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Abstract: Experimental results for imaging the low-scattering tissue 
phantoms based on the derivative estimation through perturbation Monte-
Carlo (pMC) method are presented. It is proven that pMC-based methods 
give superior reconstructions compared to diffusion-based reconstruction 
methods. An easy way to estimate the Jacobian using analytical expression 
obtained from perturbation Monte-Carlo method is employed. Simulation 
studies on the same objects, considered in the experiment, are performed 
and corresponding results are found to be in reasonable agreement with the 
experimental studies. It is shown that inter-parameter cross talk in diffusion 
based methods lead to false results for the low-scattering tissue, where as 
the pMC-based method gives accurate results. 
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1. Introduction 

Biomedical optical imaging [1-8] in the recent years has been the topic of much interest to 
many researchers around the globe. Near Infra-red (NIR) optical imaging is mainly used to 
image thick tissue such as human brain, breast and joints. Main aim of NIR imaging is to get a 
spatial distribution of optical properties from the measurements done on the boundary of 
tissue. Light propagation in tissue can be accurately described by Radiative Transfer Equation 
(RTE) [9], which is an integro-differential equation. RTE is difficult to solve either 
analytically or numerically. The diffusion approximation [10] is generally applied to RTE and 
solved therein to reconstruct the optical properties. Even though diffusion approximation will 
be accurately able to describe the light propagation in tissue in most of the cases, it fails in the 
cases of low-scattering tissue [11-14], such as Cerebral Spinal Fluid (CSF) layer of the brain 
[15-19] and Synovial fluid layer in the joints [20-22]. Numerical solutions from RTE are 
proven to be computationally expensive [23-27]. Hybrid radiosity finite-element- and higher-
order diffusion models [28-30] require a priori knowledge of the boundaries of the low-
scattering regions. This a priori knowledge is difficult to obtain in most of the practical 
situations, for example neonatal brain grows immensely in both shape and complexity 
immediately after birth [31]. One of the main issues of diffuse optical tomography is the inter 
parameter cross-talk [32-34], which is due to underlying non-uniqueness in the inverse 
problem. 

To image these low scattering tissues, there have been attempts to incorporate Monte 
Carlo (MC) simulation for doing reconstruction problem [35-37] (inverse problem of optical 
tomography). MC simulation is considered to be equivalent of implementing the RTE, which 
is accurate to describe the light propagation in these cases. Here again, MC simulation takes 
large computational time involved for taking many millions of photons through the tissue. 
Inversion methods that make use of repeated application of the forward model and updating of 
the derivative needed for guiding the solution to convergence would become too expensive to 
be a useful option. This problem has been recently addressed [36,37] making use of the 
perturbation Monte-Carlo (pMC) method to extract Jacobian, which is the derivative of 
measurements (forward model) with respect to the optical absorption (µa) and scattering 
coefficient (µs). 

An analytical expression for the perturbation in the detected photon weight consequent to 
changes in optical properties in a sub-region, borrowed from neutron-transport theory, is used 
to update both Jacobian and the computed forward data [36,37]. After discretization, such a 
procedure will require only a single Monte-Carlo (MC) simulation with the derivative- as well 
as forward projection data extraction handled by the pMC, which is rapidly done. In Ref. [36], 
this is used to solve a simple two region inverse problem of photon migration in a 
heterogeneous slab of thickness comparable to the transport mean free path, an object which 
falls under the transport-regime, where diffusion equation (DE) fails to hold. An extension of 
the pMC approach to construct a Jacobian matrix with basic MC simulation as forward model 
is presented in Ref. [37] for use in a perturbation-based method to reconstruct transport-
regime low-scattering objects with discretized absorption- and scattering coefficient 
distributions. 

With numerical simulations the utility of a pMC-based iterative reconstruction strategy is 
shown [37] to reconstruct low-scattering objects with single- or multiple inhomogeneities. 
Verification for the utility of the above algorithm by reconstructing µa- and/or µs distributions 
from experimental time-domain data obtained from low-scattering phantoms with single- or 
multiple inhomogeneities is presented here. The propagation-backpropagation (PBP) strategy 
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[38], where data is handled one source location at a time is used in the iterative reconstruction 
scheme, which reduces the dimension of the problem and the overall computation time. 
Reconstructed images of tissue-equivalent phantoms using the experimental data are 
presented. Even with the total-intensity measurements it is demonstrated that, one can clearly 
distinguish absorption- and scattering heterogeneities, in which case, diffusion based 
reconstruction methods require additional constrains [33]. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The flowchart used in the iterative reconstruction. The inner loop uses a gradient search 
algorithm to output update vectors for the optical properties. 
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The work presented here is as follows:- In section 2, a brief overview of the iterative 
reconstruction scheme is presented which uses the Jacobian to calculate the update vectors. A 
brief description of the calculation of the Jacobian matrix using the pMC is also given. Then, 
in section 3, the details of the time-domain experiments conducted are described. The tissue-
equivalent phantoms and the geometry of data collection are also given in section 3. In section 
4, reconstruction results from the experimental data along with simulation results are 
presented. Finally, to show the effectiveness of this approach, one set of reconstruction results 
from the simulated data using the diffusion-equation (DE) based reconstruction method [39] 
are also presented. 

Here only PBP method is used where data from a single source (and many detectors) are 
reconstructed to arrive at an updated object which is used as the initial estimate for 
reconstructing data from the next source. In Ref. [37], the effectiveness of the PBP approach 
is shown for doing inverse problem compared to conventional approach. Since the number of 
equations in the PBP approach is smaller, the reconstruction problem will be too ill-posed to 
converge to a solution when both scattering- and absorption inhomogeneities are considered 
simultaneously without a priori knowledge on location [37]. For reduction in ill-posedness of 
the inverse problem and for better convergence, an a priori information is used in all the 
cases, except one, presented here. Simulation studies for these objects are also presented in 
this work (details are given in Section 4). As a part of the simulation studies, it is shown that 
with or without a priori information, a pMC-based approach will be able to give same quality 
of reconstructions. 

2. Iterative reconstruction algorithm 

Complete details of the iterative reconstruction algorithm are presented in Ref. [37]. Here this 
is briefly explained. The steps involved in the iterative reconstruction procedure are shown in 
the flow chart of Fig. 1. It has two iterations, one main one (the outer iteration) and another 
subsidiary one (the inner iteration) [40]. The ith solution vector (µa

i, µs
i) given to the forward 

model (the Monte-Carlo procedure is repeated with 2.1 million photons to model the forward 
propagation) predicts the computed data (Wc). The experimental data (We) plugged in help us 
find ∆W (= We – Wc) that is used to set-up the update-equation (Eq. (1)). In this work, 
integrated (or DC) intensity (Eq. (4.8) in Ref. [8]) is used as the data. The inner iteration 
outputs the update vector (∆µa, ∆µs), which is used to arrive at the new-solution µa

i+1 = µa
i + 

∆µa and µs
i+1 = µs

i + ∆µs. The conjugate gradients squared (CGS) method is used to solve this 
minimization problem (inner iteration). 

Analytic expressions for changes introduced in detected photon weights owing to optical 
property perturbation in a sub-region in the object are made use of to calculate both the rate of 
change of photon weights with respect to optical properties and the new photon weights 
[36,37,41]. Specifically if µa and µs are perturbed in certain locations and become 

aaa δµµµ += and sss δµµµ += then the detected photon weight w  changes to w  as 

                                              ( )exp

n

s n

t t
tt

s t

t

w w l

µ
µ µ µ µµ µ
µ

⎛ ⎞
⎜ ⎟ ⎛ ⎞

⎡ ⎤⎜ ⎟= − −⎜ ⎟ ⎣ ⎦⎜ ⎟ ⎝ ⎠
⎜ ⎟
⎝ ⎠

                   (1) 

where n is the number of collisions the photon undergoes in the perturbed region, and l is the 
path-length traversed therein and µt = µa + µs. Eq. (1) provides a way to estimate the changes 
in measured photon density (or weight) owing to changes in µa and µs in a specified location.  

Here the object is discretized into 81x81 pixels with freedom for µa and µs values in these 
pixels to move towards their values at convergence. If data from only M detectors is 
considered for each of the S source positions the Jacobian matrix connecting the change in 
measurements at the boundary to perturbations in µa and µs, has dimensions either 
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(SxM)x{(81x81)x2} or Mx{(81x81)x2} (when data from each source is handled separately 
which is the PBP approach ), depending on whether the handling of the data is from all the 
sources together or one source at a time. For constructing such a Jacobian, using Eq. (1), there 
are 2x(81x81) regions of possibly different µa and µs values centered around each pixel. 
Approximately circular sub-regions containing 12 pixels are introduced surrounding each 
pixel in the original object domain (for the boundary pixels this is done by extending the 
boundary), with the object assigned homogeneous background values, µa

b
 and µs

b for the 
calculations of the Jacobian. A large number of photons (28.8 million) are taken through the 
object to determine the average number of collisions, n, and the length traversed, l, in each of 
the sub-regions entered around each of the pixels for the detected photons. The set of n & l 
values determined are frozen and used to update the Jacobian matrix during the course of the 
iterations. To arrive at a particular element of the Jacobian matrix, which is the rate of change 
of data at a detector with respect to the optical properties at a certain pixel, the stored n & l 

values corresponding to that pixel sub-region are used to determine 
a

w

δµ∂
∂ and

s

w

δµ∂
∂  using Eq. 

(1). More details about the weight matrix (Jacobian) generation can be found in Section 3 of 
Ref. [37]. 

3. Experimental details 

3.1 Phantom fabrication 

Tissue-equivalent phantoms are fabricated as described below: The background material is 
obtained by mixing 100 parts of Lapox A-53 epoxy resin with 10 parts of K-6 hardener 
(Cibatul Limited, Gujarat, India). Scattering is introduced by adding TiO2 powder (Dupont, 
Ti-Pure R-902) and absorption through India ink of appropriate quantities as required.  

The phantoms with inhomogeneities are fabricated in two steps: In the first a cylinder is 
cast which is designed to have background optical properties, µa

b = 0.008 mm-1 and µs
b = 0.05 

mm-1. For this, while mixing the epoxy resin to hardener 469 mg of TiO2 powder and 8 mg of 
2% India ink are also added and thoroughly mixed. The resin is allowed to set for 24 hours at 
room temperature (approx. 26oC). Inhomogeneity is introduced as smaller diameter rods of 
different optical properties. In the experiments conducted here, the inhomogeneity values at 
its centre in absorption (µa

in) and scattering (µs
in) are varied from 0.008-0.021 mm-1 and 

0.005-0.14 mm-1 respectively. For this in a 110ml mixture of epoxy resin and hardener, 
262mg TiO2 and 1.6mg 2% Indian ink are added. Both the background cylinder and the rods 
are thoroughly degassed in a vacuum chamber. The rod, which is to serve as the 
inhomogeneity, is machined and fitted exactly into a hole drilled in the background cylinder. 
A composite object with multiple inhomogeneities is also prepared following the same 
procedure. 

The details of tissue-equivalent phantoms fabricated using the above procedure are as 
follows: Overall diameter = 80 mm. Inclusion diameter = 10 mm. The background optical 
properties, µa

b = 0.008 mm-1 and µs
b = 0.05 mm-1. The optical properties of the absorption- 

and scattering inclusion are µa
in = 0.021 mm-1 and µs

in = 0.14 mm-1 respectively. The 
refractive index of the material, which is considered uniform, is 1.53. Henyey-Greenstien 
phase function is used to describe the scattering. The anisotropy factor g is kept at 0.75. 

3.2 Data gathering 

A schematic of the setup used for experiments is shown in Fig. 2. The second harmonic output 
of a ps Nd:YAG laser (Continuum PY61C-10, 532 nm, 27 ps, 10 Hz) is used to pump a 100 
cm long Raman cell filled with H2 at 30 Atm. pressure to generate 683 nm Stokes output by 
Stimulated Raman Scattering (SRS). Typical conversion efficiency of the set up is ~20% with 
pulse-to-pulse fluctuation of ~ 8% in first stokes output at 683nm. The Stokes output is 
separated from pump and the higher order Stokes and anti-Stokes output by proper high and 
low pass filters. The spatially filtered Stokes beam is used to illuminate the object mounted on 
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a jig with provision for rotating to any angle. A multimode fiber (Φ = 1000 µm) of 1 meter 
length is used for collecting the scattered light exiting from the phantom. The detector fiber 
position can be independently adjusted to any position around the phantom. The Stokes light 
emerging from the scattering medium gets temporally elongated due to multiple scattering. A 
single shot streak camera [42] is used to record the photon arrival histogram (the TPSF). Data 
is collected for 13 detector positions, with an angular spacing of 5o covering an angle of 60o 
diametrically opposite to the source position for each of 12 source positions at spacing of 30o 
covering the phantom fully. Averaging of 50 data sets for each source-detector location is 
performed, after making suitable correction for temporal jitter, before the data is subjected to 
further analysis. 

 
Fig. 2. Schematic diagram of the time-domain experimental setup. 

4. Experimental and simulation results 

4.1 Experiments 

An initial Monte-Carlo simulation with 28.8 million photons having an extended boundary 
and homogeneous background values of µa

b
 and µs

b is performed to store n & l, the average 
number of collisions and length of traverse of photons, in the 12-pixels circular sub-regions 
surrounding each of the pixels. This data set is needed for calculation of the Jacobian as given 
in section 2 (see Fig. 1). For forward computed data (Wc), integrated intensity, an MC 
simulation with 2.1 million photons is done on the object with same source-detector positions 
with the same detector diameter. PBP strategy is used in combination with a priori 
information to reduce the computation effort. Here (in PBP) data from one view is considered 
sufficient to solve the iteration, which resulted in an updated object for use with data from the 
next view. All the views are considered cyclically. With µa- and µs inhomogeneities 
simultaneously present, without assumption of locations, the PBP-based problem is too ill-
posed to result in a solution [37]. The convergence criterion used is that the norm of the 
difference between computed data and the experimental data should be below a, preset, small 
value. Since Monte-Carlo simulation is used, a stochastic forward model, the reconstructed 
images required post-processing. A local median filter of dimension 5x5 pixels is employed to 
smoothen the images.  

As stated earlier, experimental data (integrated intensity) is collected for three phantoms: 
first one with only absorption inhomogeneity, the second only with scattering inhomogeneity 
and third one with both at different locations. In each of the cases, the TPSF’s measured are 
integrated to obtain the total photon weight (integrated intensity) measured for that source-
detector pair (to serve as We). Data from a particular view is input to the iteration of Fig. 1, 
which outputs the update vector [∆µa, ∆µs]. The updated µa and µs are used along with the 
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data from the next ‘view’ to continue the iterations (PBP approach). In all the experimental 
cases considered, it is assumed that the location of inhomogeneity is a priori known to be 
within a region of 30x30 pixels. The initial estimates of (µa, µs) for the reconstruction 
algorithm are the background values (µa

b, µs
b). All the reconstruction procedures are carried 

out on a Pentium IV 2.40 GHz processor. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
  (a)                     (b) 

Fig. 3. Reconstruction of µa-distribution obtained from PBP approach with experimental data 
from tissue-equivalent phantom with only µa-inhomogeneity (a). Original µa-distribution: 
Background µa

b and µs
b are 0.008 mm–1 and 0.05 mm–1 respectively, and the inclusion has µa

in = 
0.021 mm–1 and µs

in = 0.05 mm–1. (b). Reconstruction of (a). The reconstructed µa-
inhomogeneity value at its centre is µa

in = 0.028 mm–1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)                     (b) 

Fig. 4. Reconstruction of µs-distribution obtained from PBP approach with experimental data 
from tissue-equivalent phantom with only µs-inhomogeneity (a). Original µa-distribution: 
Background µa

b and µs
b are 0.08 mm–1 and 0.05 mm–1 respectively, and the inclusion has µa

in = 
0.08 mm–1 and µs

in = 0.14 mm–1. (b). Reconstruction of (a). The reconstructed µs-
inhomogeneity value at its centre is µs

in = 0.18 mm –1. 

Figure 3 gives the reconstruction of µa-distribution from the experimental data obtained 
from the tissue phantom with only µa-inhomogeneity. The unknowns are the value of µa at 
these spatial a priori known locations. What is assumed a priori is that the inhomogeneity is 
somewhere inside a region of 30x30 pixels centered at (50, 41) making number of unknowns 
as 900. As PBP approach is used Jacobian for this problem has a dimension of 13x900. The 
original object shown in Fig. 3(a) has a µa-inhomogeneity. The reconstructed µa-distribution is 
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as shown in Fig. 3(b). The solution converged in 43 iterations, each iteration taking ≈ 16 
minutes. The original object µa-inhomogeneity value is 0.021 mm-1 and the reconstructed µa

in 
at the center is 0.028 mm-1. 

Figure 4 shows the result for a similar effort, as above, done on experimental data from the 
phantom with only µs-inhomogeneity. Original µs-inhomogeneity value is 0.14 mm-1 (Fig. 
4(a)) and reconstructed µs

in at the center is 0.28 mm-1 (Fig. 4(b)). The solution converged in 
59 iterations, each iteration taking ≈ 16 minutes.  

 

 

 

 
 
 
 
 
 
 
 
 
 

        (a)            (b) 

 

 

 

 

 

 

 

   
 

        (c)           (d) 

Fig. 5. Simultaneous reconstruction of µa and µs inclusions from the experimental data obtained 
from the composite phantom using the PBP approach (a). Original µa distribution with 
background µa

b = 0.008 mm–1 µs
b = 0.05 mm–1 and inclusion has µa

in = 0.021 mm–1 (b). Original 
µs distribution: background is same as (a) and the inclusion µs

in = 0.14 mm–1. Reconstruction of 
(c). µa-inhomogeneity and (d). µs-inhomogeneity. The reconstructed optical properties at 
centers of inhomogeneities are µa

in = 0.028 mm–1 and µs
in = 0.21 mm–1. 

In Fig. 5, both µa- and µs inhomogeneities are located at different a priori known 
locations (as before, the locations specified to be within 30x30 pixels regions, for µa centered 
at (40, 41) and for µs at (50, 41) ). Here µa

b is assumed to be 0.008 mm-1 and µs
b = 0.05 mm-1. 

Note that only PBP approach is used for reconstruction. There are 900x2 unknowns and the 
Jacobian size is 13x1800. The original µa

in (= 0.021 mm-1) and µs
in (=0.14 mm-1) images are 

shown in Fig. 5(a) & (b) respectively. The reconstructions are shown in Fig. 5(c) & (d) with 
the central value of µa

in- and µs
in reconstructions 0.028 mm-1 and 0.21 mm-1 respectively. The 

solution converged in 50 iterations, each iteration taking ≈ 32 minutes. 
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4.2 Simulations 

Results of the numerical simulations for the same objects considered to those used in the 
experiments are presented here. The detectors are considered to be of diameter 1mm and 
simulated experimental data, (We), are generated by adding 2% Gaussian noise to the 
integrated intensity arrived at using MC simulation. Similar to the experimental reconstruction 
procedure, the homogeneous background optical properties (µa

b, µs
b) are considered as the 

initial estimate to start the iteration and Pentium IV 2.40 GHz processor for computations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (a)        (b) 

Fig. 6. Simulation results for Fig. 3(a). (a). Reconstructed µa-image with a priori information 
about the location of the inhomogeneity (0.018 mm–1 at the centre). (b). Reconstructed image 
without a priori information about the location of the inhomogeneity (0.019 mm–1 at the 
centre). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. Simulation result for Fig. 4(a). Reconstructed µs-image with a priori information about 
the location of the inhomogeneity (0.16 mm–1 at the centre). 

In the numerical simulation, for the object with only absorption inhomogeneity (Fig. 
3(a)), using the PBP approach and the a priori assumption of inhomogeneity location, 
convergence is obtained in 16 iterations. The result is shown in Fig. 6(a). Without a priori 
information, the reconstruction problem took longer time (29 iterations, each taking ≈ 43 
minutes) to converge and the result, shown in Fig. 6(b), is comparable in accuracy to the one 
shown in Fig. 6(a). Reconstructed µa-inhomogeneity value at the center of Fig. 6(a) and 6(b) 
are 0.018 mm-1 and 0.019 mm-1 respectively. For this reason, in all the other cases considered 
here, a priori location information is assumed to be known. The reconstruction result of 
simulations corresponding to the object shown in Fig. 4(a), is given in Fig. 7. Convergence is 
obtained in 21 iterations, with the µs-value at the center of reconstructed inhomogeneity 0.16 
mm-1. Figs. 8(a) and 8(b) show the simulation results for the objects of Fig. 5(a) and 5(b) 
respectively. Reconstruction is obtained in 33 iterations. The center value of the 
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inhomogeneities corresponding to Fig. 8(a) and 8(b) is 0.019 mm-1 and 0.13 mm-1 
respectively.  Horizontal cross-sections at y = 41 through the centre of reconstructed images 
are presented in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 

      (a)               (b) 

Fig. 8. Simulation results for Fig. 5(a) & (b).  (a). Reconstructed µa-image with a priori 
information about the location of the inhomogeneity (0.019 mm–1 at the centre). (b). 
Reconstructed µs-image without a priori information about the location of the inhomogeneity 
(0.13 mm –1 at the centre). 

 

      

 

 

 

 

 

 
Fig. 9. Comparison of horizontal cross-sections at y = 41 mm of the reconstructed images.   
(a).Horizontal cross-sections at y = 41 mm through the centre of images Fig. 3(b) and 6(a). 
(b).Horizontal cross-sections at y = 41 mm through the centre of images Fig. 4(b) and 7. 
(c).Horizontal cross-sections at y = 41 mm through the centre of images Fig. 5(c) and 8(a). 
(d).Horizontal cross-sections at y = 41 mm through the centre of images Fig. 5(d) and 8(b). 

 
 
  

  

  

(a)     (b) 

(c)     (d) 
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   (a)                (b) 

Fig. 10. Diffusion equation based reconstruction results for Fig. 5(a) and (b) from the simulated 
data without noise. (a). Reconstructed µa-image (0.011 mm –1 at the centre). (b). Reconstructed 
µs-image (0.06 mm –1 at the centre). 

Finally to bring out the effectiveness of pMC-based algorithm, experimental data is used 
in a diffusion equation-based algorithm, which did not converge to meaningful results. Even 
with the 2% noise added simulation data, the DE-based algorithm has failed to converge. 
Without any noise in the simulated integrated intensity, as a test case, the object with two 
inhomogeneities (Fig. 5(a) and 5(b)) are reconstructed and the results are presented in Fig. 
10(a) and 10(b). Even here the reconstruction was carried out with the same a priori 
information as in Fig. 5(c)and 5(d). The centre of the reconstructed inhomogeneities values in 
µa- (Fig. 10(a)) and µs-distribution (Fig. 10(b)) are 0.011 mm–1 and 0.06 mm–1 respectively. 
Reconstructed µs-inhomogeneity (Fig. 10(b)) is falsely shown in the reconstruction result 
(original is as shown in Fig. 5(b)). 

5. Discussion and conclusions 

With these experimental results a confirmation of the usefulness of a Monte-Carlo-based 
method to reconstruct low-scattering objects, where the diffusion equation fails to hold, is 
done. The novelty of this method lies in getting the derivative information using a simple 
analytical equation (Eq. 1) and using the same in subsequent iterations. Further, 
experimentally, it is shown that cross talk between absorption- and scattering coefficients is 
negligible in the pMC-based reconstructions. The DE-based reconstructions are prone to 
cross-talk as the diffusion- and absorption coefficients are not independent of each other. 
Therefore µa- and µs reconstructions based on sensitivity matrices calculated with respect to 
absorption and diffusion coefficients will have cross-talk which needs to be minimized by 
adding correction terms to the sensitivity matrix [33,34]. In addition, it is also seen that with 
the DE a measurement data type like intensity has a preferential weightage towards 
reconstructing µa and has poor sensitivity towards µs changes [34]. This is not so with an RTE 
or MC-based method as demonstrated through simulations and experiments here. In 
comparison, a large false positive is seen in the µs image at the µa-inhomogeneity location in 
the DE-based reconstruction shown in Fig. 10. Usefulness of dividing the reconstruction into a 
number of sub-problems based on angle of projection (view) in reducing computational 
complexity is demonstrated which give accurate reconstructions when location of 
inhomogeneities is a priori known.  

The main applications of optical tomography being brain and breast imaging [1-7], a great 
challenge in the medical optical imaging is to develop a model which can reconstruct optical 
properties with a large range of variation. An example is the low-scattering CSF layer 
surrounding a highly scattering inhomogeneous region. To generalize, the typical problem 
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would be to reconstruct low-scattering inclusions in an otherwise high scattering background. 
Whereas the RTE, and its equivalent the MC simulation, would hold good for both high and 
low-scattering regions, the DE is valid only where scattering predominates. One strategy 
would be to use the DE, which is computationally efficient to implement and switch to the 
RTE when one encounter the inclusions. This can be successful only if one can provide the 
correct boundary and source conditions at the interface between the inclusions and the 
background, which in itself is complicated. Another alternative approach can be to use MC as 
the forward model and pMC to provide update to both the Jacobian and the computed forward 
data which is computationally feasible. Reconstruction is limited only to the regions of 
interest, namely, the low-scattering inclusions, which are a priori obtained by analyzing the 
intensity data gathered around the objects following the procedure suggested in Ref. [43]. 
Identification of the regions of interest will drastically reduce the problem dimension, 
application of pMC to update the sensitivity matrix and the forward data will render 
computational cost manageable and the MC simulation which takes into account angles of 
scattering with its larger applicability will reconstruct low-scattering inclusions better, i.e., 
more accurately and with lesser inter-parameter cross-talk. The future direction for this work 
will be to demonstrate, through simulations and experiment, imaging of low-scattering 
inclusions in a high scattering background using the above strategy, which would justify the 
practical utility of the method presented here. 

 In Ref. [44] a three-dimensional (3D) Monte-Carlo code has been presented for modeling 
photon transport in adult head. Availability of such efficient 3D models pave the way for 
extending the 2D demonstration presented here to 3D imaging and using it for practical brain 
tissue characterization. This method could be combined with and guided by other imaging 
modalities such as MRI, X-ray CT and ultrasound to complement its capabilities to realize a 
superior imaging modality which gives more accurate and useful spatial as well as structural 
information of the human brain than what each one of them can individually provide.  
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