3, u, 6, v,
z, w), where Y35 is as in Case 1.

Subcase 7.2. Ik(6) = Ce(8,1,0,5,2,7). Completing successively, we get 1k(2)
= C¢(5,6,7,1,0,3), Ik(5) = C(4,0,6,2,3,u), Ik3) = Ce4,0,2,5,u,v), lk
@) = Ce¢(u,5,0,3,v,w), Ik(u) = Ce¢(v,3,5,4,w,2), k(7) = C¢09,1,2,6,8,s),
Ik(v) = Ce(w, 4,3, u,z,5),1k(8) = C6(9,1,6,7,5,2),1k(9) = Cs(8, 1,7, s, w, z) and
Ik(s) = C6(8,7,9, w, v, z). Here M = T15,1 2 by themap ¢ 0 (0,7,3,9,1,4)(2, 6,5, 8).

Subcase 7.3. Ik(6) = C(8,1,0,5,3,4). Completing successively, we get 1k(3)
= C4(2,0,4, 6,5,u), Ik(4) = C¢(5,0,3,6,8,v), Ik(5) = Cs(3,6,0,4,v,u), 1k2)
=Ce(7,1,0,3,u, w), Ik(u) = Cg(v,5,3,2,w, 2), lk(v) = C¢(8,4,5,u, z,s), Ik(8) =
C6(9,1,6,4,v,s),1k9) = Co(7, 1,8, s, w, 2), Ik(w) = C6(2,7,5,9, z,u) and 1k(7) =
C6(9,1,2, w,s,z). Here M = Q53 bythemap ¢ 0(0,1,8,7,u,s,9(2,z,w,v,6,5,3),
where ¥ is as in Subcase 2.1.

Subcase 7.4. 1k(6) = C¢(8,1,0,5,3,u). Completing successively, we get lk(3)
= C6(4,0,2, 5,6,u), 1k(2) = Ce(7,1,0,3,5,v), Ik(5) = C¢4,0,6,3,2,v), 1k4)
= C¢(u,3,0,5 v, w), Ik(u) = C¢(8,6, 3,4, w, 2), k(@) = C¢(9, 1,6, u,z,s),lk{w) =
Ce(7,2,5,4,w,s),1k(7) = C6(9, 1,2, v, s, 2), Ik(s) = C¢(9, w,v,7, z,8) and Ik(z) =
Co(w,9,7,5,8,u).Here M = B3 sbythemapy3s0(0,7,z,2,u,5,v,5,3,8,6,9, w, 1),
where Y35 is as defined in Case 1.

Subcase 7.5. 1k(6) = Ce(8,1,0,5,7, u). Now, it is easy to see that Ik(7) = C¢(9, 1,2, 5,
6,u) or C6(9,1,2,u,6,5). The first case is isomorphic to Subcase 6.2 by that map
0,3,9,6,4,u,8, 5,7, 1). The second case is isomorphic to Subcase 6.1 by the map
©0,3,9,6,4,u,7,1)(5,98).

Subcase 7.6. 1k(6) = C¢(8,1,0,5,9,u). Completing successively, we get 1k(9)
= C¢(8,1,7, u,6,5), Ik(5) = C4(4,0,6,9,8,v), Ik(8) = C¢(6,1,9,5,v,u), Ik(u)
= Cs(7,9,6,8, v, w),1k(7) = C6(2,1,9, u, w, z), Ik(v) = C¢(4, 5,8, u, w,s), 1 kQ2) =
C6(3,0,1,7,2,5), Ik(s) = C¢(3,2,z,4, v,w), 1k(4) = C6(3,0,5,v,s,z) and Ik(3) =
Cs(4,0,2,s,w,z). Here M = B3 5 by the map ¥3s50(1,z,v,5,6, w,4,9,3,7,5, 8,2, u),
where Y35 is as in Case 1.

Subcase 7.7. 1k(6) = C¢(8,1,0,5,u,v). Then, k(5) = C¢(u,6,0,4,c,d), for
some c¢,d € V. It is easy to see that (c,d) = (2,3), 2,7), (7,2), (7,3), (7,9),
(7, w), (8,9), (9,3), (9,7, 9,8), 9, w), (v,3), (v,7), (v,8), (v,9), (v, w), (w,3),
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(w,7), (w,9), (w,z). Since the set of known faces remain invariant under the map
(0,6)(2,8)(3, v)(4,u)(7,9), we may assume that (c,d) = (2,3), (2,7), (7,2), (7,3),
(7,9), (7, w), 9, 3), 9,7), 9, w), (v, 3), (v, w), (w, 2).

Claim. (c,d) = (2,3), 9, w), (v, w) or (w, 2).

If (¢, d) = (2, 7) then, considering 1k (2) we get C4(3, 2, 5,0) € 1k(4).If (¢, d) = (7, 3)
then, considering 1k (3), we get C4(7, 3,0, 1) C 1k(2).

If (¢, d) = (7, 2) then, considering the links of 2, u, 3,4, 7, w, 9, v successively, we get
7 vertices in 1k(8). If (¢, d) = (9, 3) or (v, 3) then, considering 1k(3), we get 7 vertices
in Ik(c) . If (c,d) = (9, 7) then, considering the links of 9, 4, 7, 2, v, 8, s successively,
we get 7 vertices in lk(u). If (¢, d) = (7, 9) then, considering the links of 5, 7, 2, 4, 3, v
successively, we get lk(u) = C¢(9, 5, 6, v, z, x), where x = z or s. In either case lk(x)
has > 7 vertices.

If (¢, d) = (7, w) then, Ik(7) = C¢(2, 1,9, w, 5,4) or C¢(2, 1,9, 4,5, w). In the first
case, considering the links of 4 and 2 we get C4(z, 2,0,4) C 1k(3). In the second case,
considering links of 7, 4, 2, w, z, u successively, we get 7 vertices in 1lk(3). This proves
the claim.

Subcase 7.7.1. 1k(5) = Cg(u, 6,0, 4,2, 3). Now, completing successively we get 1k(2)
= C¢(1,0,3,5,4,7),1k(4) = C4(3,0,5,2,7, w), Ik(3) = C4(5,2,0,4, w, u), lIk(u) =
Ce(6,5,3, w, s,v), Ik(7) = Ce(9,1,2,4,w, z), Ik(w) = C¢(3,4,7,z,5,u), Ik =
Ce6(9,1,6,v,2,5),1k(9) = C4(8,1,7,z,v,s) and Ik(v) = Ce(8, 6, u, s,9, 7). Here M is
isomorphic to Qs 3 by the map ¢ o (0, 1,z, w,6,8,u,7,s,9,v)(3,4), where ¢ is as in
Subcase 2.1.

Subcase 7.7.2. 1k(5) = C¢(u, 6,0, 4,9, w). This implies that Ik(9) = C¢(7, 1, 8,4, 5, w)
or C¢(7, 1, 8, w, 5, 4). In the first case, considering links of 9, 4, 8, v successively we see
that Ik (v) can not be a 6-cycle. Thus 1k(9) = Cg(7, 1, 8, w, 5, 4).

Now, completing successively, we get 1k(4) = C¢(3,0,5,9,7, 2), 1k(7) = C¢(2, 1,9,
4,z,5),1k(2) = C6(3,0,1,7,s,v), Ik(3) = Ce(z,4,0,2,v,u), Ik(u) = Ce(5, 6, 0,3,
z, w), Ik(v) = C¢(6, u, 3, 2,s,8),1k(8) = C¢(9, 1,6, v,s, w) and Ik(z) = C¢(7,4,3,u
w, s). Here M = Ty5.1,3 by the map ¢ o (0, 5, 8)(1, 6,9, 7, 3)(u, v, w)(z, 5).

s Ay

Subcase 7.7.3. 1k(5) = Cq(u, 6,0, 4, v, w). Now, completing successively we get lk(v)
=C¢(8,6,u,4,5, w),1k(4) = C6(3,0,5,v,u, 2), Ik(u) = Ce(5,6,v,4, z, w), Ik(w) =
Ce(8,v,5,u, z,5), Ik(8) = C4(9,1,6,v,w,s), Ik(z) = C6(3,4,u,w,s,7), 1k(7) =
C6(2,1,9,3,z2,5),1k(3) = C6(2,0,4,z,7,9) and Ik(2) = C¢(7, 1,0, 3,9, s). Here M is
isomorphic to B3 5 by the map 350 (1,9, 8,5, w)(2, 7, v)(3, u)(4, z, s), where 35 is as
in Case 1.

Subcase 7.7.4. 1k(5) = Ce(u, 6,0,4, w, 7). Then Ik(4) = Ce(w, 5,0, 3, x, y), for some
x,y € V.Itis easy to see that (x, y) = (7,2), (7,9), (7,v), (7, 5), (8,9), (8, v), (9, 8),
O,v),9,s), (u, v), (v,8), (v,9), (v,u), (v,s), (z,9), (z,u), (z,v), (z,5), (5,9), (s, v).
By the similar arguments as before one gets (x, y) = (7, 2), (9, 8) or (z, u).

Subcase 7.7.4.1. 1k(4) = Cg¢(w, 5,0, 3,9, 8). Completing successively, we get 1k(8)
= C¢(6,1,9,4, w,v),1k(9) = Cs(7,1,8,4,3,s), 1 k3) = C6(2,0,4,9,5,2), 1 kQ2) =
Ce(7,1,0,3,z, u), Ikk(u) = Ce(5,6,v,7,2,2), Ik(7) = Ce(9,1,2,u,v,s), Ik(v) =
Co(8,6,u,7,s,w) and lk(w) = C¢(5,4,8,v,s,2z). Here M = Ti51,3 by the map
0o0(0,6,9,4,7,1,5(u, w).
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Subcase 7.7.4.2. 1k(4) = Ce(w, 5,0, 3, z, u). Completing successively, we get lk(u)
= C¢(6,5,72,4, w,v), lk(z) = Ce(w, 5,u,4,3,s), Ik(w) = Cs(u, 4,5, z,s,v),1k(3) =
C6(2,0,4,z2,5,9), Ik(9) = C6(3,2,8,1,7,s), Ik(s) = Ce(w, z,3,9,7,0v), Ik(v) =
Ce(6,u, w,s, 7,8) and Ik(7) = Ce¢(2,1,9,s,v,8). Here M = (53 by the map ¢ o
©0,z,w,9,3,s,6,8,5,u)4, v, 7), where { is as in Subcase 2.1.

Subcase 7.74.3. Ik(4) = Ce(w,5,0,3,7,2). Then, completing successively, we get
Ik(2) = C6(3,0,1,7,4,w), IkB) = Ce(7,4,0,2, w, s), Ik(7) = C¢(1,2,4,3,5s,9),
Ik(w) = Ce(5,4,2,3, 5,2), Ik(s) = C¢(9,7,3,w, z,v), Ik(v) = C¢(u,6,8,2,5,9),
Ik(z) = Ce(5, w, s, v, 8, u) and 1k(8) = Cs(9, 1, 6, v, z, u). Here M = B3 5 by the map
Y350 (0,9,1,5)(2, 8)(3, v)4, 7)(u, w), where Y35 is as in Case 1. O

Proof of Theorem 6. Let M be an n-vertex degree-regular combinatorial 2-manifold of
Euler characteristic 0. Let d be the degree of each vertex. Then nd =2 f1 (M) = 3 f2(M)
andn — fi(M) + f2(M) = 0. These imply that d = 6. Now, if n € {12, 14, 15} then, by
Lemmas 3.10—3.12, M is iSOInOI'phiC to T12’1,2, ey T12,1,4, T(,’z,z, T14’1,2, T14,1’3, Q7,2,
Tis12,...,Ts,1,5, 053, B34, Ba3, B35, Bs 3 or K3 4.

Since B3 4, Bs43, B35, Bs 3, 072, 053 and K3 4 are non-orientable and remaining 10
are orientable, the second and third statements follow from Lemma 2.1(b), (d), (f), Lemma
2.3(b) and Lemma 2.5(a), (b).

The last statement follows from the fact that By, ,,, Kin 2k, Q2k+1., are not weakly regular
and Qok+1,.2 is weakly regular for all m,n > 3 and k > 2. O
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