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Combinatorial manifolds with complementarity
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Abstract. A simplicial complex is said to satisfy complementarity if exactly one of each
complementary pair of nonempty vertex-sets constitutes a face of the complex.

We show that if a d-dimensional combinatorial manifold M with n vertices satisfies
complementarity then d=0, 2, 4, 8 or 16 with n=3d/2 +3 and |M| is a “manifold like a
projective plane”. Arnoux and Marin had earlier proved the converse statement.
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1. Introduction

Recall that a simplicial complex K is a collection of nonempty sets (sets of vertices)
such that all nonempty subsets of a member of the collection are again members. A
member of K with i+ 1 vertices is called an. i-face (or simplex of dimension i). For
oeK Lk(o) (= link of 0) := {yeK; yno = &, yuoeK}. A simplicial complex may be
thought of as a prescription for the construction of a topological space by pasting
together geometric simplexes. The topological space thus obtained from a simplicial
complex K is called a polyhédron and is denoted by |K|. Let K, and K, be two
simplicial complexes. A map f:|K,|—|K,| is called PL if there are subdivisions K,
and K/, of K, and K, respectively such that f:K’ —» K/, is simplicial. We write
|K,|~|K,| if |K;| and |K,| are PL homeomorphic. A simplicial complex K
(respectively |K|) is called a combinatorial d-manifold (respectively PL d-manifold) if
for every vertex v in K Lk(v) is a (d — 1)-dimensional combinatorial sphere.

In 1962, Eells and Kuiper [5] proved that a PL manifold M¢ with PL Morse
number p(M?) =3 has dimension d=0, 2, 4, 8 or 16. If d =0 M? consists of three
 points. If d =2 M? is the real projective plane. For d=4, 8 or 16, M is a simply
connected cohomology projective plane over complex numbers, quaternions or Cayley
numbers, respectively. Each of the manifolds of above type is called a manifold like
a projective plane. This classification turned up in the 1987 paper [3] of Brehm and
Kiihnel on combinatorial manifolds with few vertices. Specifically, they proved that:
Let M? be a combinatorial d-manifold with n vertices,

(BK1) if n <3[d/2] + 3 then |M}] ~ 89, > A
(BK2) if n=3(d/2)+3 and [M?| %5 then d=2, 4, 8 or 16 and le"l must be a
“manifold like a projective plane”. Moreover for d=2 M*=RP; and for d=4
M!=CP;. » |
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It is classically known that there exists a unique (up to simplicial isomorphism).

~ 6-vertex triangulation (denoted by RP}) of the real projective plane RP2. It is also
known (see [2], [6] and [7]) that there exists a unique (up to simplicial isomorphism)
9-vertex triangulation (denoted by CP}) of the complex projective plane CP2.
Implicit in [ 3] is the result that CP} satisfies complementarity. This result was made
explicit by Arnoux and Marin [1] in 1991. More generally, they proved that any
manifold asin (BK2)satisfies complementarity. In this article we prove the converse:

Theorem. Let M! be a combinatorial d-manifold with n vertices. If M? satisfies
complementarity then d=0, 2, 4, 8 or 16 with n=3(d/2) + 3 and IMZ| is a “manifold
like a projective plane”.

2. Preliminaries

Let K be a triangulation of the sphere $”~! with n vertices. The f-vector of K is
J(K):=(fos.-.,fp-1), where f;is the number of i-faces in K. Thus So=nand f,<(,},)

for 1 <i<p—1. Let N denote the non-negative integers, and define H:N—N as
follows

1 if m=0 - |
Hm)=<¢r 2l (m—1Y\ . (1)
igofi( ; ) if m>.0.

Then there exists (see [8]) integers ho,...,h, such that
(L—xp H(m)x"'=h0+h1x+---+hpx" (2)
. m=0

is an identity in the formal power series ring C[[x]].
~ For k< p<n—1(equating the coefficients of x* from both sides of (1 + x)~®~¥+1
(1+x)"=(1+x)""*7P~1) we get

or)O-C)
j;,( RV Lk o ©
By substituting i —1=pand /= p+i—kwe get _ |
nl\ i i—1——j>(n> N ) m——l)
= —1 1-j — 1yi—m

)
Then from (1) and (2) by using (4) we get (see [9])

=3 (—1>f-'(”“f)f,-1, | (5)
1=0 p—1 :

where we set f_, =1.
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If f;-1=() for1<j<q<p then by (3) we have

hi=(n+l“jp-1> fori<g. - (6)
; B

The Dehn—Sommerville equations, which hold for any triangulation of the sphere
SP~1 are equivalent to the statement (see [9]):

hy=h,; 0<i<p. (7)

3. Proof of the theorem

Throughout, M is an n-vertex combinatorial d-manifold satisfying complementarity.
It is trivial from the definition that, for d =0 M consists of three points, and since
clearly there is no 1-manifold satisfies complementarity, we may take d > 2.

We shall repeatedly use the following obvious consequences of complementarity.
Since no set of > d + 2 vertices constitute a face, n <2d + 3 and every setof <n—d —2
vertices is a face. That is, for i < n—d — 3, all i-faces occur in M. More generally the

number of i-faces + the!number of (n — i — 2)-faces = (——_{-—1—) As each vertex forms

a O-face, therefore n>d + 2. Thus, d+2<n<2d+3.
Throughout this section we put ¢ = [d/2]. Thus, d =2c— 1 or 2¢.
If F, is the number of i-faces in M then we have:

"iaF_{F0+(F1+F2m—3)+"'+(Fm—2+Fm)+Fm_1 if n=2m,
o | Fo+(Fi+Fom-z)+ -+ Fnr+Fn) if n=2m+1

2 +(2m + +( o )+1<2'"> if n=2m
1 2 m—1 2\m ’
<2ml+1>+(2":2+2>+ +<2m+1> i n=2m+1

m
=1,

which is an odd integer, where we set F; = 0 for i > d. Therefore the Buler characteristic
of M =X"_3(—1)'F; is odd. ,

If n=d + 3 then (by (BK1)) M is a sphere. :

If n>d + 3 then all the i-faces occur in M for i <n—d —3 > 1. Therefore the link
of any vertex in M is an (n — 1)-vertex combinatorial (d — 1)-sphere with f-vector
satisfying: f; = (';;;) for 0 <i<n— d— 4. Hence by (6), the h-vector of this link satisfies
hy="472 Y for0<i<n—d—3.

If d = 2¢ then by (7) for n> 3¢ + 3, we get (e =h_,=h, = ("7£7%). Which
gives n = 2¢ + 2, contrary to our assumption in this case.

If d=2c—1 then for n3> 3¢+ 3, we get ("2¢;%)=h,_, =h,=(""¢""). Which gives
n=2c + 1, a contradiction.

Thus, n<3c+3if dis even and n<3c+3if d is odd. Therefore, by (BK1) and
(BK2) M is either a sphere or a “manifold like a projective plane”. But as Euler
characteristic of M is odd, M cannot be a sphere. This completes the proof.
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