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Hydrodynamical changes due to polymer migration in very dilute solutions*) 

A. Dut ta  and R.A.  Mashelkar 

Polymer Engineering Group, Chemical Engineering Division, National Chemical Laboratory, Pune (India) 

Abstract: The slip hypothesis, based on thermodynamical arguments, has been 
extended to obtain the flow characteristics of polymer solutions flowing in a non- 
homogeneous flow field. An asymptotic analysis, valid for both channel and falling 
film flows, is presented that predicts the flow enhancement due to polymer migration. 
Concentration-viscosity coupling is shown to be a critical factor in the hydrodynamic 
analysis. The analysis, which essentially provides an upper bound on flow 
enhancement, explicitly accounts for the influence of wall shear stress, initial polymer 
concentration etc. A comparison with the pertinent experirnental data shows 
reasonable agreement. 
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Notation 

c concentration 
c o concentration in shear-free region 
c; initial concentration 
d rate of deformation tensor 
g acceleration due to gravity 
gl function defined in eq. [13] or [15] 
g2 function defined in eq. [18] or [20] 
H half-channel thickness or film thickness 
K gas law constant 
L length of the channel or film 
q flow rate per unit width 
q* normalized flow rate 
T temperature 
v velocity 
V mean velocity 
y transverse distance 
y« location of solvent layer 

~w2/l~s 
B Zw/C o KT 
6/6t convected derivative 
0 dimensionless cenentration, c/c o 
0c dimensionless interface concentration 
0w dimensionless wall concentration 
2 relaxation time 
Beff effective viscosity 
Be solvent viscosity 

dimensionless transverse distance, y/H 
~c dimensionless interface location 
p density 

*) NCL-Communication No. 3155 
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z stress tensor 
z w wall shear stress 

q KT/ % 

Subscript 

ns no slip 

1. Introduction 

There is an increasing awareness now that polymeric 

molecules tend to migrate in non-homogeneous flow 
fiel& A number  of studies which examine the causes and 
consequences of such phenomena have appeared in the 
literature over the past six years (1-8). Although the 
consequences of such phenomena have been increasingly 
appreciated [8], the mechanistic reasons are still unclear. 

There appear to be four distinctly different lines of attack on 
this problem. Metzner et al. [1, 2] and Tirrell and Malone [3] 
based their arguments on the observation that in deforming 
fluids macromolecules stretch and align themselves thereby 
changing the free energy levels. Thus in a non-homogeneous flow 
field where there is a spatial variation of strain rate the molecular 
extension and orientation and consequently the free energy 
becomes position dependent. In order to compensate for the 
spatial variation in free energy levels, concentration gradients are 
set up. The riet effect is that the macromolecules migrate towards 
region of low strain rate. These arguments, although intuitively 
appealing, have been criticised by some, since the calculation of 



456 Rheologica Acta, Vol. 22, No. 5 (1983) 

concentration essentially employes the application of equilib- 
rium thermodynamics to non-equilibrium situations. 

Aubert et al. [4, 5] have examined the problem of migratiom 
in terms of the fexible bead-spring type of model of macromo- 
lecules. They show that such molecules migrate relative to the 
undisturbed centre of mass solvent velocity. They originally 
contended [4] that even if the flow was nonhomogeneous, if it 
was not a curvilinear flow, then the flexible macromolecules will 
not migrate across the streamlines. However, this conclusion is 
shown to be in error by Sekhon et al. [9] who clearly showed that 
the inclusion of hydrodynamic interaction leads to migration 
even in rectilinear flows. 

The third type of models have been essentially built by Brunn 
[10] andAubert and Tirrel [11]. They showed that the presence of 
wall restricts the number of configurations available to macro- 
molecules near the wall thereby reducing their concentration. A 
zone of concentration depletion is predicted to exist near the 
wall, and rather elegant calculations have been performed by this 
group with a view to examine the motion of bead-spring 
mechanical models of macromolecules in the presence of a non- 
penetrable interface. It is likely that this type of hydrodynamic 
calculation is indeed appropriate when narrow channels are 
considered. Since the order of magnitude of the wall exclusion 
layer is the same as the hydrodynamic diameter of the 
macromolecule, it is unlikely that such effects will be important 
in larger channels. 

The fourth class of models essentially relate to certain 
phenomenological considerations, and incorporate slip velocity 
[6-8, 12] and/or a slip layer of unknown thickness [13, 14] and 
carry over the hydrodynamic or transport calculations in the 
traditional way. Such calculations, although helpful from the 
point ofview of engineering correlations, do not throw any light 
on the exact mechanistic details. 

From the above it is rather evident that there area number of 
different hypotbeses that have been made for examining the 
phenomenon of macromolecular migration but none of these has 
been proved or disproved unequivocally. Besides, it is likely that 
some of these mechanisms are not essentially mutually exclusive 
but might coexist. Furthermore, presently there is a large gap 
between the calculations based on molecular models, the 
calculations based on continuum mechanics and those which are 
entirely phenomenological. 

It appears that one way to sott out this important issue would 
be to make alternative models or hypotheses and carry out the 
calculations to their logical end. The results of the model 
hypotheses could be tested against the experimentally observed 
facts. It is precisely this incentive with which the present 
investigation was undertaken. 

We shall examine the consequence o f  quasi- thermo- 
dynamic  arguments advanced by Metzner  [1] and 
extended by Janssen [15] to perform some engineering 

calculations on the flow enhancement in migrat ing 
macromolecular  media. This has not  been a t tempted 
before. Wha t  comes close to this work  is the effort by 
Tirrell and Malone  [3], but  there are two rather impor tant  
differences by which out  work  differs from theirs. The 
concentrat ion/viscosity coupling was not  taken into 
account by Tirrell and Malone.  This will be shown to be a 
very critical consideration. Secondly they did not  carry 
their calculations to a stage where one could have an idea 
of  the flow enhancement which is the pr imary measure- 
ment  invariably undertaken.  Out  analysis provides an a 
p r i o r i  estimate of  flow enhancement due to macromole-  
cular migrat ion for dilute polymer  solutions, for which 
the constitutive equations used in ou t  work  are appro-  
ximately valid. We find that  certain very reasonable and 
physically plausible observations emerge which appear  to 
compare at  least semi-quanti tat ively with some of  the 
reported data  in the l i terature on the flow of  dilute 
polymer  solutions. 

2. Analytical Development 

We shall consider the flow of  a dilute polymer solution 
through a narrow channel [L > H]  as shown schemati- 
cally in figure l (a ) .  Upon  entering the channel, the 
solution is subjected to a non-homogeneous  deformat ion 
field which results in the migrat ion of  the polymer from 
the high shear region to low shear region near  the centre. 
A finite length of  the channel will be required for the 
migrat ion to be complete. Therefore, we take the channel 
to be sufficiently long for both  the concentrat ion and 
velocity fields to be fully developed. Under  these 
circumstances, we are pr imari ly  interested in knowing the 
detailed concentrat ion and velocity profiles such that  the 
volumetric flow rate for a given wall shear stress can be 
determined. 

2.1.  C o n c e n t r a t i o n  P r o f i l e  

Based on the free energy expression obtained by 
Marrucci  [16] for a dumbell  mode1, Metzner  [2] derived 
the following expression for the concentrat ion difference 

/ / / / / / g ' / / , / /  / /  / /  / / / /  / 
C i V :/ L:ol rù 

/ / / / / / / / / / / / , / / / / / , , - , k  

(o) (b) 
Fig. 1. Schematic representation of 
(a) channel and (b) falling film flow. 
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between regions with and without shear. 

c o tr 
- -  -- exp - - .  
c 2 c K T  

Very dilute polymer solutions can adequately be repre- 
sented by a Hookean  dumbell model which can math- 
ematically be descibed as 

cS~ 
+ )o ~ = c K T 2 .  (2) 

Eq. (2) gives 

tr ~ = 2 c K T 2 2  ~2 

for shear flows and since the shear rate is ~) = z/IL eq. (1) 
becomes 

- -  = e x p  - 

«o \«XrH} j 

In dimensionless terms, the concentration profile given by 
eq. (3) can be written as 

0=~~pE (~071 ~4, 

0 is double valued as the function 0(~) exhibits an 
extremum value of 0« at ~ = ic. This is not physically 

(1) realistic as the solution at any location cannot have two 
different concentrations. Since the centreline concentra- 
tion, 0(0), must always be unity, the solution in the 
domain 1 < 0 < 0 c is the only physically plausible one. 
Therefore for fi >/3«, eq. (4) gives the concentration 
profile only for 0 < ~ < ~«. For  the remaining port ion of 
the flow passage (~« =< ~ _<_ I), the trivial solution 0 = 0 
must  be valid. In other words, beyond a critical value of/?, 
a pure solvent layer of  thickness I - ~c starts forming 
adjacent to the wall and the bulk of  the polymer  slips 
through this low viscosity solvent layer. The above 
physical/mathematical  arguments form the main core of  
our development. 

The concentration gradient at the solvent layer - 
polymer solution interface (located at ~ = ~~) is infinite 

(3) (see Fig. 2). Since 

0 ( - l n0 )1 /2  (5) 

/3 

the condition of  infinite gradient implies that 

0« = exp ( -  ½) = 0.6065. 

Eq. (4), which has been derived by Janssen [15], is an 
implicit equation in 0 with 0 = 0 as its trivial solution. 

Figure 2 shows some typical concentration profiles as 
calculated from eq. (4). It  can be seen that  beyond a 
critical value of/3 (=/3«), a nontrivial solution of  eq. (4) 
exists only for a limited range of  4. Of  greater import-  
ance is the observation that within this limited range, 

1.0 

0.8 

0,6 

8 

0.4 

0.2 

0 . 0  
0 '0  0"2 0 '4  0 '6 0 '8  

Fig. 2. Graphical representation of eq. (4) 

F rom eq. (5), we obtain 

ic - 0 c ( -  In 0c)_ 0.4289 (6) 
p p 

Eq. [6] suggests that a pure solvent layer of  thickness 
1 - ~« will only be formed when/3 > 0.4289 (=/3c). For  
B </3«, gradual depletion of  polymer occurs from the 
centre to the wall and the wall concentration (0w) is the 
solution of  the following transcendental equation 

0 w ( -  in 0,~) 1/2 =/3. (7) 

The preceeding discussion pertains to the situation 
where the viscosity depends on the polymer con- 
centration. In the absence of  such a coupling, the 
concentration profile is of  the following form 

0 oc e x p ( - 4 2 )  

as shown by Tirrell and Malone [3]. The above expression 
is explicit in 0 and suggests a gradual depletion of the 
polymer. In this case, the velocity field is unaffected by the 
concentration redistribution and consequently the vol- 
umetric flow rate should remain unaltered. This, how- 
ever, is contrary to the experimental observations thereby 
implying that any realistic analysis of  polymer  migration 
in non-homogeneous flow fields should incorporate a 
concentration dependent viscosity. 
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2.2. Velocity Profile 2.3. Determination of  

For /3 >/?« (that is when a solvent layer is present 
adjacent to the wall), the velocity profile within the 
solvent layer can be written as 

"c w H v = - - ( 1 - - ~ b  , ~ e < ~ < l  (8) 
2/4 = = 

whereas that in the polymer solution core is 

rwH ~~ ~d~ 
= - -  (1 - ~~) + ~ ~ H J  (9) 

2~,s «~(~)'  

0<~__<~«. 

Taking into account the solvent contribution, the 
Hookean dumbell model [see eq. (2)] implies the solution 
viscosity (/d to be 

B = tJ~ + cKT2.  (10) 

Eq. (9), when combined with eq. (10) and (5), therefore 
becomes 

rwH { 1 ° 0 ( 2 1 n 0 + 1 )  } 
~ = ~ 7 +  1 - ~ ~ + ~ ~ o  ~7;07~- dO. (11) 

If the density change is assumed to be negligible, the total 
volumetric flow rate per unit width (q) can be easily 
obtained by integrating the velocity profile and can be 
expressed as 

q = zwH--~z [~ (1 - {~) + g l  («,/3)1 (12) 
Bs 

where 

1 } 2 1 n 0 + 1  
gl(~,/?) = 5 p  l{:-~ö~*,2 

° z ( 2 1 n z +  1) dzdO. (13) 
" ~ 1+az/~? O« 

For/3  </?«, no solvent layer is present near the wall. 
Therefore, the velocity profile can simply be written as 

"CwH 1 ~ 0 ( 2 1 n 0 +  1) dO (14) 
~=572~s/? < 1+«0//? 

and the flow rate per unit width becomes 

"cwH 2 
q = ~ gl (Œ,/3) (15) 

where g~ is given by eq, (13) with O~ replaced by 0 w 

Till now, the parameter/3 is effectively an unknown as it 
involves Co, the centreline concentration. In order to solve 
this problem, e o needs to be related to the inlet 
concentration, c~. For  /3 >/?«, a mass balance for the 
polymer gives 

Yc 

q c i = 2  ~vcdy 
0 

o r  

c o _ V _ (16) 
C i ~o S ~Od¢ 

0 

where V=  q/2H is the average velocity. Eq. (16), when 
combined with eqs. (5) and (11), becomes 

1 q~ [2/3 (1 - (/?j/?) 3) + & (c~,/?)] 
2/? 2 g2 (c~, 13) (17) 

where 

} 0 ( 2 1 n 0 + 1 )  g~ (~,/3) = ~ ----,Tv/~ 
0o ( -  ln0) 

(18) 

If/3 </?«, the mass balance equation becomes 

H 

qc i= 2 S vcdy 
o 

and eq. (17) can be written as 

1 _ cpgl(c~,/3) (19) 
2/? 2 g2(Œ,/?) 

where 

1 } 0 ( 2 1 n 0 + l )  ~ z ( 2 1 n z + l )  
g2(~'/?)=Ui~ (-~U°F/~ Jw ~ ~ z T ~  «zao. (2o) 

Eqs. (17) and (19) are both nonlinear equations implicit in 
/?. Thus for known values of~  and (p,/3 can be determined 
by numerically solving the appropriate equation. « and fl, 
in turn, will be known if z w and ci are available. 

In the absence of  slip (no migration), the flow rate, q,,s, 
through a plane channel can be expressed as 

2 zwH 2 (21) 
qùs -- 3 #,s 

where t~ùs = ,us + c~ KT2. Therefore, a measure of  the flow 
enhancement due to effective wall slip can be obtained by 
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considering the ratio 

1"0 
q _/t,,s _ 3 [1 + c~q)] q* (22) 

qù, ,//eff 2 

where q*=/z~ q/% H 2 is the normalized flow rate. 0.8 

2.4. Falling f i lm flow 

0 

0 .6  

An analysis, similar to that reported in the foregoing 
can also be used for the flow of a freely falling film down 
an inclined plane as shown schematically in figure 1 (b). o.o 
An identical procedure is to be followed and eqs. (2-14), 
(17-20), and eq. (22) are all valid for this flow situation, 
too. The only differences, arising out of the change in flow 
geometry, are in the expression for q and q* which now 
become 

72rvH2 [ 2 / 3 ( 1  - ~ c 3 ) ~ - g l ( ~ , ~ ) ]  f o r  f l > f l « ,  (23)  q = ~~-B~ t.o 

L 
% H 2 

q =  ~ g ~ ( ~ , f i )  for/~<fi« (24) Vo. s 

and 

q* = 2/4 q/% H 2 (25) 
o.o 

where Zw = p g H c o s ,  is the wall shear stress, o.o 

3. Results and Discussion 

Ci = 2 0 0 0  ppm 

t 

I 
b 
I 
i . . . .  

0-2 0"4 0"6 0'8 t '0  

Fig. 3. Concentration and velocity profiles for a 2000ppm 
solution in channel flow. Wall shear stresses were 40 ( - - - ) ,  46 (- 
- - ) ,  and 64 dynes/cm 2 ( - - - - - ) ;  parabolic flow ( . . . .  ). 

The preceeding analysis permits determination of the 
detailed flow characteristics for a given polymer con- 
centration and wall shear stress. In the following we shall 
briefly discuss some of the results obtained for a typical 
polymeric system. In particular, we take M =  500,Ö00, 
T =  25 °C, 2 = 4.7 x 10-4sec and/~s = 0.01 poise. These 
values are representative of  aqueous polyethylene oxide 
solutions at low concentrations. Before proceeding 
further, it needs to be emphasized that the dumbell model 
predicts a linear dependence ofviscosity on concentration 
as given by eq. (10). This is true for very low con- 
centrations; the analysis is therefore restricted to very 
dilute solutions. Besides, in deriving the concentration 
profile represented by eq. (4) the solvent contribution to 
the viscosity is neglected, that is/z »/z~. Eq. (10) therefore 
implies that c~ >> 1.65 fl for predictions to be meaningful. 

Figure 3 illustrates the concentration and velocity 
profiles for a given polymer solution flowing at different 
rates. At low shear stresses, gradual depletion of polymer 
occurs from the wall to the relatively shear-free region 
near thr centre and the velocity profile is similar to the (no 

slip) parabolic shape. At higher stresses, however, the 
migration reaches such an extent that the wall region is 
devoid ofany polymer and a pure solvent layer is formed 
adjacent to the wall with its thickness increasing as the 
wall shear stress increases. Correspondingly, the velocity 
profile within the core tends to become more uniform 
across the cróss section. In comparison to the no-slip case, 
the wall shear rate is always higher in the presence of 
polymer migration, thereby implying effective wall 
slippage. 

Figure 4 shows the flow enhancement ratio, q/qùs, as a 
function of wall shear stress and the initial concentration 
of the polymer. Larger stresses promote increased 
migration which in turn is manifested as increased flow 
enhancement. This behavour, however, persists only up 
to a certain stress beyond which flow enhancement is 
practically unaffected by the changes in wall shear stress. 
Thus, once a sufficiently thick solvent layer is formed near 
the wall, the migration process reaches saturation. 
Moreover, higher concentration implies higher elasticity 
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Fig. 4. Flow enhancement ratio as a func- 
tion of the initial conentration of the 
polymer and the wall shear stress for 
channel flow 

and therefore a larger driving force for migration at a 
given shear stress. Consequently, flow enhancement 
increases as the solution becomes more concentrated. 

The results presented in Figure 4 indicate that even for 
very dilute polymer solutions flowing in non- 
homogeneous flow fields, polymer migration can cause 
the flow rate to be as high as five times the flow rate 
expected from no-slip predictions. Experimental obser- 
vations by Carreau et al. [16] and Popadic [17] suggest 
that about 2 to 4 fold enhancement in flow rate is possible. 
Popadic [17] has reported falling film data for 500ppm 
carbopo1934 [mol. wt. ~ 3 x 106] solution and attributed 
the significant increase in flow rate to secondary flows. In 
an earlier work [12], we have shown that his mechanistic 
explanation of this °'laminar drag reduction" is incorrect 
and have provided a phenomenological interpretation of 
the results. The present analysis, however, should provide 
a more fundamental understanding of this phenomenon. 
Since a 500ppm aqueous Carbopol 934 solution is a 
nearly Newtonian liquid (power law index ~0,95), the 
analysis should be applicable. A comparison between the 
theoretical predictions and the experimental data is 
shown in Fig. 5. Also shown are the corresponding no-slip 
calculations. Evidently, the experimentally measured 
flow rate for a given film thickness is always bounded by 
the theoretical calculations and the no-slip predictions, 
with the former acting as an upper bound for the flow 
rate. Thus not only does the theoretical analysis yield 
results that are comparable to experimental measure- 
ments but it also provides an upper bound on the flow 
enhancement. Since migration occurs by a diffusive 
process and diffusion coefficients of macromolecules are 
very low [3], extremely long lengths are likely to be 
necessary for full development [1]. The present theory, 
therefore should provide an estimation of the maximum 
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Fig. 5. Comparison of calculated results with experimental data 
[18] for falling film flow. Theoretical slip predictions ( ), no- 
slip calculations ( - - - - - ) ,  data for 500 ppm aqueous carbopol 
934 solution (e). 
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amount  of  flow enhancement possible, or in other words, 
an upper  bound on the flow enhancement. That  this 
appears to be the case should act as an incentive for 
further theoretical development in this direction. 

4. Concluding Remarks 

It is worth mentioning that the analysis presented in the 
foregoing suffers f rom several drawbacks. Typically, only 
for very low concentration the viscosity is a linear 
function of  concentration and hence the theory is valid 
only for very dilute solutions which are not of  much 
practical interest. Besides, the Hookean  dumbell model 
assumes a constant relaxation time independent of  both 
shear rate and concentration. Undoubtedly,  this is a 
rather poor  approximation.  Finally, the existence of a 
Fickean diffusion flux opposing the migration effect is 
not accounted for in the analysis and therefore, the theory 
is expected to over-predict the flow enhancement.  

Surprisingly, inspite of  these serious shortcomings, the 
theoretical predictions are not only comparable  to 
experimental observations but also provide an upper 
bound on the flow enhancement.  At the present state of  
development, this is indeed quite encouraging and should 
provide impetus for further work. Particularly, analyses 
incorporating more realistic fluid behaviour and describ- 
ing the developing stage of  macromolecular  concen- 
tration field will decidedly be rewarding in understanding 
the origin of  macromolecular  migration in non- 
homogeneous flow fields. 
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