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CONVECTIVE DIFFUSION FROM A NON-UNIFORMLY
DISTRIBUTED SOURCE IN NON-NEWTONIAN FLUIDS:

A THEORETICAL INVESTIGATION AND EXPERIMENTAL
CONFIRMATION

C. V. VENKATSUBRAMANIAN,t R. A. MASHELKAR:I: and J. ULBRECHT

Department of Oiemical Engineering, University ofSalford, Salford M5 4 WT, England

(Received March 4, 1977: in final form July 28, /977)

This work presents a complete theoretical study of the process of convective diffusion from a non-uniformly distri­
buted source ina non-Newtonian fluid flowing through a straight tube. The influence of thegoverning parameters
on thedispersion process is studied and the results areexamined in terms of the interaction of rheology, fluid
mechanics anddiffusion. Experimental studies have been conducted to obtain thediffusivity values of NaOH in
aqueous polymer solutions and provide the first test of the potential of this technique for diffusivity measurement
indifficult systems.

Measurement of molecular diffusion coefficients of
solutes in non-Newtonian media is crucially important
from the point of view of being able to understand
the pragmatically important convective diffusion
processes, which occur in these media. The state-of­
the-art in this area was recently reviewed by Astarita
and Mashelkar (1977). This review clearly emphasizes
the need for more experimental data on molecular
diffusivities in non-Newtonian media but more
importantly, it showed that reliable flow techniques
are essential for the diffusivity determination in
highly viscous non-Newtonian media since in the
conventional static techniques a very long time is
required to attain an appreciable concentration
gradient. In the present work, we analyse theoretically
the possibility of using the technique of convective
diffusion from a non-uniformly distributed source
and set up experiments to simulate the model con­
ditions. We then provide experimental results to
show how such a technique can be used for diffusivity
measurements.

BACKGROUND

It appears that the experimental techniques which
have been used so far for diffusivity determination
by using flowing fluids involve the use of essentially

t Present address: Research and Development Division,
Larsen and Toubro Limited, Bombay 400 072, India.

:I: National Chemical Laboratory, Poona 8, India.

two-phase systems. Thus, Clough et aL (1962) used
solid dissolution from soluble walls of a pipe for the
measurement of molecular diffusivity of ~-naphthol
and benzoic acid in flowing non-Newtonian polymer
solutions. Astarita (1966) and Desai (197 5) used the
technique of solid dissolution from a falling film.
Mashelkarand Soylu (1974) used the technique of
gas absorption in films of dilute polymer solutions
flowing over a wetted sphere for diffusivity measure­
ment of carbon dioxide in a variety of polymer
solutions. Such measurements essentially rely upon
the solution of the pertinent convective diffusion
problem (e.g. Graetz-Leveque solution in the case
of a dissolvingwall in a pipe) and the back calculation
of the diffusivity from the observed exit concentra­
tions. However, for such interplane transport to
occur, it is crucially important that the solute be
available either in the solid or in the gaseous form.
Obviously, when the solute is a miscible liquid (e.g.
a monomer in a polymer solution), such simple
techniques cannot be used. The present technique
essentially involves the preparation of a solution
containing the soluble solute, its non-uniform
injection in the bulk of the fluid and the measure­
ment of concentration variation at fixed axial
positions.

The theoretical problem has received some atten­
tion in the literature. Harlacher and Engel (1970)
solved the convective diffusion problem from a non­
uniformly distributed source. However, their solution
suffered from certain limitations. Their series solution
was truncated after three terms, which ted to negative
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(6)

FIGURE 1 A sketch of the non-uniformly distributed
source.

where m =TR/TI12 and TR represents the shear stress
evaluated at the wall.

Equation (2) is to be solved with the following
boundary conditions

(2)

(3)T=KY'

transport due to diffusion is considered negligible
compared to the convective transport.

Vz ae =D(a
2e

+.!.. ae)
az ar2 r ar

The convective field represented by Vz will be
different for different non-Newtonian liquids. We
will choose two fluid models, which have been found
to be quite useful in describing the shear flow of non­
Newtonian fluids. For an Ostwaald-de-Waele power­
law model

we have

Vz =U :Z) Vavg (l - (r/aYV +I) (4)

and for an Ellis fluid described by

1 1
-=-.[l+(T/T )01-1] (5)
T 1/0'Y 112

2Vavg [ 2m(a-l) -
Vz = 1 +4m(a-l) 1 - (r/a)2 + Q + 1 (l-(r/a)o+l)

Q + 3

THEORY

concentrations for radial distances greater than about
one-third of the tube. Secondly I their solution is
valid only for integer values of the reciprocal power­
law index (N). The final solution is incomplete with
respect to the eigenvalue corresponding to the zeroth
value and lastly it is inaccurate for small axial dist­
ances. For Newtonian as well as non-Newtonian
liquids analytical solutions to the pulse disturbance
were offered by Subramanian and Gill (1975,1976)
and by Booras and Krantz (1976). Mashelkar and
Venkatsubramanian (1975) obtained a numerical
solution for a Casson fluid with special attention on
the problem of urea diffusivity determination in
flowing blood. However, these authors did not report
any experimental data for such systems.

It is thus clear that so far there is no correct and
complete solution to the problem of convective
diffusion from a non-uniformly distributed source in
a non-Newtonian fluid, neither are there any experi­
mental data reported. The purpose of this work is to
get an accurate solution by solving the convective
diffusion equation for non-Newtonian liquids and to
provide experimental support for the theory devel­
oped to measure diffusivity values. The advantages
of using such a technique have been already enu­
merated (Harlacher and Engel, 1970). Any solute
may be used for measurement and the solute con­
centration values may simulate process conditions.

The general equation of conservation of mass can be
expressed as given by Bird et al. (1960):

ae-+(V'Ve)=Dp2etrA (1)at
(the explanation of the symbols used can be found
in "Notations").

The physical situation involved is described in
Figure 1.

We will assume the following:

1) Steady-state conditions prevail, i.e. ac = o.at
2) The flow is fully developed, i.e, Vr = Vo = o. ae

-=0 at r > 0]
3) Isothermal conditions prevail, so that physical ar

properties may be assumed to be constant. ae -for all Z

4) No reaction occurs or no source-sink effect is
-=0 at r <a (7)ar

present.
o"'r<-aT]

Under the above assumptions, Eq. (I) can be
e= c/

=0
-at Z =0

reduced to Eq. (2) if the term representing the axial aT <:r <-a
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DIFFUSION IN NON·NEWTONIAN FLUIDS 235

EXPERIMENTAL

A schematic diagram of the experimental set-up is
given in Figure 2. It consisted of storage vessels for

8;1 O~P~{3)
== 0 {3 < p ~ 1 -at ~ == 0

where {3 == aT/a == ratio of source radius to radius of
pipe.

Equation (8) or (9) is solved in conjunction with
the boundary conditions given by Eq. (10) by the
Crank-Nicolson (1947) implicit finite difference
method. This consists in averaging the radial
derivatives over two axial increments and replacing
them by a central difference formula and represent­
ing the axial derivative by a forward difference
scheme. The resulting set of equations together with
two boundary conditions at p == 0 and p == 1 form a
tridiagonal system, which is solved by the Thomas
algorithm (Lapidus, 1962).

The first one signifies symmetry about the axis,
the second an impermeable wall and the third the
non-uniform but symmetric distribution at the
source.

Equation (2) is non-dimensionalized by letting

o= C/CI

P <r]a

~ =ZD/Vavga2

Substituting these in Eq. (2), the non-dimensional
equations for a power-law liquid reduce to

(
3 +N)(I _ fl+l) 30 = a

2
0 +! ae

1 +N P 3~ 3p2 P op (8)

and for an Ellis fluid they reduce to

(' +4~.-') [(1- p') +~m:~' (I - rl]
a+3

3e a2 0 1 ao
x-;-+-- (9)
a~ ap2 p ap

The non-dimensional boundary conditions are

the tracer and ambient liquids, which were pumped
in through a series of rotameters via surge tanks. The
rotameters were used to keep a steady flow rate,
while the actual flow rate was measured by collecting
a measured amount of liquid in a known time. A
T-arrangement before entry into the test pipe helped
in removing any entrapped air bubbles in the tracer
liquid, The temperatures of both the streams were
measured before entry into the test pipe.

The test section was divided into an entrance head
and a measurement part. The entrance head was an
ABS ~ipe consisting of a series of wire meshes placed
at 45 to each other. The ambient liquid was intro­
duced through two diagonal inlets and passed through
the wire meshes before entry into the measuring part.
The tracer liquid was introduced through a thin­
walled stainless steel pipe 2.39 rom id which passed
through the centre of the wire meshes and its length
could be adjusted so that the tracer fluid made its
entry under fully developed conditions. The entrance
head fitted snugly into the test pipe. The measure­
men ts were carried out in a 12.7 mm id perspex
tube 3.6 m long. It was held vertical by a series of
clamps attached to a main frame, which itself was
firmly supported. The verticality was periodically
tested and necessary adjustments were made. The
bottom end of the test pipe was connected to a
return bend through a flexible rubber pipe, which
maintained a column of liquid and thus prevented
air bubbles rising up from the bottom of the tube
at very low flow rates.

The measured property was the conductivity of
the solute at the centre of the tube. Two conductivity
probes were mounted at distances of 1500 and 3000
mm from the source. The probe was made of a 0.2 mm
platinum wire electrode encased in a porcelain
capillary. The other electrode was a 19 gauge hypo­
dermic tubing. One end of the platinum wire was
looped and insulated from the other electrode. The
probe was mounted perpendicular to the pipe through
a standard ABS fitting.

The conductivity was measured by means of a
conductivity bridge through a selector switch which
enabled the proper selection of the probe under use.
The conductivity bridge chosen was a Wayne Kerr
Autobalance Universal Bridge model and had an
accuracy of 0.1 %.

The tracer used was an indicator, which could
colour the tracer stream, so that the spreading
process could be visually monitored. The colouring
also was helpful in pinpointing any channelling and
local turbulence effects due to vibrations and proper
care was taken to avoid these conditions.

(10)

at p = O)
. -at an ~

at p =1

ao =0
ap
ae
-=0ap
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o

12

13

FIGURE 2 Schematic diagram of the experimental set-up. (I) Storage tank for the non-Newtonian liquid. (2) Mono
pump for the non-Newtonian liquid. (3) Surge tank. (4) Ambient liquid side rotameters. (5) Storage tank for the
tracer solution. (6) Mono pump for the tracer solution. (7) Surge tank. (8) Tracer side rotarneters. (9) Entrance
head. (10) Perspex pipe in which the measurements were made. (II) Test section. (12) Return U-bend. (13) Receiver
for the spent solution.

The test liquid used was hydroxyethylcellulose
(HEC)-Natrasol supplied by Hercules, NV-dissolved
in water. The concentrations used were 0.7 and 1.2%
by weight. The flow curves were measured on a
Weissenberg Rheogoniometer (Model R18, Sangamo
Western Controls limited) placed in a constant tem­
perature room. As the liquids passed through various
shearing stages, rheological experiments were done
before and after each set of experiments. During a
day. the differences were not significant and hence
an average value was used. The flow curves for the
liquids .are given in Figure 3 and fitted the power-law
model with n =0.789 and 0.314 and K =13.5 and
32.5 dynes/em" sec- n for 0.7 and 1.2% HEC solutions
respectively. The tracer solution was made by dissolv­
ing a known amount of NaOH in HEC solution to
give 0.0 I N strength. Phenol red was added to this
solution to give a red colour.

The measured quantity was the local concentration
on the axis of the tube as a function of the dimension­
less distance ~ and by varying the average velocity

and carrying out measurements at two different axial
distances, ~ was changed.

RESULTS AND DISCUSSION

Theoretical Results

The convective diffusion equations represented by
Eqs. (8) and (9) for power-law and Ellis fluids res­
pectively were solved on CDC7600.

The radial grid depended on the values of f3, the
dimensionless solute tube radius. The radius was
initially divided into 200 parts and this facilitated
the smoothing of the initial discontinuity. The axial
step was initially set at 10- 7 and progressively
increased. The radial grid sizes were also varied and
the solutions were found to be convergent. The
results were also checked by comparing them with
the Bessel function analytic solutions for a plug flow
problem, i.e. N 400 for power-law fluids.
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10

n <::I: 0.789

18.5 d~T\EO'/01I2sec-0.78

10 100 •
v

• n - 0.314
K. 32.5 dynes/an2Sec-0.]14

1000 lCOXl

FIGURE 3 Rheograms for the test liquids.

(11)

One of the experimental methods to determine
diffusion coefficients in a non-Newtonian liquid is
by studying the centre-line concentration decay. A
typical plot for the centre-line concentration decay
as a function of dimensionless axial distance ~ is
given in Figure 4 for power-law fluids. The process
of decay appears to be slower for smaller ~ but speeds
up for intermediate values of~. Then at large ~ it
finally flattens and this would correspond to a
uniform concentration across the cross-section of
the tube. This value was calculated by a simple mass

. balance for the tracer. The final concentration in
all cases agreed with the values obtained by the mass
balance, thus adding to the credibility of the numerical
technique. It is also clear from Figure 4 that the axial
centre-line concentration decay is much more rapid as
pseudoplasticity increases (or as N increases). This is
understandable because the centre-line velocity is
related to the average velocity as

(
3 +N)

Vm ax = Vavg I +N

Hence, the lower the value ofN, the reciprocal power­
law index, the higher is the centre-line velocity and
the higher the effect of convection in the- axial
direction at the centre. Thus, for N = 00, which
corresponds to a plug flow case, the solute is spread
solely due to molecular diffusion.

As mentioned earlier, the centre-line decay could
be used as a useful method to determine the molecular
diffusivity in a non-Newtonian liquid. If for a given ~,

which is defined as

~ =ZD/Vavga2

Z, Vavg and "a" are treated as system parameters
which can be vaned af will, then "D"could be 'deier­
mined from a measurement of the decay of the centre­
line concentration. More specifically, from the
measurement of the centre-line concentration at
different axial distances for different tubes and
velocities for a liquid, whose rheology is fully known,
a very good estimate of the diffusivity coefficient
is obtained from a standard plot of 8e vs. ~.

The centre-line concentration decay also depends
on {3, the dimensionless solute tube radius. A typical
figure to illustrate this effect of {3 on the spreading
process on the centre-line concentration decay is
shown in Figure 5 for a Newtonian liquid and a power­
law liquid N= 3.33. It is evident that the smaller the
value of {3 the faster is the decay. In addition to con­
vection, the radial spread mechanism also depends on
the molecular diffusion, which is essentially con­
trolled by the concentration gradient available in
the radial direction for the diffusion process to occur.
Thus, the larger {3, the lesser is the concentration
gradient for large down-stream distances-thus, the
fluid at p = {3 has to spread before the centre-line
concentration feels the effect of any appreciable
gradient. Similar conclusions may be drawn for
other non-Newtonian liquids.

For an Ellis fluid, the relevant rheological para­
meters are the Ellis fluid index and the shear stress
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a 1.0

b 2.0
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d

dc

10

O.OlL--~--~~~-L--~-~_~-,--l.---~--~~~---L-c---"..~----"::""""~==-='

10·"

0.1

FIGURE 4 Influence of pseudoplasticity on centre-line concentration decay.

1.0

N

a 1.0

b 3.)3

b

10- 3

e • 0.026

•c

0.01 L-_---'-__-'-----'_L.....l__.........__J..----'-...........L_-~~~__~...L__ ____''__...:::::======l

1.0

0.1

FIGURE 5 Effect of solute tube radius on centre-line concentration decay Newtonian and power-law fluids.

ratio, m(TR/T II1 ) . For ~ = 1. the solution reduces to
the Newtonian case. For low shear stress values of
the order of I, the Ellis fluid index ~ has only a
marginal effect and the differences cannot be graphi­
cally depicted clearly. For higher shear stress ratios.
the effect is as in the case of power-law liquids as
shown in Figures 6 to 8. In general, for a given shear
stress ratio, the centre-line concentration decay is
faster as the Ellis fluid index increases. This is because
as ~ increases. the centre-line velocity decreases as

compared to the average velocity and hence the faster
the decay. However, it is interesting to consider the
effect of shear stress ratio m for a given o, A typical
illustration is given in Table I for « = 1.5. The effect
is marginal. Thus it seems that the centre-line con­
centration decay is affected much more by the Ellis
fluid index than by the shear stress ratio.

The radial concentration profiles obtained are
plotted in Figures 9 to 11 for power-law fluids and
Figures 12 and 13 for an Ellis fluid. These figures
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l~ "" 0.18

m • 5

a. 1.0
).1 b 1.5

c 2.0
d J.O

1.0

0.0,.lL-_--'-__~~~'__'___...J__ ____'_ __'___'_..L.__ __'___~...........____'___.J

10.3
(

FIGURE 6 Effect of Ellis fluid index on centre-line concentration decay (m =5).

1. J r-----~=------------------___,

m"" 10.0

a • 0.18

·c

(',1

a r.o
b 1.5

c 2.0

d J.O

FIGURE 7 Effect of Ellis fluid index on centre-line decay (m = 10).

give some indication of the way in which radial
spread occurs at different axial distances depending
on (3 and the rheological parameters. In general, the
radial profiles for Newtonian liquids tend to be
sharper than the others and as the velocity profiles
tend away from the Newtonian case, the concentra­
tion profiles become flatter. For a given (3 and a
liquid of known rheological characteristics, the con­
centration profiles are skewed for short axial distances.
This is when most of the material is concentrated in
the region p E;;; (3. The concentration profiles become

flatter as the axial distances increase because of the
spreading process. Finally, at large downstream
distances, the concentration is uniform throughout
the cross-section of the tube as can be predicted by
a simple mass balance.

Experimental Results

The dimensionless solute radius used in the experi­
ment was 0.18. The centre-line concentration decay
curves were obtained by solution of the convective
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l.0r- ......=:-- ~--------- ____,

6 • 0.18
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1.0

b 1.5

0.1 c 2.0

d 3.0

·c

1.0

Q.OlL.-_--'-__"'--~~---"----~--J.._.J.._...L.._.L__ __'___~~____'_.....J

10-3

FIGURE 8 Effect of Ellis fluid index on centre-line concentration decay (m = 100).

diffusion equation for n = 0.789 and 0.314 and 0.7
and I .2% HEe, respectively. and are shown in
Figures 14 and 1S. The concentration was obtained
from the conductivity values and the corresponding
~ values were obtained from Figures 14 and 1S. The
diffusivity values were evaluated from the definition
of ~.

TABLE I

Centre-line concentration decay for an Ellis fluid-effect of
shear stress ratio

Q: Ellis fluid index = 1.5
~: Dimensionless axial distance

The average diffusivities for 0.01 N NaOH diffus­
ing into 1.2% Natrasol solution was 0.989 x 10-5

cm2/sec and for 0.7% Natrasol was 1.004 x10- 5

cm2/sec.

These average values were used to recalculate the
dimensionless axial distance ~ at each concentration
obtained experimentally and were replotted as shown

i .r, r--------------------,

o.e

0.6

FIGURE 9 Typical radial concentration profiles for power­
law fluids.

Shear stress ratio, m

E" 5 10 100

0.0001 1.0 1.0 1.0
0.0010 1.0 1.0 1.0
0.0050 0.9512 0.9501 0.9476
0.0090 0.8143 0.8119 0.8067
0.0100 0.7803 0.7779 0.7723
0.0155 0.6236 0.6208 0.6146
0.0255 0.4478 0.4453 0.4397
0.0355 0.3484 0.3463 0.3415
0.0555 0.2413 0.2393 0.2361
0.0755 0:1851 0.1838 0.1808
0.0955 0.1506 0.1495 0.1470
0.1505 0.0997 0.0989 0.0972
0.2505 0.0705 0.0699 0.0687
0.7505 0.0602 0.0598 0.0589
0.9505 0.0602 0.0598 0.0589
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0.3 ,.-------- --,
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).n
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. O.05S

" - 0.18

m . 10
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b '1:>
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o 0.2S 0.50 0.6 0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 10 Typical radial concentration profiles for power­
law fluids.

FIGURE 12 Typical radial concentration profiles for Ellis
fluid (m =10).

0.1...- _

0.08

It would have been very useful to be able to com­
pare the experimentally obtained diffusivity values
with other data in the literature. Unfortunately. no
data on NaOH diffusion in aqueous HEC solutions

0.3 r-r- -,

FIGURE 11 Typical radial concentration profiles for power­
law fluids.

in Figures 14 and 15. The curve-fit appears to be
excellent. It should be emphasized that the best
region for diffusivity measurements should be the
ones for which the curve of 8c VS. ~ shows the maximum
slope, since in this region, the sensitivity is maximum.
Hence, diffusivity measurements should be confined
to this region.

0.8

1.0

1.5

1.0

3.0d

t. • o.oss
~ • 0.18

m • 100

0.60.40.2
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0.2

FIGURE 13 Typical radial concentration profiles for Ellis
fluid (m = 100).
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FIGURE 14 Centre-line concentration decay curve for experimental solution (n = 0.314).

1.0

0

0 n ." 0.789

0 " ·0.18

0
0

0
0

0
0

0.1

·c

1.00.10.010.001
0.0 L- L-__--'__..I..----'_L- L-__---.JL-_..I..---'~~---.l.-----'---...L-~

FIGURE 15 Centre-line concentration decay curve for experimental solution (n = 0.789).
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have been reported. The reported diffusivity values
of NaOH in water at 1SoC is (1.54 ± 0.04) 10- 5

cm2/sec (International Critical Tables ofNumerical
Data in Physics, Chemistry and Technology, 1929).
It would thus appear that even after the appropriate
temperature correction, the diffusivity in HEC
solutions is lowered. It is important to recognize,
however, that these values are of the same order of
magnitude as in water. This implies that in spite of
the enormous rise in consistency due to the polymer
addition, the diffusion coefficient appears to be un­
changed. In other words, the macroscopic viscosity
in such macromolecular solutions does not appear to
represent the resistance to a diffusive process. This
fact has been well established by now and the several
experimen tal studies (see e.g. Astarita (1966); Astarita
and Mashelkar (1977); Clough et al. (1962); Desai
(1975); Mashelkar and Soylu (1974» and the theo­
retical models (e.g., Navari et al. (1971» confirm this
finding.

The nature of the diffusivity reduction as a function
of the polymer concentration appears to be approxi­
mately consistent with the theoretical model of
Navari et al. (1971). These authors showed that
after an initial sharp decrease in the diffusivity on
initial polymer addition, the later decrease is much
less sharp and indeed the diffusivity values level off
to some extent. From the experimental observations
reported in this work, we would appear to be con­
fined to the latter region.

CONCLUSIONS

This work provides a theoretical st udy of the process
of convective diffusion from a non-uniformly but
symmetrically distributed source in the laminar flow
field of a non-Newtonian fluid prevailing under steady
conditions in a straight tube. An experimental set up
was built up to simulate the model conditions and
obtain molecular diffusivity values of NaOH in
aqueous solutions of hydroxyethy1cellulose. The
measurements in this work are the first ones reported
with this technique and consequently exploratory
but they none-the-less demonstrate that this technique
can be used successfully.

The technique studied here would be particularly
suitable for diffusivity measurements in highly
viscous media and settling suspensions for which the
conventional static techniques may pose certain
difficulties. Mashelkar and Venkatsubramanian (1975)
have already elaborated the utility of such a flow
technique for diffusivity measurement in blood at

low RBC concentrations, where the settling problem
is acute. The potential of this method is thus worth
exploring further not only with respect to mass
diffusivity measurements but also the thermal
diffusivity measurements, since the theoretical
development in the foregoing is equally applicable
to the corresponding heat transfer problem.

NOTATION

a radius of tube
aT solute tube radius
c local concentration
c[ source concentration
D diffusion coefficient
K consistency index
m shear-stress ratio for an Ellis fluid, 'rR /'r I12
n power-law index
N reciprocal of power-law index
r radial distance
rA reaction or source-sink term in Eq. (I)
Vavg average velocity
Vmax maximum velocity
Vz axial velocity component
Z axial distance

Greek Letters

Q: Ellis fluid index
{j dimensionless solute tube radius, aTla
770 Zero-shear viscosity
(J dimensionless concentration, clc[
(Jc centre-line concentration
i' shea r rate
~ dimensionless axial distance, ZDIVavga l

p dimensionless radial distance, ria
'r shear stress
'rR wall shear stress
'r112 shear stress at which shear rate equals half

the wall shear rate
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