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Nomenclature
dyne b
A material parameter e
A, Rivlin-Ericksen acceleration tensor of first
order
A, Rivlin-Ericksen acceleration tensor of second
order
b material parameter, dimensionless
C,,C, the constants defined by egs.[37] and [38]
respectively
Cu moment coefficient, dimensionless
Minel Moment coefficient for inelastic fluids,
dimensionless
Muscoe  Moment coefficient for viscoelastic fluids
dimensionless
D rate of deformation tensor
D material time derivative of rate of deforma-
tion tensor
F function of ¢, defined by eq.[15]
fn function of n, defined by eq. [45]
G function of {, defined by eq. [16]
H function of {, defined by eq.{18]
K material parameter _Z_dy e (sec)"
M moment on a disc, dyne-cm
n material parameter, dimensionless
P material parameter —%15— (sec)?
p isotropic pressure dyne/cm?
g material parameter dimensionless
r radial coordinate, cm
R radius of the disc, cm
Reg,, Reynolds number

T stress tensor

T,y Top, T2, To, T, Ty, components of stress tensor
dyne/jcm?

v velocity vector

v,, Vg, U, components of velocity vector cm/sec

w vorticity tensor

Wi,, Wi, Weissenberg numbers defined by egs. [24]
and [25] respectively

z axial coordinate, cm

Greek symbols

B function of n defined by eq. [40]
J shear rate, sec™ !
é Kronecker delta in eq.[1]

& boundary layer thickness cm, (eq. [14])
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Dn

boundary layer thickness at r = R, cm
(eq- [28])

dimensionless variable z/4, (eq. [14])
dimensionless variable r/R, (eq. [ 14 ])
scalar function, defined by eq. [11]
scalar function, defined by eq. [ 13]
relaxation time of the fluid, sec

; d 1 4 d
nabla operator wtT s

)
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=
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density of the fluid gm/c.c.
scalar function defined by eq.[12]
rotational speed of the disc radsec
circumferential coordinate

—~
Nl
Py

—

Following relationships between Rivlin-Ericksen
tensors and rate of deformation tensor are used:

A, =2D

A, = 2D + 4D?

where

D_fﬂﬂv "D +W-D—DW.

An investigation of the flow behaviour of visco-
elastic fluids in complex flow situations is of obvious
pragmatic importance. An improvement in our under-
standing of the curious and at times, bizarre, flow
behaviour of such fluids can be brought about only
by a rational analysis of the equations governing the
motion of fluids, supported of course, by relevant
experimental data. The complexity of the governing
equations of motion increases further due to the
complicated constitutive relationships which are nec-
essary to portray the flow behaviour in a realistic
manner. One hence prefers to analyse the flow phenom-
ena in asymptotic limits so that suitable simplifying
assumptions could be made to make the task at hand
easier. Constitutive relationships may then be suitably
chosen so that they are sufficiently good for the antic-
ipated kinematic conditions. Under laminar flow con-
ditions viscoelastic flow phenomena in the asymptotic
limits of low Reynolds number (creeping flow) and
large Reynolds mumber (boundary layer flow) have
attracted a good deal of attention but the existing
literature on these subjects appears to be far from
conclusive. In this paper we have tried to look at the
problem of viscoelastic rotational boundary layer flow.
The possibility of obtaining true similarity solutions



632

Rheologica Acta, Vol. 14, No. 7 (1975)

is examined first and appropriate equations are derived
to make the added complications over the most widely
studied two dimensional viscoelastic boundary layers
quite clear. Experimental data are then presented which
support the conclusions drawn on the basis of inspec-
tional analysis.

Previous work

Apart from the academic challenge that the boundary
layer flows offer to a rheologist or an engineer, what
appears to be even more fascinating is the observation
in the past (1, 2) that no general conclusions about the
behaviour of viscoelastic fluids in laminar boundary
layer flows can be drawn. Denn (1) for instance, has
clearly shown how a given viscoelastic fluid with
fixed material properties can show surprisingly different
behaviour in different geometries. He has also shown,
how, for a given geometry the changes in the fluid
property parameters (namely, the power law indices
for the shear stress and primary normal stress difference
functions) can bring about a rather surprising increase
or decrease of the drag coefficient. These observations
are obviously of great significance, because they lead
us to the conclusion that by appropriately modifying
the fluid properties, we will be in a position to obtain
certain benefits such as friction reduction even under
laminar boundary layer flow conditions. This inter-
esting possibility certainly merits a further investiga-
tion.

Laminar boundary layer flow past a flat plate with
zero angle of incidence has been the most widely studied
boundary layer flow problem both for Newtonian and
non-Newtonian fluids. The study of this flow for purely
viscous non-Newtonian fluids poses no special problems
and an exact similarity solution and a momentum
integral solution can be easily obtained (see 3,4, 5, 6).
For an elastic fluid, however, no similarity trans-
formation is available.

Fredrickson (7) has discussed the conceptual dif-
ficulties involved in obtaining a similarity trans-
formation for the boundary layer flow of a viscoelastic
fluid. A large number of studies in the literature
(e.2.1,2,8,9) have concerned themselves with the
solution of the boundary layer problem past a flat
plate for a second order fluid. Although this model does
describe most real fluids in some finite range and is the
exact lower asymptotic limit of the simple fluid theory,
its validity at high enough flow rates to make the
boundary layer flow approximations meaningful is in
some doubt. The next widely studied boundary layer
flows for viscoelastic fluids are stagnation flow (10, 11)
and wedge flows (1,9, 12), respectively. Denn (1) has
obtained the conditions under which a true similarity
solution can be obtained for both these flows. Once
again, a large number of publications have dealt with
the solution for a second order fluid and the comments
in the foregoing apply equally well here. There does
appear to exist a controversy over the influence of
elasticity on the drag coefficient under such conditions,
but this appears to be only apparent rather than real (13).

The next class of boundary layer flow of great prag-
maticimportanceis the rotational flow. The possibility of
anexact boundarylayer solution for the case ofa rotating

disc has ‘attracted the attention of a large number of
research workers. The flow around a rotating disc for
Newtonian fluid was first solved by von Karman (14)
using momentum integral equations. Cochran (15) later
on improved upon the accuracy of the solution by
using numerical techniques. Mitschka and Ulbrecht
(16) analysed the flow of a Ostwaald de-Waele power
law fluid around a rotating disc and obtained suitable
similarity transformations. They solved the resultant
set of ordinary differential equations numerically and
obtained results to give the velocity distribution and
torque.

There have been a few efforts to solve the problem
of boundary layer flow of elastic liquids around a
rotating disc. Jain (17), Srivastava (18), Balaram
et al. (19) and Kato et al. (20) have considered the flow
for a Reiner-Rivlin fluid and investigated the influence
of cross viscosity on flow patterns and shear stress at
the surface of the disc. Rathna (21) and Elliott (22) have
considered the flow for a second order fluid. Subba
Raju (23) has investigated the flow for a three constant
Oldroyd model. An analysis by Tomita and Mochimaru
(24), which has appeared recently, attempts to solve the
problem with a restricted form of the Denn model, but
ultimately succeeds in obtaining only a perturbation
solution of the particular limiting case of a second order
fluid, with results which are in contradiction with the
analogous analysis by Elliott. The other theoretical
investigations, although useful from a qualitative
viewpoint, have little predictive utility. The Reiner-

“Rivlin fluid is thermodynamically inconsistent and

seldom will the rheological data fit the predictions of
this model. The limitations of the second order fluid
have been already mentioned and much the same
objections could be laid against Oldroyd three constant
model. Besides, these investigations do not appear
to throw any light on the possibility of obtaining true
similarity solutions when a reasonably reliable con-
stitutive equation is used. Generally speaking, there
also appears to be a dearth of experimental data on
well defined laminar boundary layer flows of visco-
elastic fluids. This work is hence intended to contribute
in this area.

Theory

The choice of the constitutive equation used
to describe the flow behaviour is to be governed
by its appropriateness for the rapid external
flow which a laminar boundary layer flow
around a rotating disc is. We choose the fol-
lowing constitutive equation

T= _P5+ﬂ(ﬁ)A1 +CU(I~I)A%—/1(I~I)A2; [1]

where 7 is the total stress tensor, é is the Kronecker
delta, A, and A, are Rivlin-Ericksen tensors of
the first and second order. (See Nomenclature
for the exact definitions.) The coefficients u, w
and A are scalar functions of the second invariant
of the rate of strain tensor. This constitutive
equation may be looked upon as an approxima-
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tion to a higher order Rivlin-Ericksen expansion
in which the effect of Rivlin-Ericksen acceleration
tensors of order greater than two is lumped into
a set of experimentally determinable variable
coefficients. Although the strict validity of this
procedure may be open to question, in view of
the fact that the constant material coefficients
of higher order acceleration tensors in Rivlin-
Ericksen expansion cannot be measured, this
procedure does appear to simplify the matter
considerably. The functional forms of u(Il),
w(IT) and A(fT) have been discussed by Soylu
et al. (25) on the basis of viscometric experiments.
In general terms it is found to be preferable
to express the functional forms of u(IT), w(iT)
and A(IT) as

n-1
2

ulll) = K410

o(ll) = PIID] 2

b—2

ATy = A[UD] 2.

[2]
(3]
[4]

For n=1 and 4 =P =0, eq.[1] reduces to
its Newtonian limit. For n=1 and g=b=2,
eq. [1] reduces to the second order approxima-
tion. For finite values of n but with 4 =P =0,
we have the purely viscous behaviour portrayed
by a power-law model. Thus the limiting cases
of this constitutive equation may be easily
looked into in our analysis of the disc flow
problem and a comparison with the analyses
in the literature becomes fairly straight forward.

The system of equations of motion can be
written down in the usual manner for the
boundary layer flow around the disc as

ov, o Uh ov,
R r * 0z
_ 1 617 arFrr T;‘r - Té() aT;z
B ;[ T or + ar r 0z [3]
Ovy | ety Ot
"o r * 0z
11 o, 0Ty,
= ;L”T = (r* Toe) + ?J [6]
ov, 4 Ov,
U TG
1 ep 1
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The equation of continuity is
ov, Uy dv,
—_— + — =0.
o T G 8]

We have chosen here z =0 as the plane of
rotation and » =0 as the axis of rotation. The
boundary conditions for the solution of this
equation are

z=0, p,=0v,=0 and v,=rQ [9]
and
Z—=00, v,=04=0. [10]

Substitution of various stress components in
egs. [5], [6] and [7], based on the constitutive
relationship given in eq. [ 1], in conjunction with
the definitions of variable coefficients given
by egs. [2], [3] and [4] essentially completes
the statement of the problem. Further simplifi-
cations will be achieved when we perform the
usual ordering arguments concerning the
relative magnitude of terms within the small
region in which most significant changes in
velocity are occurring. Following the previous
workers, in the first instance, these ordering
arguments are the same as those done for
Newtonian fluids, which are also applicable for
purely viscous fluids. The variable material
coefficients u(IT), o(fT) and A(fT) can then be
shown to reduce to

N (dve\? (6 \2 Rt
Wi =K (a—vj) + ( al; ) 2 [11]
A~ B . 2 3 2<_H;l
o(fT) = P (%—f) + <g—’;) 2 [12]
and B -
~ (v \2 [ 0v, \F|e52
ATy = A <a_v;> + < al;) > [13]

The search for a true similarity solution of
egs. [5],[6] and [7] can be done by the use of
Group Theory methods (26) but we find it
easier to approach the same problem in an
alternative way. Egs. [5], [6] and [7] will be
inspected after transformation of the dependent
and the independent variable on the same basis
as that for the purely viscous case treated by
Mitschka and Ulbrecht (16). We thus transform
the equations by using

r/R =n and §=C,
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[ K b et
where &' = {ing:TJWW 1 ,

¢ is proportional to the local boundary layer
thickness and the expression for &' can be ob-
tained by using the balance of forces of inertial
and viscous nature in the boundary layer.
Of course, only purely viscous considerations
are involved while evaluating this and it may not
be fundamentally correct since the elasticity is
likely to affect the boundary layer thickness.
But there is no a priori way of accounting for
this and we will hence proceed with the trans-
formations suggested in eq.[14]. The velocity
components are then transformed as

[14]

and
v, = 6QH' [17]
where

| (3n=t 1—np
H—[—<n+1)F e FZ;J [18]

The transformed boundary conditions are
now given by

(=0, F=H =0 and G =1
{00, F=G =0.

[19]
[20]

The exact algebraical details are rather tedious
and have been reported in (27). The first two
components of equation of motion (egs.[5]

v, =rQF [15] and [6]) are required for the evaluation of
velocity distribution. The transformed r com-
V., =rQG [16] ponent is given by
12 12 7 1—n /. # d [ "2 1112 LLE—I //-
F? =G+ (H + g (P )P = g | P2+ G P F
IVi AQL_I) d " g_:l 7 s " 1 - n A
+ (Reo )f/1+n n T dz: L(FI,Z G 2) 2 <_2F F + CG 2 1 + n):'
R ) r
_ n - i 7P _2F/F”
(R60w)1/1+n n dC (F +G ) + 1+n

1—n 1—=n\]
" F//f . 1 _ H/ F// G” GI' 2 GI'/ F// 3 FI 2 F”
X(2F + ( n)) + -+ < + 2L 1-|-Vl>+ ‘ ( + 2L ——1+n>:l}

VVIZ Aﬂﬁﬂ (FNZ G//Z) 2 2q + 1 + n Ff/Z _ Gﬁz‘
T Reg) e

1-n 2 /f22 "
+ T dCL(F + G (F)J}

and the 6 component is given by

d

ol ’ /(_) "’ _
2F G+ LH+§F1+ G

[21]

n—1
"2 2\ 2 11t
a L(F + G"%) GJ

g:_z 1 13 " B " " 1—n
[ o(F+ i i >+F<G51+n):|}

VVlz ;72 1‘:;1 el (F//Z + GiiZ) 2
(Reo ) "
Wil Zb;f;l d 72 //2%
*Wﬂ vié (F"* + G")

| 1—n F
GI'VF/I
XL é"<1+n>+1—l-n

Wi, 2a=n=1)

+ (Reo )1/1+n 17 1+n {z(FﬂZ + GIIZ) 2

v i(155 )i |+ o (G”F")J}-

(ZG” + Gmg’(l . n)> + H?G/I/ _"_ GII(3F/ + HI/) _ G!F!/]}

=2 a+1+n

Gﬁ F”
1+mn

[22]
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where

Re, — % [23]
Wi, = % (RZI?SP)"EZ [24]
Wiy = (@-)ﬁ* [25]

It is readily seen .that the dimensionless
numbers Wi, and Wi, appear in the equations.
These have the same significance as in the
previous boundary layer analyses performed
with similar constitutive equations, in that
they represent the ratio of elastic to viscous
forces. A further explanation of these numbers
has been given later. It is important to note that
we get two such groups. Wi, is to be evaluated
on the basis of the parameters involved in the
function A(I1), whereas Wi, is to be evaluated
on the basis of the parameters involved in the
function w(f1). The boundary layer analysis for
flat plate mentioned previously does not include
the terms involving the function «(IT), since the
terms containing e (I7) identically vanish in such
two dimensional flows. The limiting form of
the eqs. [21] and [22] can be readily examined.
It is clearly seen that when Wiy = Wi, =0,
we have the purely viscous behaviour portrayed
by an Ostwaald—de Waele power-law fluid. These
equations are then identical to those obtained
by Mitschka and Ulbrecht (17). For K = u and
n = 1, the equations reduce to those reported
by Schlichting (28).

The search for a true similarity solution
(independent of #) is now made. The trans-
formations employed in eqs. [14]-[17] are
clearly unsatisfactory for providing a true
similarity solution for all values of material
parameters. But it is interesting to observe that
for a special case when b=g=n+1, we do
have a true similarity solution. This observation
is rather akin to the one obtained by Denn (1)
who observed that only for a two dimensional
stagnation flow a similarity solution is possible
when b=n+1. For n=1 (and b=g=2), it
corresponds to the second order fluid approxima-
tion. It does appear that even when n & 1,
it is possible to satisfy the condition b =n+ 1
for a number of dilute polymer solutions, with
moderate shear thinning and moderate departure
of normal stress difference functions from 7>
dependence. The solutions obtained by inte-

grating the set of ordinary differential eqs. [21]
and [22] may thus be of some pragmatic
significance. If bn+1 and g n+ 1, then it
is possible to integrate the egs.[21] and [22]
as such by direct numerical integration by
using the techniques developed in recent years
for integrating nonsimilar boundary layer flow
eqs. [29].

The expression for torque on the disc can be
obtained by carrying out an inspectional ana-
lysis. This is obtained by integrating the local
shear stress 1, on the surface of the disc

2nr?dr.

z=0

R
M=—2]r, [26]
0

The component 7, with the assumed con-
stitutive eq. [1] can be obtained in the dimen-
sionless form as

B—1 _2n
K(RQ> (F"2+G”2) 2 ﬂ1+nG”

R a-2 2(g—1)
+P<_Z—> (F’i+G//2) 2 y 1+n

{ GLF L CFT (1 ]
+F"G”C—(1 ;Z)}

\Nb—1 b—2 2(b-1)
_A<RAQ> (F//Z_!_G//Z) 2 ’1 1+n

" " 1 "
Q{G F 1+ ['G

+—[2G” +(1=nG"{]

+G'(3F +H)-G F} , [27]

where

A = L—R—I—_%TWJW. [28]

Using B.C.[19] we have F/(0)
and hence 1,4, at & =0 reduces to
RQ 1 i —1
tarki-o = K( i) 0o

RQ )
+A< A) (F"(0)?

b—2 2(b-1

+ G,‘/(O)Z)T n 1+n QF//(O) .

= H'(0)=0

2n

1 + nGu(O)

[29]
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It is thus interesting to see that the dimen-
sionless groups arising from the coefficient
w([T) (see eq.[12]), do not appear in this
expression. Carrying out the integration in
eq. [26], we get

RO}
_ 3 2
M= —4zR K<A>0M

1 + n G/r(o)

2(b-1)

n+1 (F// (0)2

{(F"(O)Z

L GOp T
A/RQ b—n—1
*75(7) 21

b—2

+G"(0%) * F ”(0)} dn [30]

Before expressing the above result in the
dimensionless form, it is important to examine
the significance of some of the terms appearing
in the above expression. It can readily be seen
that A is the value of &, the boundary layer
thickness at the edge of the disc (r = R). Since
RQ could be taken as a characteristic velocity,
% serves as a characteristic shear rate on the
surface of the disc. Further, under simple shear
flow conditions, we have the shear stress and
primary normal stress difference functions pre-
dicted as

712 = K(j)" [31]
and
Ti1 — T22 = A(?)b- [32]

A variable relaxation time can now be
defined as (see 30, 31),

1= Ti1 — T22 A b—n—1

=i

- 33
Ti2Y K [ ]

On substitution of our characteristic shear rate
P = RA—Q, we have the variable relaxation time

definition changed to
P i RO b—n—1
v — K A .

This may be taken as the appropriate flnid
characteristic time. The search for.a charac-
teristic process time may be done in a similar way

[34]

4
and — RO turns out to be the characteristic process

time for the boundary layer flow around the
disc. We may thus define the ratio of a charac-

teristic fluid and process time as the WeiSsenberg
number. Thus we have

. A [RQ\°~
W’=K<T>

Noting further that % =

[35]

1
(Reg,,) 1" and also

defining the dimensionless moment coefficient
M
Cy as TR we get from €q. [30]

8n [ Wi
WLCI +C, W} [36]

The constants C, and C, are functions of the
indices in the shear stress and normal stress
difference functions n,b and ¢ and are given
explicitly by

CM:

n—1 202n+1)

Ci=—[{[FOP+GO] > n ™" G'O)}dn
= Cl(n7 ba 61) [37]
and
L b-2 ;ib_tru
Co = [{[F"(0F + G"(07] Ty U F(0) dy
=C,(n,b,q). [38]

The sign and magnitude of C, and C, will
have to be determined either from the theoretical
considerations (numerical solution of egs. [21]
and [22])_ or from experimentation (by doing
torque measurements for elastic liquids and
correlating the data). It can, however, be deduced
directly that the constant C, has to be negative.
It has been shown by Mitschka and Ulbrecht (16)
that the moment coefficient for purely viscous
Ostwald-deWaele power law model is given by

874
= Ten ™ 2]

Minel
where
_1=n
B(n) = 0.1539 x (6.13)>CF¥".
Hence eq. [36] may be rewritten as

87 B(n) [Cl N C, Wi }
(Reoy) M7 B(m) -~ B(m) (Reoy)'/! ™"
[41]
C = Cy, [C1+C2 m }
M yiscoel M inel Bn) | B (ReOW)l/H"
[42]

[40]

CM=

or as
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Inspection of eq.[42] shows clearly that the
possibility of torque suppression for viscoelastic
fluids will depend on the change in the magnitude
of C; brought about through elasticity and also
the change in sign and magnitude of C, brought
about through elasticity. It is not possible to
predict on the basis of such inspectional analysis
alone whether one would have a torque sup-
pression or a torque increase. It is interesting
to recall here the observations of Denn (1), who,
for the case of laminar boundary layer flow
past a flat plate showed how the fluid property
parameters b and n influence the drag coefficient
and how depending upon their magnitudes the
drag coefficient may in fact reduce or increase
compared to its value given by purely viscous
considerations. The possibility of observing
similar behaviour in the case of the disc cannot
be outruled.

Experimental

The experimental procedure consisted of measuring
the torques experienced by discs of radii 3.75, 5 and
7.5 cm rotating at different speeds in different fluids.
The range of speeds covered was from 600 to 1800
rev/min.

The experimental technique used for the measure-
ment of torque was the same as used previously (32).
The dynamometer essentially measured the twist in
the torsion bar in conjunction with two photocells and
an electronic digital counter timer. The details of the
dynamometer could be found in ref. (24).

The liquids used were aqueous solutions of Sodium
Carboxymethyl cellulose (CMC (Edifas “B” ICD),
aqueous solutions of Polyacrylamide (PAA) (Separan
AP30, Dow Chemicals), Kaolin suspension made in
mixture of Glycerol and Water and also a mixture of
Polyacrylamide, Glycerol and Water. Glycerol was
used as a Newtonian fluid. Table 1 lists the properties
of the fluids used. The rheological data were obtained
on a Weissenberg Rheogoniometer (model R 18). Both
shear stress — shear rate data were obtained and were

Table 1. Properties of the fluids used

correlated on the basis of the predictions in eqgs. [31]
and [32], respectively. The material parameters K
and n and 4 and b have been listed in table 1. It can be
readily seen that due to the absence of any measurable
normal stress difference CMC and Kaolin solutions
served essentially as inelastic liquids, whereas the
Polyacrylamide solutions were significantly elastic.

Results and discussion

The predictions of eq.[36] were tested by
plotting the torque R.P.M. data in a suitable
dimensionless form by using the fluid property
parameters listed in table 1. The accuracy of the
data obtained was first tested by plotting the -
data for Newtonian Glycerol solutions. The
data for non-Newtonian inelastic fluids (4 = 0)
was also plotted to check the theoretical
relationship given by eq. [39], and fig. 1 shows
the result. It is clearly seen that the agreement
between the theory and the experimental data
is excellent. In order to see if there is any dif-
ference between the behaviour of inelastic and
viscoelastic fluids, the data for the latter were
also plotted on the basis of eq. [39]. Fig. 2
shows the results. It is seen that the data for
viscoelastic polymer solutions are significantly
lower than those for inelastic polymer solutions
and suspensions. Since all the influence of the
shear thinning character has been explicitly
taken into account by a relationship of the
type [39] the observed difference must be
attributed to the presence of elasticity.

The validity of the relationship obtained on
the basis of inspectional analysis (eq. [42]) was
hence tested. The observed reduction could be
accounted for by the changes in the constant C,
(for inelastic fluids C, = f(n) and C,=0) or
both by the contribution through changes in C,
and a finite value of C,. C; and C, will of

K n A b p
Fluid dyne dyne ,
ui T 5€C e gmy/c.c.
Glycerine 8.427 1.0 — — 1.25
Glycerine 1.048 1.0 — - 1.24
Kaolin 3.7 0.935 — — 1.20
CMC 70 0.4675 — — 1.05
0.5% PAA 14 0.4225 26.5 0.713 1.00
1.0% PAA 36 0.373 75.0 0.675 1.005
1.5% PAA 107 0.331 170.0 0.710 1.010
2.0% 250 0.2643 350 0.671 1.015
0.53% PAA in 26 0.517 70.7 0.875 1.15

45% Glycerine

42
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Cu

107
Eqn.(39)

Fig 1. Verification of eq. [39] for
Newtonian and inelastic non-Newtonian
fluids

O R=375cm Glycerol 95%

© R =500cm Glycerol 95%

® R=500cm Glycerol 85%

¥ R =375cm Kaolin

x R =500cm Kaolin

A R=750cm CMC

10-2 L I I i [ B ! L1
10 10° Tt RE 10°
Fig. 2. Torque suppression for viscoelastic
fluids under rotational laminar boundary
layer flow conditions
S O R=375ecm 0.5% PAA
x R =500cm 0.5% PAA
107 V R=750cm 0.5% PAA
A R=500cm 1.0% PAA
[’ © R=375cm 15% PAA
A R=500cm 1.5% PAA
L ¥ R=375cm 2.00% PAA
@ R=500cm 200% PAA
® R =500cm 053% PAA

10-2 | | !

102

course be functions of n,b and ¢. To examine
whether the entire torque suppression could
be correlated through C, alone or whether the
presence and contribution of C, had to be
taken into account as well, we plotted the data
for a given fluid but with different disc dimen-
. sions. There was a systematic shift in the data
with the disc dimensions. Since only the term
C, Wi
B(m)(Reo,)/ ™"
a shift, the presence of this term was found
necessary. It was further found that the observed
extent of torque suppression reduced with
higher Reynolds number. This implies that C,
is negative. The exact functional relationship
of Ci(n,b,q) and C,(n,b,q), however could
not be deduced, because the variation.in n and b
was only between 0.26 to 0.51 and 0.67 to 0.87;
respectively. Further g was not measured. Hence
the values of C, and C, were taken to be ap-
proximately constant in this work and are
reported in table 2. The goodness of prediction
of eq.[42] with these values of C, and C, is
shown in fig. 3, where the experimental data are

was capable of correlating such

in 54% Glycerol

compared with the predictions. The agreement
appears to be reasonably sound.

Table 2. Values of constants C; and C,

Fluid n b C, C,

0.5% PAA 04225 0713 02165 0.0814
1.0% PAA 03730 0675 02222  0.0830
1.5% PAA 03312 0710 02362  0.0895
2.0% PAA 02643 0670 02640  0.0982

0.53% PAAin 05170 0.875 02100 0.0746

54% Glycerine

Appropriate comments need to be made
about the region preceding the laminar boundary
layer regime (creeping flow) and the region after
the laminar boundary layer flow (transition to
turbulent regime).

Kelkar et al. (31) have clearly shown that in
the creeping flow regime, the modifications in
the torque are not detectable and the data could
be correlated satisfactorily for inelastic and
viscoelastic fluids through the considerations
of shear thinning viscosity alone. Inspectional
analysis similar to the one performed here was



107

10

Cy (Experimental)

-2

v
=S 0 R=375CM 0.5PAA -
v x R=500 CM
eV v R=75 CM
® r © Glycerol R=5.00CM
® ® R=375CM 10%PAA . _3
o o A R=500CM 00 v R=375 M
o AW e i R=375CM 15% PAA - ® CMC2% R=250CM .
o s R=375 CM N,
o, ¥ R= 375 CM20%PAA I o s
> o R=500CM fe= 500 cM .
N\
v ® R=500CM0.53%FAA N N
4 x
| 1 | | 107 L o] 1 1 | 1 1 L1
1072 Cu (Equation 42) 10- 107 10° 10" RE,, /f(n) 102

Kale et al., Rotational viscoelastic laminar boundary layer flow around a rotating disc

639

102 "
x PAA1% R=375CM
L o~ R=500CM
i Y PAA 2% R=500 CM
S

10" —

Fig. 3. Comparison of the experimental and predicted
values of the moment coefficients for viscoelastic
liquids

Notation same as in fig. 2

done in the creeping flow regime (which is

confirmed from the analysis of Wichterle and

Ulbrecht (33) as well) and the following rela-

tionship between C,, and Req, was predicted.

Cu= _M)_ [44]
lQe()w

In the absence of any theoretical investigation
of flow of power law fluids around a rotating
disc in the creeping flow regime, we obtained
this relationship by performing an analysis of
the experimental data. The following relationship
was found to fit the data

2 Tn+1
f(n)=T<3n+1)'

Fig. 4 shows that data for both inelastic and
viscoelastic solutions are equally well fitted
through this equation. This shows that the
influence of elasticity on the modification of
torque is negligible at very low Reynolds number.
It is only at fairly large Reynolds numbers that
one has an appreciable influence of elasticity.

The resulting torque suppression does not,
however, appear to persist for large Reynolds
number and fig. 2 clearly shows that the visco-
elastic polymer solution data once again tends

[45]

Fig. 4. Moment coefficients of inelastic and viscoelastic
fluids under creeping flow conditions

V R =375cm Glycerine 95%
© R =500cm Glycerine 95%
® R=250cm CMC2%
A R=375cm CMC2%
A R=500cm CMC2%
x R=375cm PAA1%
O R=500cm PAA1%
¥ R=500cm PAA2%

to join the inelastic line given by eq. [39]. Kale
et al. (34) have shown that as one goes further
in the turbulent regime, there is a significant
torque suppression. Thus the rotational visco-
elastic flows appear to offer a very interesting
range of phenomena depending upon the range

~of Reynolds number. It is interesting to compare

here another interesting flow situation, which is
well understood and studied in the literature.
It has been thus shown that for low Reynolds
number flow (creeping flow) of a viscoelastic
fluid past a sphere or a cylinder there is some
reduction in the drag coefficient. On the other
hand in stagnation flows there is an enhancement
in drag coefficient for viscoelastic polymer
solutions. We thus come to a very interesting
and important conclusion that the existence and
extent of drag reduction under laminar flow
conditions may depend upon the particular
geometry used the range of Reynolds number as
well as the values of the material parameters.

.Our study has clearly shown the range of

conditions under which torque suppression
42%
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under laminar flow conditions can be obtained
for a rotating disc, but this study cannot be
claimed to be complete in a sense that very
little variation in material parameters was used.
However, it is hoped, that the exploratory
theoretical and experimental analysis of this
work may lead to a better understanding of the
behaviour of viscoelastic fluids in rotational
laminar boundary layer flows. The attempted
analysis of the governing equations and the
evidence presented for the existence of a true
similarity solution should help considerably in
this respect.

Summary

The equations of motion for the laminar boundary
layer flow over a rotating disc have been derived for a
fluid which obeys a Rivlin-Ericksen type of constitutive
equation and whose material parameters are assumed
to be arbitrary functions of the second invariant of the
rate of deformation tensor. The analysis establishes
the conditions under which a true similarity solution
is possible. An inspectional analysis yields a relationship
between the moment coefficient, a generalized Reynolds
number and a modified Weissenberg number which
incorporates a variable relaxation time with a process
time characteristic of the boundary layer flow on the
disc. Experimental data obtained are analysed in terms
of the derived relationship and the agreement between
the two, after the determination of the unknown
constants, is found to be quite sound. A brief discussion
follows which emphasizes the role of geometry, regime
of flow and viscoelastic material parameters in giving
a wide variety of flow phenomena.

Zusammenfassung

Die Bewegungsgleichungen fiir die laminare Grenz-
schichtstromung um eine rotierende Scheibe wurden
fiir eine Rivlin-Ericksen-Fliissigkeit abgeleitet. Die
Materialparameter in dieser Zustandsgleichung wurden
als beliebige Funktionen der zweiten Invarianten des
Deformationsgeschwindigkeitstensors gesehen. Die Be-
dingungen wurden gegeben, unter denen eine echte
Ahnlichkeits-Losung existiert. Die Inspektionsanalyse
wurde dann benutzt, eine Gleichung zwischen dem
Widerstandskoeffizienten und der Reynolds-Zahl ab-
zuleiten, die auch eine Weissenberg-Zahl mit einer
variablen Relaxationszeit und einer charakteristischen
aus der Grenzschichtstrémung abgeleiteten ProzeBzeit
enthdlt. Die Versuchsdaten wurden mit Hilfe der
Theorie analysiert, und eine gute Ubereinstimmung
wurde gefunden. Die Arbeit wird mit einer kurzen
Diskussion beendet; in der Rolle der Geometrie des
laminaren bzw. turbulenten Strémungsbereiches und
der viskoelastischen Stoffparameter herausgestellt wird.
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