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Multiplication on R n

1. Division Algebra and Vector Product
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Cardano, a famous

medical doctor,

philosopher and
mathematician,

who lived in Milan,
was the first

person to define

complex numbers
in 1539.
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In 1843 Hamilton discovered the quaternions and in
the same year Graves found an algebra with 8 ba-
sis elements. So, mathematicians 'knew the division
algebra structures (over JR) on JR, JR2, JR4and JR8in
the first half of the 19th century itself. It took more
than 100 years to prove that these are all the divi-
sion algebras over JR. This follows from a theorem
of Adams (which we will discuss in Part 2). In this
part we also discuss 'vector products' on JR3 and JR7

and Hurwitz's theorem on 'sums of squares formu-
lae'.

Division Algebra

Let JR and C denote the set of real and complex numbers
respectively. Recall the multiplication rule of complex num-
bers:

(a + bi) . (e + di) = (ae - db) + (da + be)i. (1)

Identifying JR2 with C (by (a,b) 1-+ a + bi) we get a multi-
plication on JR2,namely,

(a, b) . (e, d) = (ac - db, da + be). (I')

With this multiplication, JR2 becomes an associative division
algebra lover JR. In this case 1 = (1,0) is the unity for the
multiplication and x-I = x/llxll for all x i= (0,0), where

(Xl, X2) = (Xl. -X2) and II(XI,x2)11= (x~ + x~)1/2.

We also know (!) that JR4 has a multiplication given by:

.2 .2 k 2 1Z=J= =-,

j . k = i = -k . j,

i. j = k = -j . i,

k. i = j = -i. ok, (2)
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where 1 = (1,0,0,0), i = (0,1,0,0), j = (0,0,1,0) and k =
(0,0,0,1). In this casealso x-I = x/II xII, where (Xl, x2, x3, X4)
= (Xl, -x2, -x3, -X4). With this multiplication and the
usual vector space structure, JR4 is an associative division
algebra over R But you have to be careful about dividing
a by b on the left or on the right! This algebra is called the
algebra of quaternions and is denoted by Jill.

Observethat multiplication in IHIis not commutative, where-
as multiplication in reals or complex numbers is commuta-
tive. So you know why it took 304 years to define quater-
nions. Also, a polynomial may have infinitely many zeros in
IHI. Find the zeros of x2 + 1 in IHI (exercise).

If we identify IHI with C x C via

X + yi + zj + wk = (x + yi) + (z + wi)j I-t (x + yi, z + wi),

then the multiplication in (2) can be obtained from the for-
mula

(x, y) . (z, w) = (xz - wy, wx + y'Z). (2')

where here x, y, z and ware elements of C.

Now, if we take x, y, z, w E IHI in (2'), then we get a mul-
tiplication on JR8. Therefore, for n E {I, 2, 4} we have the
following:

Multiplication in JR:.tncan be obtained from that of JRn
by the formula: (x, y) . (z, w) = (xz - wy, wx + y'Z).

There is another way to remember the multiplication in JR8

by the following rule:

(el.e2).e4 = el.(e2.e4) = (e2.e3).es = e2.(e3.es) = (~3.e4).e6

=e3.(e4.e6) = (e4.es).e7 = e4.(es.e7) = (es.e6).el = es.(e6.eJ)

= (e6.e7) .e2 = e6. (e7.e2) = (e7.el) .e3 = e7. (el.e3) = e;=
- -l=-eo and (er.es).es=es.(es.er)=-er
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1 An algebm over JR consists
of a vector space V over JR,
together with a binary op-
eration of multiplication ('.')
on the set V of vectors, such
that for all a in JR and a, (3,
, in V, the following condi-
tions are satisfied: (i) (aa) .
(3 = a(a . (3)= a . (a(3), (ii)
(a + (3) . , = (a . ,) + «(3. ,)
and (Hi)a.«(3+,) = (a.(3)+
(a .,). If moreover V satis-
fies (iv ) (a. (3) " = a . «(3.,)
for all a, (3" in V, then V is
called an associative algebra
over JR. An algebra V over
JR is a division algebra over
JR if V has a unity for mul-
tiplication and each nonzero
element x has a unique left
inverse XL, a unique right in-
verse XR, with XL = xR.This
is denoted by x-I.

An easy way to remember mul-

tiplication in JRs is: epepHep+3

= e~ = -1 for p, q E {I, ..., 7}

(addition in the suffix is mod-

ulo 7).

In a letter to John

Graves, written on
October 17, 1843,
W R Hamilton
announced the

discovery of
quatemions one

day after the

discovery .
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John Graves found

an algebra with 8
basis elements in

December 1843. In

1848 he published

his discovery in the
Transactions of the

Irish Academy, 21,

p.388. Octonions
were rediscovered

by Arthur Cayley in
1845 (Collected

Papers I, p.127

and XI, p.368-

371). Because of
this the octonions

are known as

Cayley numbers!

10 .

for r, s E {I, 2, . . . , 7}, where the identification between RS
and 1HIx 1HIis given by eo =. (1,0,. . . , 0) ~ (1,0), el =
(0,I, 0,. . . ,0) ~ (i,O), e2 ~ (j,0), e3 ~ (0,1), e4 ~ (k,O),
e5 ~ (O,j), e6 ~.(O, -k) and e7 = (0,...,0, 1) ~ (0, i).

Now, (€I' e2) . e5 = e7 =I -e7 = €I . (e2' e5). Therefore, this
multiplication in RS is non-associative. However, in RS also
each non-zero x has unique inverse, namely, x-I = x/II xiI.
where (hI, h2) = (hI, -h2), i.e., (Xl, . . . , XS) = (Xl, -x2, . . . ,
-Xs). RS with this multiplication forms a non-associative
division algebra, denoted by 0, called the algebraof octo-

nions or Cayley numbers.

Observation 1: Any two octonions generate an associative

sub-algebra of O.

If we continue further with the formula (2') to define a mul-
tiplication on R16, then we get (el,e2)' (e5,-e7) = (0,0).
Thus we get 'divisors of zero'. So we better stop here! (If ~
and yare two nonzero elements such that xy = 0, then they
are called divisors of zero. A division algebra does not have
divisors of zero (exercise).)

All these four algebras R, C, 1HIand 0 are normed algebras,
Le., Ilx'yll = Ilxll'lIyll, where 1111denotes the usual Euclidean
length. Rand C are commutative algebras. R, C and 1HI

are associative algebras.

Thus, Rn has a division algebra structure if n E {I, 2, 4, 8}.

Question: Does there exist n, other than 1, 2, 4 and 8,
for which Rn has a division algebra structure over R? This
question is resolved by the following theorem.

Theorem A : Rn has a division algebra structure over R if
and only if n E {I, 2, 4,8}.

Remark: An examination of the proof of Theorem A (which
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will be given in Part 2) will show that we have actually
provedthe followingstatement: JRn has an algebra structure
overJR without divisorsofzero if and only if n E {I, 2, 4, 8}.

Vector Product

Recall the cross product (or vector product) on ]R3. It is
given by

i xj = k = -j xi,

k x i = j = -i x k,

j x k = i = -k x j,

ixi=jxj=kxk=O

where i, j, k here are the usual basis vectors in JR3 and bilin-
earity (or distributive property )is assumed. Is it in any way
related to JH[ ? Yes!

If we take JR3 = SpanJR({i, j, k}) ~ JH[,then 2

x x y = imaginary part of x. y.

This cross product has the following properties

(x x y) .L x, (x x y) .L y and 3

IIx x yll2 = (x, x)(y, y) - (x, y)2

4for all x, y in JR3.

By a vector product on JRn we mean a continuous mapping

v : JRn X JRn -+ JRn with the propertie.s (3) and (4). More
precisely, we have the following definition.

Vector product: A continuous map II : Jl(.n X

is called a vector product on]Rn ifll(x,y) .L x, v(x,y) .L y
and IIII(x,y)1I2= (x,x)(y,'y) - (x,y)2 for all x,y E JRn.

Thus, the usual 'cross product' on JR3 is a vector p~oduct in
this sense. The map II : JR x JR -+ JR, given by II(x, y) = 0
for all x, y E JR,is clearly a vector product on JR. It is also
not difficult to see that this is the only vector. product on
JR. Consider JR7as the 'imaginary' subspace of JR8 = 0, i.e.,
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2 For al,.. . ,ap in JRn,

SpanJR ({aI, . . . , ap} )
denotes the subspace

generated by

{al,... ,ap}.

(3)

(4)
3 If (z, w) = 0 then we say
z is orthogonal to wand we
write z .Lw.

4 Here (,) denotes the usual

inner product (also known as

'dot product') in ]Rn, namely,

{(Xl,... ,Xn), (YI,... ,Yn» =

XIYI+",+xnYn.In,thisar-

tide'.' corresponds to multi-

plication in the algebra sense,

not the inner product.
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R7 also has a

vector product like
R3

When we replace

Rbyc ,we lose

the ordering but we

gain the
Fundamental

Theorem of

Algebra, namely,

"every non-
constant

polynomial over C
has a zero in C ".

And hence (thanks
to the commutative

property), a
polynomial of

degree n has

exactly (if you

count properly) n
zeros. When we

consider R" we

lose commutative

property but we

gain something. A

polynomial may
have infinitely

many zeros. What

again!
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jR7 = SpanjR({el,...,e7})' Define v(x,y) (= x x y) ._
the imaginary part of x. y. Then v satisfies (3) and (4). So,
we have a vector product on jR7 also. These vector products
on JR3 and jR7 have the following properties:

x x y = -y x x, (5)

x x (ay +bz) = (ax) x y + (bx) x z = x x (ay) +x x (bz), (6)

IIxll2= {x, x} = -x' x, (7)

{x, y} = - real part of x.' y and (8)

x'y = -{x, y} + x x y (9)

for all a, b E JR and x, y, z E jRn,wheren = 3 or 7.

Here is the vector product table on JR7.

This table als.o gives (see (9)) the multiplication in O.

Question: Does there exist integer n other than 1, 3 and 7
for which jRn has a vector product? This question is again
answered by the following theorem.

Theorem L: jRP has a vector product if and only if p E
{1,3,7}. .

Sums of Squares Formulae

We all know the sums of squares formulae

(a~+ a~)(a~+ a~) -
Al = alaI - a2a2 and

2 2 hAl +A2' were

A2 = ala2 + a2al. (10)
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x el e2 e3 e4 es e6 e7

el 0 e4 e7 -e2 e6 -es -e3

e2 -e4 0 es el -e3 e7 -e6

e3 -e7 -es 0 e6 e2 -e4 el

e4 e2 -el -e6. 0 e7 e3 -es

es -e6 e3 -e2 -e7 0 el e4

e6 es -e7 e4 -e3 -el 0 e2

e7 e3 e6 -el es -e4 -e2 0
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So, product of sums of squares of integers is a sum of square
of two integers. (10) follows from the fact that

(11)

for any two complex numbers z and w. As the multiplication
in JHI is also norm preserving, if we take quaternions in place
of complex numbers in (11) we getS

=
where Al = alaI

A2 = ala2

A3 = ala3

A4 = ala4

a2a2 - a3a3 - a4a4

+ a2al + a3a4 - a4a3

a2a4 + a3al + a4a2

+ a2a3 - a3a2 + a4al. (12)

Similarly, from norm preserving octonian multiplication we
get

where AI"", As are given by

[AI' .. As] = [al ... as][M], (13)
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5 Euler discovered formula (12)

in 1748, much earlier than

Hamilton's invention of quater-

nions, while investigating" the

theorem (later proved by La-

grange in 1869) that 'every

positive integer is a sum of

four integral squares'. Euler

showed, by proving formula

(12), that it is sufficient to

prove the theorem for every

prime. So, Euler knew quater-

nion multiplication!
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al a2 a3 a4 as a6 a7 as

-a2 al -as -as a3 -a7 a6 a4

-a3 as al -a6 -a2 a4 -as a7

[M] = I -a4
as a6 al -a7 -a3 as -a2

-as -a3 a2 a7 al -as -a4 a6

-a6 a7 -a4 a3 as al -a2 -as
-a7 -a6 as -as a4 a2 al -a3

-as -a4 -a7 a2 -a6 as a3 al

Observe that, for n = 2,4 and 8, AI,.... An are linear in

al. . . . . an and also in aI, . . . , an in (10), (12) and (13) re-
spectively. So, it is natural to ask for the values of n for
which there exists an identity ofthe form (ai+.. '+a)(ai+

. . . + a) = Ai + . . . + A, where AI.. . . . An are linear in



6 A map f : ]Rm X]RR -+ ]RP

is called bilinear if f(alCltl +

a2C1t2,{3}= ad(Cltl, {3}+

a2f(Clt2, {3}and f{CIt, b1{31+

b2(32) = bd{CIt, (31)+~f(CIt, {32}

for all CIt,Cltl,Clt2E ]Rm, .

{3,{31,{32E]RR andal,a2,bl,

b2 E 1R.
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al, , an and also in 01,..., an. In 1896, A Hurwitz proved
the following:

Theorem S: If there exists an identity of the form (ar +
.. '+a~)(ar+" '+a~) = Ar+" .+A~, where AI,"" An are

linear functions oral,... , an and 01,... , an then n = 1,2,4
or 8.

In 1923, A Hurwitz proved the following stronger result
(Theorem N). Any positive integer n can be expressed uniquel
as: n = 24C1t+.B(2-y+l),where 0 ~ fJ ~ 3. Let k(n) := 8a+2{3
for that n. ~

Theorem N:If there exists a bilinear 6 map such that f :
]Rmx]Rn ~ ]Rn such that IIf(y, x)1I = lIyll'lIxll for all y E ]Rm
and x E ]Rn then m ~ k(n).

Remark: In fact, Hurwitz showed (for a different proof see
pages 140 and 156 in Husemoller) that for each n there is
a bilinear map f : ]Rm X ]Rn ~ ]Rn satisfying II f (y, x) II =
lIyll. IIxll for m = k(n) but not for bigger m.

Theorem N also follows from another theorem of Adams.
We will discuss all the proofs in Part 2 of this article.

Suggested Reading

. D HusemoUer. FibreBundles. Springer-Verlag, 1966.

Nowadays superelastic alloys are available that behave like

rubber and are able to endure huge elastic deformations - two
orders of magnitude greater than ordinary metals. On the other

hand, many kinds of alloys can be brought to a super-elastic
state, when they flowunder very lowpressure like heated glues.

Quantum Kaleidoscope. pp.33. Sept-Oct, 1995.
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