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ON FLOW LENGTH REQUIREMENT FOR 
STRESS-INDUCED POLYMER MIGRATION IN 

FINE CAPILLARIES? 
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(Received February 4, 1986; in final form August 21, 1986) 

The development of macromolecular concentration gradient caused by the stress induced migration 
phenomenon in capillary flows has been studied numerically. It is shown that for reaching a given 
level of flow enhancement, the capillary lengths required are considerably less than those expected 
from prior analyses, which have neglected the strong interdependence between the flow field and the 
resulting concentration profiles. The implications of the present findings in terms of detection of 
macromolecular migration in capillary flows and also the influence on transport rates have been 
discussed critically. 

INTRODUCTION 

Art Metzner's research efforts spanning over the past three decades have had 
enormous impact on the development of the field of nowNewtonian fluids 
engineering. His unusual analytical mind and his sharp and incisive approach to 
the solution of problems has led to so many pioneering contributions and opened 
up so many new vistas in this field. He has influenced the development of the field 
and equally importantly, he has influenced so many scientists around the world in 
a profound way and this includes one of us (RAM). This contribution has really 
originated out of yet another of Art's inspiring thoughts that he projected about 8 
years ago. It is a pleasure to dedicate this contribution to him on the occasion of 
his 60th birthday. 

We are concerned with the flows of polymer solutions through very fine 
capillaries and in thin falling films, which show some peculiarities. Conventional 
theories which assume no slip at the wall in such cases and flow enhancement 
over what is predicted by such theories is observed [I-131. It is believed that flow 
enhancement is most likely to be due to the migration of polymer molecules away 
from the wall. Presently, however, the precise cause of this migration phenome- 
non is not clear and several different hwotheses have been ~ r o ~ o s e d .  , . . . 

Some intuitively appealing thermodynamic arguments were advanced by 
Metzner [14], which enabled the development of a quantitative framework for 
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132 A. DUITA,  D.D. RAVETKAR AND R.A. MASHELKAR 

analysing migration phenomena. Elaborate quantifications have appeared in the 
literature over the past few years [IS-181. These workers essentially attribute the 
phenomenon of polymer migration to the changes in entropy arising out of the 
deformation of molecules. The essence of the proposed hypothesis is that in a 
deforming fluid the macromolecules become aligned and stretched thus creating 
spatial variation of deformation rate. The entropy and hence the free energy also 
becomes position dependent. In order to compensate for the spatial variation in 
free energy levels, concentration gradients are induced. The net effect is that 
polymer molecules migrate towards regions of lower stress levels. Consequently, 
a polymer depleted low-viscosity layer is formed in the high shear regions 
adjacent to the wall and the bulk of the high viscosity core liquid 'appears' to slip 
through this wall layer. Although the validity of the above thermodynamical 
arguments has been questioned by Tirrell and coworkers [19,20], a theoretical 
justification has been recently provided by Cohen and Metzner [IS, 211 by using a 
thermomechanical theory of mixtures. An alternative treatment based on an 
internal variable thermodynamic theory reported by Drout and Maugin [22] also 
serves as a theoretical basis for the above arguments. 

The key question pertaining to the above mechanistic interpretation is 
concerned with the order of flow lengths (or times) necessary for the migration to 
be appreciable. Tirrell and Malone [14] presented an approximate analysis of 
flow-induced migration of macromolecules and suggested that enormously long 
capillary lengths are necessary for the concentration fields to achieve steady state. 
Similar results were also obtained by Cohen and Metzner [IS] from a somewhat 
more rigorous analysis of the migration problem. In both cases, however, the flow 
field was taken to be independent of the concentration field. 

In actual practice, however, the viscosity of a polymer solution is strongly 
dependent on the polymer concentration and hence any alteration in the 
concentration field is likely to affect the flow field quite significantly. Thus, it may 
be expected that the requirements of flow lengths suggested by the above analyses 
are somewhat exaggerated since the interdependence between viscosity and 
concentration has not been taken into account. In fact, Janssen [23] argues that 
owing to the severe coupling between the viscosity and the concentration, an 
instability mechanism somewhat analogous to 'thermal explosion due to viscous 
heating' will be operative and the concentration redistribution will be complete 
within a relatively short period. In support of this notion, Janssen referred to the 
observation of constant film thickness being attained within a short distance for 
falling film flows. However, we feel that this concept also represents another 
limiting case. Admittedly viscosity-concentration coupling will play an important 
role in promoting faster development of the migration process. However, the 
opposing Fickean diffusion flux is-not likely to allow for such a runaway situation 
as proposed by Janssen. Janssen's analysis, which is valid for very dilute polymer 
solutions, essentially relates to fully developed conditions and provides a tool for 
the estimation of the detailed concentration profiles. An interesting feature of the 
analysis is that it predicts formation of a polymer free solvent layer once a critical 
wall shear stress is exceeded. Dutta and Mashelkar [24] have extended this 
analysis in order to demonstrate that it can serve as an upper bound of the 
migration effect for very dilute solutions. 
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POLYMER MIGRATION 133 

Subsequently, the problem of capillary and falling film flows under fully 
developed conditions was examined carefully [13,25]. The results obtained were 
consistent with the available experimental data in a sense that they served to 
provide upper bounds on the migration effects, where the lower bound was 
provided by the situation, when migration was absent. Interestingly, these fully 
developed concentration field (FDCF) asymptotes are unique for all capillary or 
film dimensions at a given solution concentration and imposed stress level. 

Presently, there is no analysis available, which can enable an estimation of the 
order of flow times (or flow lengths) that will be necessary for appreciable 
migration to occur when there is a severe viscosity-concentration coupling. In the 
present work, an attempt has been made to provide some insight into this 
hitherto neglected aspect of the stress-induced migration phenomenon. Such a 
knowledge of flow times or lengths is not only of fundamental importance, but is 
a key towards assessing the extent of influence of migration phenomena on 
transport processes. 

GOVERNING EQUATIONS 

We consider the steady, incompressible flow of a polymer solution through a 
capillary tube. The concentration and the velocity fields at the point of entry to 
the tube are specified and we wish to determine the rearrangement of these two 
fields caused by the migration phenomenon. For this flow situation, the continuity 
equation is 

and the momentum equations can be written as 

In addition, the polymer concentration (c) is governed by the following equation 

The radial diffusion flux, J,, comprises two contributions; one is the usual 
Fickean contribution arising out of a concentration gradient and the other is an 
entropic contribution resulting from gradients of the chemical potential function 
caused by the deformation induced free energy changes. Thus 

where # = +(c )  is a correction factor accounting for the concentration depend- 
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ence of diffusivity [18]. The chemical potential function, F, is taken to be [I81 

Equation (6), which is valid for dilute solutions, approximates the polymer 
molecules as linear dumbells [26]. The relaxation time, I, is obtained from 

where N, = Nl(c, y),  t,* = t,,(c, y) and the shear rate, y, is defined as 

y = [$(A : A)]"' (8) 

The appropriate boundary conditions for this problem are as specified at the tube 
inlet (at z = 0), symmetry conditions at r = 0 and zero velocities and fluxes at the 
wall (r  = R). 

GENERAL FORMULATION 

Equations (1) to (8) represent a set of coupled equations and their solution in the 
exact form presents formidable difficulties. However, for the problem considered 
by us, several simplifications can be made to facilitate a solution. Firstly, the 
variables are non-dimensionahzed as follows: 

and q = p/pO. Equations (1) to (5) can now be written as follows 

and 

where Pe = VR/Do, cr = P , R 2 / p o ~ ~ ,  Re = 2pVR/po, and e = RIL. Since for 
typical problems of interest the aspect ratio E << 1 and also the Reynolds number 
is quite low (<I), we get Re E<< 1. Equations (9) to (12) can be simplified by 
neglecting the terms of the order of E' and Re e. 

It is important to note here the difference between our solution and that 
provided by Cohen and Metzner [18]. Several simplifying assumptions have been 
made by Cohen and Metzner. These are (i) @J = 1; (ii) u = 0, v = u(e), i.e. 
velocities do  not depend on the concentration, this implies neglecting of viscosity 
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POLYMER MIGRATION 135 

concentration coupling; (iii) the chemical potential function depends on y only 
and not on concentration, and (iv) the term u(d0laE) in Eq. (12) is neglected 
even though the above analysis shows that this term is of the same order of 
magnitude as the term v(3BIat).  In the following, however, none of these 
restrictive assumptions will be made and a more realistic solution will be 
obtained. 

The appropriate boundary conditions for the Eqs. (9) to (12) can be prescribed 
as follows: 

< = I ,  a l l& v=0 

Moreover, the shear gradient can now be approximated as 

Equation (10) implies that v = * ( c )  and therefore Eq. (11) can be integrated 
to give 

Note that the average velocity remains constant (see Eq. (20)), therefore Eq. (15) 
can be alternatively expressed as 

where 

The pressure profile can now be expressed as 

and the radial velocity can be obtained from the axial velocity profiles by use of 
the continuity equation i.e. 

Thus knowing the concentration profiles e(5, <) and hence ~ ( 5 ,  5), Eqs. (17) 
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and (19) together allow determination of the velocity field, which in turn affects 
the @-field (see Eq. (12)). 

In addition to above, mass balance requirements dictate that 
I 

EvdE=1  

and 

[ ~ v @ d E = ;  

The numerical solution must satisfy the above requirements. 

Formulation for Power-law Liquids 

Within the shear rate range of interest, the solution viscosity and the primary 
normal stress difference (N,) can be adequately represented by a power-law 
behaviour. That is 

and 

If the rheological parameters, K, n, A and m are also described by power-law 
relationships with concentration, such as 

where KO = a,c,bl and no = a2c,b'. Note that when b2 # 0 and b4 # 0, normalization 
of p and A y  is not readily possible. However, if n and p are independent of 
concentration then 

where 

We being the Weissenberg number defined as 
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POLYMER MIGRATION 137 

Also, note that for power-law fluids the normalising parameter p, for pressure 
is the pressure drop in the absence of the migration effect and is given as 

and 

For polymer solutions whose rheological behaviour could be represented by 
power-law type of shear stress and first normal stress difference functions, an 
analysis of the (long) capillary flow problem entails solution of Eq. (12) using the 
velocity expressions given by Eqs. (16) and (19) and the relationships described 
by Eqs. (27) to (31). In the case when the viscosity and normal stresses are 
coupled with concentration (bl #O, b3#0, see Eq. (22)), the flow rate, Q, is 
expected to be greater than that predicted (Q,) from conventional no-slip 
theory. For a given flow rate, Q, this ratio then becomes 

Clearly, when b, = b3 = 0, the concentration and velocity fields are uncoupled 
and the ratio Q/Qm is unity. 

Note that while performing the numerical calculations, a specific form of the 
function + describing the concentration dependence of the diffusivity, that is 
D = Do+(c) is needed. Following Dutta and Mashelkar [13] we will take + to be 

9 = 1 +/I8 where /I = kDco (33) 

This form has been found to be reasonably valid for most dilute polymer solutions 
(27). 

NUMERICAL METHOD 

In order to obtain a clear understanding as to how the phenomenon of 
flow-induced polymer migration progresses in a capillary tube, the problem as 
formulated above was solved numerically using a finite difference method. Figure 
1 shows a schematic of the numerical procedure adopted. At any given axial 
location, 5 (owing to the strong coupling between the concentration (8)  and the 
velocity (u, v)  fields), an iterative scheme becomes necessary. Initially, at a given 
axial location 5 we assume certain 0, u, v, fields and then a new @-field is 
obtained from a finite difference version of Eq. (12) written as follows: 
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START Q 
IN IT IALIZE 8 ,U.r  Q 

FIGURE 1 Flow chart of the numerical solution procedure 

< = < + A <  

COMPUTE j .  F FIELDS. 

q n c .  I141 ond 161 

1 
COMPUTE 8-F IELD.  

eqn. I 3 4 1  

1 

where 
h = l / ( J M A X  - I ) ,  g = l / ( M A X  - 1 )  

A, = m/2h2 + E/4h 

B, = A / h 2  + d / g  - ~ / 2  

Cj = m/2h2 - E/4h 

D,= Oi-l. ,+lA, + 0;- , . , (6/g  + p / 2  - A l h z )  + 0;-l,,-lC, 

= ti = a+ldr  + + / r  + dFldr 

COMPUTE 

*I".. 1181ond1321 

4 NO 

1 dF dZF 
d = P e s v  and p = - - + -  

r ar dr2 

Note that in Eq. (34) ,  A ,  5 ,  6 ,  p are evaluated at the grid point i, j where 
i = 1, 2, . . . , M A X  indicates the location in the 5 direction and j = 
1 ,  2, . . . , JMAX does so in the direction. Equation (34) is in the familiar 
tridiagonal form. It can be solved easily under boundary conditions given by Eq. 

COMPUTE 1, 
c q n .  l 2 7 !  

1 
COMPUTE u .v  

e q m  1 1 9 1 m a t 1 6 1  
COMPUTE E,,, EC 
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POLYMER MIGRATION 139 

(13) (b and c). Once 0-field is known, q is obtained from Eq. (27) and v and 
u-fields are then given by Eqs. (16) and (19), respectively. This procedure is 
continued until changes in 0 and u fields between subsequent trials are less than 
E,.  The calculations then proceed at the next axial location. If the changes in 0 
profiles between two consectuive axial locations are less than E,, then it is 
assumed that the process of concentration and velocity profile (in the coupled 
case) development are complete. Equations (18) and (32) are then used to obtain 
the pressure profile and the flow enhancement ratio. 

Before proceeding with the actual calculations, numerical results were obtained 
to arrive at the appropriate grid sizes and the tolerance values. Table I illustrates 
the effect of grid spacing h on the numerical results. Oo and 0, are the centreline 
and the wall concentrations at the axial location (fd)  where the development is 
complete. Clearly, as the grid spacing (h) is reduced the numerical solutions 
become more accurate as manifested by the reduction in errors associated with 
satisfying the balance Eqs. (20) and (21). However, beyond J M A X = 2 1  the 
improvement in accuracy is not commensurate with the increased computational 
effort. Similar exercises were undertaken to fix the values of IMAX, E, and E,. 

All subsequent results were therefore obtained with JMAX = 21, IMAX = 501, 
= 0.1% and E, = 0.01%. 
In order to check the validity of the numerical scheme, results -were obtained 

for a Newtonian liquid with concentration independent viscosity and relaxation 
time (A), for which the chemical potential function is given as F = (Ay)'. Under 
fully developed conditions, the concentration profile for this model problem is 
given as [13] 

where 6 = r,Alq. Figure 2 illustrates the concentration profiles at different axial 
locations. It is seen that the development is achieved at 5' = 0.32 or  f * = I;/ 
2 Pe E = 0.134. More importantly, the numerically obtained fully developed 
concentration profile is in very good agreement with the exact results given by 
Eq. (35). For power-law fluids, our numerical results were compared with the 

TABLE I 

Effect of grid spacing on numerical resultst 

t&Pe=2 .682 ,  We=l.O, n=0.424, m = 0 . 8 ,  @ = 0 ,  b l = b , = O  (uncoupled), IMAX=101, e l =  
0.1%, ~ ~ = 0 . 2 % .  

$Error in satisfying Eq. (20) at 5 = 5,. 
5 Error in satisfying Eq. (21) at 5 = f,. 
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1 . 4  

EON. 1351 

1 2  

1 - 0  

tf 

0 . 8  

0 . 6  

FIGURE 2 Comparison of concentration (-) numerical, (a) analytical for a Newtonian liquid. 
F=(Ay) ' .  Pee=1.188, W e = l . O , f l = O . m = 2 , n = l ,  b ,=b,=O.  

results reported by Cohen and Metzner [18]. Figure 3 shows the wall concentra- 
tion as a function of the axial location for an uncoupled problem. Very sharp 
drop in the wall concentration within a very short flow length is quite evident. 
Also, it is seen that the numerical results are consistent with those reported by 
Cohen and Metzner. An exact correspondence between the two results, however, 
was not possible owing to some differences in the details of the problem 
formulation as discussed earlier. 

FIGURE 3 Comparison of wall concentration for We = 3, Pe E = 10.1, fl = 0, (-) present work 
with m = 0.8, n  = 0.424, b, = b, = 0; (- - -) results reported by Cohen and Metzner [18]. 

RESULTS AND DISCUSSION 

In the following, we shall uresent some numerical results in order to demonstrate -. 
the influence of the viscosity-concentration coupling on the migration behaviour. 
Meaningful results, however, were possible only within a certain parametric space 
only. 
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POLYMER MIGRATION 

FIGURE 4 Variation of wall concentration with axial distance for different values of Pe E. - 
uncoupled case, - - - coupled case ( b ,  = 1.46, b,  = 1.4). 

Since our primary interest is to ascertain the role of flow length and the 
polymer elasticity on the migration process, results were obtained for fixed values 
of p, m, and n. In particular, the values used were P = 0.5, m = 0.8, and n = 0.4. 
Besides, the initial concentration profile was assumed to be uniform ( O o ( E )  = 1) 
and the velocity profile vo(E) was taken to be identical to that in the absence of 
migration with uo(c)  = 0. Figure 4 shows the wall concentration of the polymer as 
a function of axial location. It is evident that for both the coupled and the 
uncoupled cases, bulk of the polymer depletion occurs very rapidly within a 
relatively short distance from the inlet followed by a much more gradual 
depletion. The extent of migration, however, depends strongly on the factor Pe E,  

with the migration effect becoming more pronounced as Pe E decreases. Since the 
results are for constant We, decrease in Pe E is possible either due to higher 
diffusion coefficient (Do) or longer flow length. Assuming that Do does not 
change, the results imply that increased capillary length is expected to lead to a 
more pronounced migration provided the equilibrium concentration profile is not 
reached. Also, the nature of concentration profile development and the extent of 
migration differ considerably for the coupled and the uncoupled case. When the 
velocity field is taken to be independent of the concentration profile, equilibrium 
is reached much faster. In the coupled case, the development of the concentration 
as well as the velocity fields is slower but the magnitude of the migration effect is 
considerably larger. This is rather unexpected and the reason for this is not clear 
at the moment although it is likely to be related to the severe coupling between 
the flow field and the concentration field. 

The numerical results presented in Figure 4 suggest that for the real life 
situations, where the concentration and flow fields are interdependent, much 
longer flow lengths are necessary to reach equilibrium as compared to the 
idealised situation represented by an uncoupled case. However, it is interesting to 
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TABLE I1 

Effect of We on the migration effect for Pe E = 100, @ = 0.5, rn = 0.8, and n = 0.4 

Uncoupled Case ( b ,  = b,  = 0) 
1.000 1.000 1.000 - - 
1.000 0.992 1.000 - - 
1.001 0.955 1.000 0.13 0.13 
1.005 0.870 1.000 0.13 0.11 
1.070 0.404 1.000 0.13 0.51 

Coupled Case ( b ,  = 1.46, b, = 1.4) 
1.000 1.000 1.000 - - 
1.000 0.991 1.018 0.15 0.13 
1.002 0.853 1.150 0.17 0.03 

note that to achieve an extent of migration ( A 0  = 0,, - 0,) which is identical to 
that in the uncoupled case, the flow length required for the coupled case is 
considerably less. In other words, a given extent of migration will be achieved in 
much smaller flow lengths as compared to that predicted from the analysis which 
neglects the severe coupling between the concentration and the flow field. 

It is expected that more strongly elastic polymer solutions will have larger 
migration effect and naturally longer flow lengths will be necessary to achieve the 
equilibrium. Table I1 and Figure 5 illustrates just this behaviour. As before, in 

FIGURE 5 Variation of wall concentration with axial distance for different We values, - 
uncoupled case, - - - coupled case ( b ,  = 1.46, b,  = 1.4). 
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POLYMER MIGRATION 

comparison to the uncoupled case, incorporation of coupling leads to a much 
larger migration effect and significantly slower rate of development towards the 
equilibrium situation. However, the flow length required to achieve the same 
extent of migration is considerably less for the coupled case. For example, when 
We =0.75 for the coupled case, the same amount of A 0  can be obtained in 
capillaries with lengths which will be about one-tenth of those applicable under 
uncoupled conditions. Also, note that the results presented in Figure 5 show that 
under coupled conditions, equilibrium is not reached for We =0.75 within the 
flow length provided. Still, the extent of migration possible within this length was 
enough to lead to a 15% flow enhancement (see Table 11). Thus, for the 
migration phenomenon to be manifested in appreciable flow enhancement, flow 
lengths considerably less than those required for equilibrium conditions may be 
quite adequate. 

Influence of Macromolecular Migration on Heat and Mars Transport Processes 

In the foregoing we have tried to assess the influence of macromolecular 
migration on the extent of flow enhancement. An important consideration relates 
to the influence of such migration effects on the net heat and mass transfer 
enhancement under such conditions. Mashelkar and Dutta [8] have addressed this 
problem. They used a simple phenomenological view point-in that they replaced 
the 'no slip' boundary condition by a 'slip' boundary condition and reexamined 
the problem of heat and mass transfer. They showed that in the high Peclet 
number region, where the heat and mass transfer resistance is confined to a very 
narrow zone near the solid wall, the influence of even a minor slip effect could be 
quite significant. Mashelkar and Dutta's effort had a limitation in view of the fact 
that a constant slip velocity, which was arbitrarily taken to be proportional to the 
wall shear stress (again assumed constant) was used to assess the influence of slip 
condition. In view of the more rigorous handling of the problem, it is no more 
necessary for us to use such ad hoc methods and a better appreciation of the 
influence of macromolecular migration could be obtained by using the numerical 
results presented here. 

We consider the dissolution of a low molecular weight solute in a polymer 
solution, which is flowing through a capillary. We will essentially examine the 
enhancement of wall mass transfer coefficient within the framework of 'Leveque 
approximation'. If km is the average mass transfer coefficient in the entrance 
region in the presence of macromolecular migration and f is the one in its 
absence, then the ratio of the two could be simply worked out as 

The above presupposes that the molecular diffusivity of the small molecular 
weight solute in the dilute polymer solution is practically independent of the 
polymer concentration, which seems to be a perfectly valid assumption (28). 

Table 111 gives the values of kmlk ,  which represents the mass transfer 
enhancement in the wall region due to macromolecular migration. It is readily 
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TABLE I11 

Effect of migration on enhancement of mass transfer coefficient (We = 0.75, fi = 0.5, n = 0.4, rn = 0.8) 

seen that even though the extent of migration is somewhat marginal, the influence 
on the wall mass transfer coefficient is significant. This observation is important, 
since it implies that even when gross manifestations in terms of flow enhancement 
are not observable (due to only marginal extent of migration occurring in the 
entrance region) it is still adequate to cause enough alteration in the hydrodyna- 
mics in the concentration boundary layer and result in a significant enhancement 
in mass transfer. Many situations on mass and heat transfer analysed by 
Mashelkar and Dutta [8] appear to be those, where enough flow lengths (or 
times) may not have been provided for the equilibrium extent of macromolecular 
migration to be reached. However, the present work throws light on this apparent 
contradition and shows as to why significant heatlmass transfer enhancements 
would still be possible. 

LIMITATION OF THE NUMERICAL PROCEDURE 

Unfortunately, the present numerical method failed to yield meaningful results 
for We greater than unity and hence results on the extent of flow enhancement in 
the high We region could not be generated. This limitation also precluded any 
comparison of the numerical results with the experimental data reported by 
Cohen and Metzner [7]. The failure of the present approach at high We may be 
due to several reasons. One of the reasons is as follows. It was assumed by us that 
the inertial terms in Eqs. (10) and (11) were negligible since they were of the 
order of Re E and c2. Such an assumption is likely to be valid only at distances far 
away from the inlet (I; = 0). For small I;, inertial effects may be important and 
neglecting this effect may lead to velocity and concentration profiles which are not 
meaningful. 

The inadequacy of the chemical potential function given by Eq. (6) also needs 
to be commented upon. This expression based on the linear dumbell model, is 
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valid for dilute solutions at moderate deformation rates and may not truly 
represent the potential function at high We values. 

CONCLUDING REMARKS 

In the foregoing, an attempt has been made to study the process of stress-induced 
polymer migration in narrow capillaries by accounting for the severe interdepen- 
dence between the flow and the resulting concentration fields. A simplified 
numerical procedure has been used. Two key points emerge from these numerical 
calculations. Firstly, to achieve a given extent of migration (flow enhancement 
ratio) the flow lengths required are considerably less than those predicted by the 
simplified (uncompleted) analysis, which have been presented in the literature in 
the past. Secondly, under equilibrium conditions, the migration effect is con- 
siderably more than that suggested by the simplified treatments and correspond- 
ingly the flow lengths required to attain such conditions are also significantly 
higher. 

The numerical procedure developed by us suffers from several draw backs, the 
most important one being its inability to generate meaningful results for high We. 
Possible reasons for this have been outlined. In particular, it needs to be 
emphasized that a numerical procedure to obtain the solution of the governing 
velocity and concentration equations incorporating the inertial effects is neces- 
sary. This will also enable a better understanding of the role of the entrance 
region. In this work, at the capillary inlet, the polymer concentration profile was 
assumed to be uniform and the velocity field was taken to be that obtainable in 
the absence of migration. A more realistic starting point should be the 
incorporation of both uniform concentration and velocity fields. Such a situation 
cannot be handled with the numerical procedure developed here and it calls for 
an even more rigorous approach. 

NOMENCLATURE 

al, 0 2 ,  0 3 ,  a4 constants for rheological parameters 

A power law constant for normal stress difference 

b ~ ,  b2, b3, b4 constants for rheological parameters 

B dimensionless pressure gradient 
polymer concentration 

initial polymer concentration 
polymer diffusivity 
chemical potential function 

radial flux 
axial flux 
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parameter controlling concentration dependence of polymer 
diffusivity 

power-law constant for shear stress 

capillary length 

power-law index for normal stress difference 

power-law index for shear stress 

first normal stress difference 

pressure 

pressure drop in absence of migration 
Peclet number, VRID, 

volumetric flow rate 

volumetric flow rate without migration 

radial distance 
capillary radius 

Reynolds number, 2pVR/po 

dimensionless radial velocity 
dimensionless axial velocity 

radial velocity 
axial velocity 

mean velocity 
Weissenburg number 

axial distance 

Greek letters 

(Y 

B 
B * 
Y 
i.w 

ywm 
6 

i. : 
A 
E 

I; 
I;* 
tl 

parameter defined in Eq. (31) 

k~ G 
parameter in Eq. (28) 

shear rate 
wall shear rate 

wall shear rate in the presence of migration 

L N p o  
ywRIV 

rate of deformation tensor 

R I L  
dimensionless axial distance 

I;lz Pe E 

dimensionless viscosity 
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POLYMER MIGRATION 

dimensionless concentration 

centreline concentration 

wall concentration 
relaxation time 

viscosity 
reference viscosity 
dimensionless radial distance 
density 

shear stress tensor 
wall shear stress 
function describing concentration dependence of diffusivity 

dimensionless pressure 
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