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Notation 

A, B numerical constants 
A~, A 2 surface areas 
CD drag coefficient 
D cylinder diameter 
F hoop force 
h heat transfer coefficient 
k thermal conductivity 
M molecular weight 
Nu Nusselt number 
R gas constant 
T absolute temperature 
u x-component of the velocity 
U free stream velocity 
x, y Cartesian coordinates 

Greek letters 

B shear rate 
d boundary layer thickness 
ô0 elastic boundary layer thickness 
0 relaxation time 
B viscosity 
v kinemafic viscosity 
[t/] intrinsic viscosity 

density 
a normal stress difference 
r shear stress 

1. Introduction 

External flows of dilute polymer solutions 
past obstacles show some interesting effects 
which in general have been lacking a convincing 
interpretation. One of  the more interesting 
phenomena can be described as follows. When 
a dilute polymer solution flows past a bluff 
body (such as a cylinder) the drag coefficient 
and the heat transfer coefficient follow the 
normal behaviour at low velocities. But then, at 
a particular point, they become independent of 
the free stream velocity (James and Acosta (1), 
James and Gupta (2), Metzner and Astarita (3), 
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Ultman and Denn (4)). The constant value of 
the normalized transport coefficient appears to 
depend only upon the cylinder diameter and the 
fluid properties. This observation has some 
important practical implications (e.g. in hot 
wire anemometry) and is obviously interesting 
from a fluid mechanical viewpoint. 

In this paper we consider the problem in the 
framework of the formation of an "elastic" 
boundary layer and attempt to explain the 
anomalous transport phenomena in the light of 
some plausible mechanistie considerations. No 
"exact" solution is found, but the heuristic 
approach is nevertheless helpful in clarifying 
the possible physical phenomena. 

2. The concept of a boundary layer dominated 
by normal stresses 

We shall assume that the fluid obeys a 
Maxwell equation with a vis¢osity /z and a 
relaxation time 0. Thus in a shear flow with a 
shear rate ~, the steady state values of  the shear 
and normal stresses are given by 

r : u~,  [1] 

o" = 2~/0~ 2. [2] 

We shall first consider the laminar boundary 
layer which forms on a flat plate immersed in. a 
parallel uniform stream having a velocity U. We 
shall use a Cartesian coordinate system with the 
x-axis in the direction of the stream, the y-axis 
perpendicular to the plate and the origin at the 
leading edge. 

One of the difficulties in dealing with a 
viscoelastic fluid is that the stresses are usually 
not at their steady stare in a Lagrangian sense. 



Mashelkar and Marrucci, Anomalous transport phenomena in rapid external flows 427 

A 2 =  

For the case at hand, one may expect this to be 
particularly true in the zone of the leading edge 
where the fluid is abruptly decelerated by the 
effect of  the plate. However, the fluid which is 
very close to the wall has a very small velocity 
i.e., for y --+ 0, the residence time tends to 
infinity so that, at least in that limit, Eqs. [1] 
and [2] must hold true even at x = 0. 

A consequence of the above consideration 
and of  Eq. [2] is that the boundary layer, 
contrary to the purely viscous case, must have a 
non-zero thickness 0 o at the leading edge. In 
fact, a momentum balance between a section 
somewhere upstream of the leading edge and 
the leading edge section itself gives 

a0 
BU200= 5(Qu 2 +  o ) d y  [3] 

0 

where Q is the fluid density and u(y), a(.v) are 
the x-velocity component  and normal stress dis- 
tributions in the leading edge section, respec- 
tively. 

Of course, we do not know these distribu- 
tions in any detail but we know that, close to the 
wall, Eq. [2] must hold true with a value of  5' 
proportional to U/Oo: 

U 
5' ~ -  • [41 

~0 

Thus Eq. [3] becomes 

U 2 
B U 2 0 0  = A2[.lO - [5] 

a0 
with A 2 an unknown numerical factor which is 
given by 

1 o" 
dCv/ao) 

0 I. lOU2/O 2 [61 

1 
-- 5 ( u / U ) 2 d ( Y / O o )  

0 

Eq. [5] is obviously incompatible with a zero 
value of the thickness. From Eq. [5], the value 
of 0o is obtained as 

B 0 -  A ]/vÕ [7] 

where v = /a/0 is the kinematic viscosity. 
A similar argument can be developed to 

calculate the thickness a(x) of the boundary 
layer along the platel). A momentum balance 
between two sections at a distance dx gives in 
fact 

QU 2 da d a 
- + « ) d y  + r [81 

dx dx ! (ou2 

where r, the shear stress at the wall, is given by 
Eq. [1]. 

If one assumes a "similarity solution", i.e. 
the velocity and normal stress distributions over 
the boundary layer dimensionless thickness y/fi  
are independent of x, Eq. [8] becomes 

U 
B U  2 g(~ = A 2 l l O U  2 d ( 1 / 0 )  + Bp [9] 

dx dx Y 

where A 2 and B a r e  numerical factors. A 2 is the 
same as in Eq. [6] (with fi in place of  00), while 
B is given by 

1 
B o~ [10] 

1 
1 - ~ (u/U)2dty/a) 

o 

Integrating Eq. [9] with the condition that* 
0 = 0 0 a t x =  0, gives 

B2 0 2 2B x 
- - -  1 + l n - - -  1 1  [ 1 1 ]  
0 2 0 2 A z UO 

where use has been made of  Eq. [7]. Eq. [11] 
shows that, if x/UO ~ 1, 0 is of order 00 
whereas for x/UO > 1, Eq. [11] reduces to the 
purely viscous result 

0 = ]~2B vx [12] 
V U 

The results so far obtained can be summariz- 
ed as follows: In the region close to the leading 
edge of  the plate, a boundary layer is formed 
which is dominated by normal rather than shear 
stresses. The thickness of this "elastic" 
boundary layer, given by Eq. [7], is independent 
of the mainstream velocity U and only depends 
on fluid properties v and 0. With respect to the 
purely viscous case, one may speak of a 
boundary layer thickening due to normal 
stresses. One may surmise that the disturbance 
to the main flow also extends somewhere 
upstream of the leading edge, but no easy 
calculations of this effect seem possible. 
Moving forward along the plate, the contribu- 
tion of  shear stresses becomes increasingly 

a) The authors are indebted to Prof. H. Giesekus 
for suggesting this calculation when reviewing a 
previous version of the paper. 

29 « 
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important so that a viscous boundary layer is 
eventually reestablished with a thickness given 
by the classical result, Eq. [12]. 

It may be noted here that the concept of a 
boundary layer thickening is not new and was indeed 
suggested by Metzner and Astarita (3). However, 
their argument was based on the idea that in high 
Deborah number flows a solid like behaviour is to be 
expected. They thus obtained the result ~0 - UO 
which is completely different from Eq. [7] above. The 
calculations developed in this work are rather in the 
line indicated briefly by Astarita and Marrucci (5). 

Considering now the case of a bluff body, 
the following qualitative argument can be 
developed. We call D the characteristic 
dimension of  the body and assume that the 
Deborah number UO/D is large. By comparison 
with the results for the flat plate, where the 
characteristic dimension was x, we may expect 
that for large values of the Deborah number the 
boundary layer over the whole body is dominat- 
ed by normal stresses so that its thickness is of  
order fi0 up to separation. The normal stresses 
which exist in the boundary layer act as hoop 
stresses on the body surface and, in view of the 
asymmetry which exists between the front and 
rear zones, they significantly contribute to the 
drag. 

An illustration of this concept is shown 
schematically in Fig. 1, with reference to a 

U 

L 

Fig. 1. Schematic representation 
of the elastic boundary layer in 
front of a bluff body 

cylindrical body having a circular cross section. 
In the front zone a boundary layer with a 
thickness ~0 is depicted. We do not know what 
happens in the rear zone but it seems plausible 
that, similarly to the viscous case, the boundary 
layer will detach from the surface and grow into 
a wake where normal stresses relax to zero. An 
estimate of  the contribution of normal stresses 
to the drag is then obtained by considering the 

hoop force per unit length of the cylindrical 
body, indicated as F in Fig. 1. This is given by 

& A 2 U z 
F = j a d y  = - - p O - -  [131 

o B ~o 

where A 2 and B have the same meaning as in 
Eqs. [6] and [10]. 

The corresponding drag coefficient is then 
obtained as 

2 F  1 4A 2 Y 0 
Cv - -  - -  - -  [14] 

D ~U2/2  B Dfi  o " 

Finally, substituting for ~0 from Eq. [7], we 
obtain 

CD - 4A ~ [15] 
B D 

Of course, Eq. [15] is expected to apply only 
when the effect of  normal stresses is the 
dominant one, i,e. when CD as predicted by Eq. 
[15] is larger than that obtained by the usual 
correlations for purely viscous fluids. 

We conclude this section by considering that 
for dilute polymeric solutions 0 and v are 
typically of order 10 -4 sec and 10 -2 cmZ/sec 
respectively so that ] /~0  is of order 10 -3 cm. 
For small objects such as the cylindrical wire of  
diameter 5 × 10 -3 cm used by James and 
Acosta (1), Eq. [15] would predict values of Co 
of order 1 or larger which are at least 
comparable with those predicted in the viscous 
case for Reynolds numbers of  order 100. It may 
be noted that in such a case, the boundary layer 
thickness itself is of the same order as the body 
dimension. 

Thus anomalous effects due to normal 
stresses are to be expected for the case of small 
bodies such as hot film sensors, pitot tubes, etc. 
whereas these effects should be minor in case of  
larger bodies. The results by Aerivos et al. (6), 
Weil (7) and Acharya et al. (8) on large 
cylinders or spheres indeed do not show anoma- 
lous effects contrary to those obtained by James 
and Acosta (1) as well as James and Gupta (2) 
on tiny cylinders. 

3. Comparison of Eq. [15] with the anomalous 
drag coefficients by J a m e s  and G u p t a  

James and Gupta (2) have reported experi- 
mental data of drag coefficients for small 
circular cylinders in a variety of dilute polymer 
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solutions. In almost all cases reported by them 
the drag coefficient lies well above that 
predicted by the Newtonian correlation and is 
virtually independent of the fluid velocity. 
Using a dimensional analysis, these drag 
coefficients were then correlated with the group 
D2/vO. The residual differences which are 
found among the various solutions were 
attributed to the uncertainty in estimating O, a 
fluid property which is strongly dependent on 
the spread of the polymer molecular weight 
distribution. 

While agreeing with this viewpoint, we 
further note that in the present context 0 is 
unequivocally defined by Eqs. [11 and [2] 
which, by eliminating ~, give 

0 -  ~ a  [161 
2r2 • 

However, direct measurements of normal 
stresses in dilute solutions are often unavailable 
so that recurse is made to molecular models 
which allow to rewrite Eq. [16] in the form 

0--  fl [r/] 2Me [17] 
R T  

where [r/] is the intrinsic viscosity, M the 
molecular weight and c the concentration by 

weight of  the polymer. Use of Eq. [17] only 
requires a knowledge of the molecular weight 
and intrinsic viscosity, which are more readily 
available than normal stress coefficients. 
However, the numerical factor in Eq. [17] is 
open to question as it depends on the model 
which is used (James and Acosta  (1) and James 
and Gupta (2) use a numerical factor 2/5) and 
even more questionable is the extension of Eq. 
[17] to a polydisperse situation. 

Returning to the data by James and Gupta, 
we note that the results reported in Fig. 10 of 
ref. (2) can be roughly grouped in two separate 
sets each of them presenting a moderate 
dispersion. We have then chosen one of  the 
groups, that which covers the widest range of  
CD values. The group comprises the following 
polymers: Polyox FRA ([v/] = 25.8 dl/g, 
M w = 8.35 x 106); Polyox coagulant ([r/] = 
17.8 dl/g, M w = 5.18 x 106); Polyox WSR 
N3000 ([r/] = 4.1 dl/g, M w = 0.79 x 106). The 
data were obtained on three cylinders with 
diameters 0.006, 0.010, 0.014 inches. 

The data have been reworked by using Eq. 
[17] for calculating 0 and plotted in Fig. 2 in the 
form suggested by Eq. [15], i.e. as CD rS. 
B / D .  As shown by Fig. 2, a straight line of 
slope 1 correlates the data reasonably weil. The 
largest departures are found at low values of  CD 
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Symbols are as follows: 

Polyox FRA 
• 0.006 inches dia cylinder 
• 0.010 
• 0.014 

Polyox coagulant 
X 0.006 inches dia cylinder 
• 0.010 
V 0.014 

Polyox WSR N3000 
O 0.006 inches dia cylinder 
B 0.010 
[] 0.014 

Fig. 2. Drag coefficient correlation. 
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where the dominance of normal stress effects is 
more questionable. The straight line in Fig. 2 
has the equation 

c»  = 50 ~ [181 
D 

The numerical factor which is found, -50,  is 
surprisingly large. By considering the meaning 
of A and B in Eq. [15], one would have guessed 
a numerical factor of order 1 or 10 at most. It 
looks more plausible that we are grossly 
underestimating 0 by using Eq. [17] in place of 
Eq. [161. 

Whatever its origin, the large value of the 
numerical factor implies that a fairly thick 
boundary layer is formed in the conditions of 
these experiments, definitely of the same order 
as the (small) body dimension or even larger. 
This would have the meaning that the body is 
surrounded by a quasi-stagnant thick layer of 
fluid. Direct or semi-direct evidence of such 
phenomena are found in a few works. For 
example, Leider and Lilleleht (9) studied the 
flow behaviour of a solution of polyisobutylene 
in a stagnation flow formed by a T-shaped 
channel. Determination of the velocity dis- 
tribution indicated that a nearly stagnant region 
exists at the stagnation point contrary to the 
Newtonian case. They observed a cusp-shaped 
zone lying along the centerline and found that 
the thickness of this zone is not dependent upon 
the velocity in a certain velocity range. These 
observations appear to be consistent with the 
idea of a velocity independent elastic boundary 
layer. 

Also, Davis (10) took photographs of lines 
of hydrogen bubbles produced at a known 
frequency (isochrones) upstream of bodies of 
various shapes and dimensions and detected the 
first point of isochrone distortion. While for a 
Newtonian fluid the upstream distance for 
isochrone distortion was zero, for a viscoelastic 
fluid this distance was finite and independent of 
both the free stream velocity and the shape or 
dmension of the object. Finally James and 
Acosta (1), though mainly concerned with heat 
transfer, made photographic observations of 
the flow field by dye injection and noted 
significant differences between Newtonian and 
viscoelastic fluids. In the latter case, there was 
clear evidence of an upstream influence of the 
cylinder and of an increased width of the wake. 

It is interesting to note that if one takes 
the simplistic approach of considering the 
immersed object plus the quasi-stagnant layer 
of thickness ~0 around it as a whole body 
immersed in a purely viscous fluid, Eq. [15] is 
again obtained. In fact, since the drag would be 
proportional to the overall dimension D + 2~ 0, 
one would obtain 

CD _ D + 2ö0 CD, N [19] 
D 

where CD, N is the Newtonian drag coefficient 
calculated at an appropriate value of the 
Reynolds number. For 50 larger than D, Eq. 
[19] becomes equivalent to Eq. [15]. Abraham 
(11) and ran Dyke (12) have explored similar 
ideas, i.e. the notion of virtual bodies, when 
looking for an approximate description of the 
flow of a Newtonian fluid past a sphere. 

4. Anomalous  heat transfer coefficients 

Encouraged by the results discussed in the 
previous section, we attempt here a very simple 
interpretation of the anomalous heat transfer 
results reported by James and Acosta (1). 
Similarly to the drag behaviour, they find that 
above a certain free stream velocity the heat 
transfer coefficient becomes essentially velocity 
independent and thus remains smaller than that 
predicted by the Newtonian correlation. The 
corresponding values of the Nusselt number are 
then correlated with the group D2/vO for a 
variety of polymeric solutions and (tiny) 
cylinder diameters. 

If one assumes that a virtually stagnant fluid 
layer of thickness ~0 exists around the body, the 
heat transfer coefficient h is calculated by sim- 
ply c0nsidering a steady conduction through 
this layer. One obtains 

A2 1 

h -  k A l [20] 
Bo ln (A2 /AO 

where k is the fluid thermal conductivity and 
A~, A 2 are the surface areas of the body and of 
the outer fluid shell at a distance ~0, respective- 
ly. In the case of a cylinder A2/A~ = (19 + 
2~0)/D and Eq. [20] becomes 

2 
Nu  = [21] 
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Fig. 3. Heat transfer correlation. The shaded area 
represents the data by James and Acosta 

where N u  is the Nusselt number  and use has 
been made of  Eq. [7]. 

Fig. 3 compares the data by James and 
Acosta  with the predictions obtained by using 
Eq. [21] with a value o f A  = 25. This value was 
assigned by imposing N u  = 5 at DZ/vO = ]04, 
i.e. by fitting the data at the extreme right of  the 
diagram. (Note that the value of  0 used by 
James and Acosta,  which differs by a factor 2/5 
f rom that  of  Eq. [17], was not changed in this 
figure.) 

The shape of the curve predicted by Eq. [21] 
is not too different f rom that indicated by the 
data. The difference by a factor of  - 2  in the 
Nusselt number  which is observed at low values 
of DZ/vO could be attributed either to natural  
convection or  to a different behaviour of  the 
front and rear zones of  the cylinder. At large 
values of  D 2 / v  O, the thickness of  the boundary  
layer is relatively small and the front  zone is 
virtually the only zone which contributes to the 
heat transfer. Conversely, at small values of  
DzTvo, the thickness is so large that the two 
zones become equivalent in their thermal 
behaviour. 

It should finally be noted that  the magnitude 
of the numerical factor in the heat transfer 
correlation proves to be about  the same as that 
obtained in the drag coefficient correlation 
which was discussed in the previous section. 

Summary 

T h e  concept of an "elastic" boundary layer is 
proposed to explain certain anomalous transport 
phenomena which occur during rapid external flows 
of viscoelastic fluids past immersed objects. Reported 

experimental observations are interpreted by using 
models based on this concept. Particularly, data on 
velocity independent drag and heat transfer 
coefficients for flow of dilute polymer solutions past 
tiny cylinders are satisfactorily correlated. 

Zusammenfassung 

Es wird das Konzept einer ,,elastischen" Grenz- 
schicht entworfen, um gewisse anomale Transport- 
ph~nomene zu erkl~iren, welche bei schnellen Str6- 
mungen viskoelastischer Flt~ssigkeiten um einge- 
tauchte K6rper auftreten. Die berichteten experimen- 
tellen Beobachtungen werden mit Hilfe von Modellen 
interpretiert, die anf diesem Konzept basieren. Insbe- 
sondere werden Daten tiber geschwindigkeitsunab- 
h~tngige Widerstands- und W~irmetibertragungs- 
Koeffizienten bei der StrOmung verdtinnter Polymer- 
16sungen um dt~nne Zylinder befriedigend korreliert. 
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