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Abstract

Wall slip in polymer solutions and melts play an important role in fluid flow, heat transfer and mass transfer near solid

boundaries. Several different physical mechanisms have been suggested for wall slip in entangled systems. We look at the wall

slip phenomenon from the point of view of a transient network model, which is suitable for describing both, entangled

solutions and melts. We propose a model, which brings about unification of different mechanisms for slip. We assume that the

surface is of very high energy and the dynamics of chain entanglement and disentanglement at the wall is different from those

in the bulk. We show that severe disentanglement in the annular wall region of one radius of gyration thickness can give rise to

non-monotonic flow curve locally in that region. By proposing suitable functions for the chain dynamics so as to capture the

right physics, we show that the model can predict all features of wall slip, such as flow enhancement, diameter-dependent flow

curves, discontinuous increase in flow rate at a critical stress, hysteresis in flow curves, the possibility of pressure oscillations

in extrusion and a second critical wall shear stress at which another jump in flow rate can occur. # 2000 Elsevier Science B.V.

All rights reserved.
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1. Introduction

Wall slip in flowing polymeric solutions and melts has been investigated for the past several decades.
Slip is seen in capillary flow (e.g. Refs. [1±3]), rectilinear flow (e.g. Refs. [4±6]), large amplitude
oscillatory flow (e.g. Ref. [6]), and film flow (e.g. Ref. [7]). Slipping fluids exhibit many typical
characteristics, such as drastic reduction of resistance to flow (e.g. Refs. [8,9]), the presence of a critical
shear stress above which resistance to flow decreases (e.g. Ref. [3]), diameter-dependence of flow
curves (e.g. Refs. [3,8,9]), surface distortions of the extrudate (melt fracture) (e.g. Refs. [2,10]) and the
(apparent) violation of no-slip boundary condition close to the wall (e.g. Refs. [4,11]).
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Several different theoretical interpretations exist for wall slip. In the case of polymer solutions,
apparent wall slip has been attributed to migration of macromolecules away from the wall under a stress
gradient [8,12,13]. For melts, the mechanisms of constitutive (bulk) instability [14±16], desorption
from the wall [17±19] and chain disentanglement at the wall [20] have been proposed for explaining
wall slip. Theoretical formulations of each of these mechanisms differ considerably, thus making it
difficult to ascribe the experimentally observed slip to any one of the mechanisms.

In this paper, we show that different mechanisms for slip can be unified in the framework of a
transient network model. We specifically consider the case of capillary flow in which wall±polymer
interaction is strong and show that the local stress±strain rate curve in the wall region can become non-
monotonic because of disentanglement of chains at the wall. The non-monotonic nature of the curve
can appear again at higher stresses due to bulk disentanglement (constitutive instability). Our model
successfully predicts the existence of a critical shear stress, hysteresis, flow enhancement, diameter-
dependent flow curves and the possibility of pressure fluctuations in controlled rate capillary
experiments.

Wall slip in polymer solutions has been inferred from macroscopic measurements, such as
flow enhancement and diameter-dependent flow curves. At a microscopic level, slip has been
indirectly inferred by measuring the concentration profile near the wall or by directly measuring the
velocity profile near the wall. Some important experimental studies have been summarized in
Appendix A.

Several attempts have been made to propose stress-induced migration as the cause for apparent wall
slip in polymer solutions (see Appendix B). However, the theories suffer from four main drawbacks.
There is a fundamental difficulty in introducing thermodynamic arguments for stress induced migration
in a flowing (non-equilibrium) system. Further, different theories predict contradictory trends for
migration in capillary flows, as summarized in the first three rows of Appendix B. Also, even today
there is no convincing experimental evidence for radial migration of polymer molecules in pipe flow.
Finally, the predicted L/D for slip to occur is still too high, when compared to experimental
observations.

The flow anomalies due to wall slip observed in extrusion of polymer melts are in many ways similar
to those in polymer solutions. For example, Vinogradov [21] reported flow-rate enhancement and
diameter-dependent flow curves for extrusion of polybutadine. Pressure-drop oscillations and rough
extrudate surface (melt fracture) are well known phenomena that occur in controlled flow extrusion.
These phenomena have been extensively studied [22,3] and reviewed [23±26,58,82]. Appendix C
summarizes the main experimental reports on wall slip in melts.

Adhesive failure at the wall has been proposed to be responsible for slip in polymer melt extrusion,
since the energy of the wall±polymer interface is known to dramatically influence the slip behavior
[1,22]. Polymer molecules adsorbed on the wall undergo sudden desorption above a critical stress and,
hence, slip at the wall. Hill [19] has recently proposed a quasi-chemical model in which polymer chains
near the wall undergo a dynamic adsorption±desorption process that is influenced by flow. The model
predicts a critical wall shear stress at which large slip occurs by a sudden desorption of the chains from
the wall.

Constitutive instability (of bulk material) has also been proposed as another mechanism for wall slip.
This mechanism is related to a non-monotonic stress-strain rate relationship [14]. Doi±Edwards theory
predicts that stress passes through a maximum and then decreases with a further increase in the shear
rate, which leads to mechanical instability in steady shearing [27]. Modification of the Doi±Edwards
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theory [28] and other theories, such as Johnson-Segalman and Giesekus models [16] predict a local
stress minimum following the maximum.

Recently, the wall slip problem in melts has been re-visited with renewed interest because of some
interesting new insights developed by Brochard and de-Gennes [20]. They proposed that polymer
chains adsorbed on the wall (in the mushroom region) undergo a coil to stretch transition at a critical
shear stress. Since stretched molecules cannot entangle with the bulk molecules, the bulk slips past the
stretched chains. They showed that the critical shear stress is given by,

��w � �
kT

�N0:5
e a�

� �
; (1)

where � is the number of chains per unit area grafted to the wall, Ne the entanglement distance and `a'
the Rouse length. Eq. (1) indicates that the critical wall shear stress ���w� increases with temperature and
grafting density (in the mushroom regime).

Migler et al. [4] and Leger et al. [26] experimentally observed slip in PDMS melts flowing on mica
surfaces, on which chains were strongly adsorbed to create a low grafting density (mushroom) brush.
Their experimental results on slip-length/slip velocity relations are in excellent agreement with
predictions of Brochard and de-Gennes [20]. Wang and Drda [29] showed a discontinuous jump in the
flow rate at a critical stress (similar to data of Vinogradov et al. [21]) for controlled pressure-drop
extrusion of HDPE melt. They showed that the critical shear stress for HDPE extrusion increased with
increase in temperature, which is in agreement with Brochard±de Gennes model [20]. Wang and Drda
[3] argue that if sudden desorption was the governing mechanism for slip, then the critical stress should
decrease with an increase in temperature.

Interestingly, Wang and Drda [3] also reported a second critical stress, at which the flow rate again
increased discontinuously. The flow curves after this second critical stress do not show diameter
dependence, unlike those after the first critical stress. The authors claimed that the second criticality
might arise out of disentanglement within the bulk chains.

Kolnaar and Keller [10,30] have reported the existence of a narrow temperature range (146±1528C)
in which, above a certain piston speed, the extrusion pressure decreases significantly with a small
increase in temperature. Beyond the temperature window, the pressure increased and showed
oscillations accompanied by melt fracture. In situ wide angle X-ray diffraction results showed an
anomalous hexagonal phase near the capillary wall (Van Bislen et al. [31]). The authors proposed that
such a hexagonal phase is responsible for the slippage of polymer molecules at the wall, thereby
causing a decrease in pressure. Till this day this remains the only direct experimental observation on
chain stretching at the wall accompanying wall slip.

Returning to polymer solutions, it is interesting to point out that the recent experimental
investigations on slip in concentrated solutions of high molecular weight polymers suggest that chain
stretching and disentanglement at the wall seems to be responsible for the observed wall slip. Archer
et al. [32] observed a large displacement of 1.5 mm tracer particles at the stationary wall on the
cessation of shear flow of high molecular weight entangled polystyrene solution. Riemers and Dealy
[5,33] have observed slip above a critical shear stress in high molecular weight and narrow MWD
polystyrene solution. Mhetar and Archer [34] have observed significant levels of slip during steady
shearing (couette flow) of entangled polystyrene solutions.
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From the foregoing discussions it is evident that experimentally observed effects of wall slip (such as
flow enhancement and diameter dependence of flow curves) are similar for both polymer solutions and
melts. Different interpretations, such as migration, desorption, constitutive instability and chain
extension exist to explain the wall slip. It is safe to assume that polymer migration may be ruled out for
the case of concentrated polymer solutions, because of the problems listed earlier. It is also likely that
different mechanisms are probably active in different regimes of experimental parameters. We believe
that the chain stretching and desorption are the most plausible mechanisms for explaining wall slip in
entangled solutions and melts.

In this work, it is our endeavor to develop the framework of a unified model to interpret the
phenomenon of slipping fluids. We look at the capillary flow of a fluid, whose chains entangle to form a
transient network. For such a fluid, polymer chains can adsorb on the wall through energetic
interactions and the adsorbed chains can simultaneously entangle with the bulk chains. A transient
network model can provide an appropriate basis to study the flow of such a fluid. We will show that the
model can predict wall slip by chain disentanglement at the wall. Similarly, we will show in a later
publication that the same model can also describe wall slip by the chain-desorption process.

An attempt to use a transient network model to describe the desorption process was indeed made
earlier [35,36]. We will show that our approach is fundamentally different from the previous work. We
will also show that a transient network model containing strain-dependent rates of formation and loss of
junctions can predict all the typical characteristics of slip flow, namely flow enhancement, diameter-
dependent flow curves, critical wall shear stress and large disentanglement. We will also show
quantitative comparisons between the experimental data and our model for the representative cases of
polymer solutions and melts. Importantly, our model does not need an arbitrary slip velocity at the wall,
nor the migration of polymer molecules from the wall. Further, we will provide insights into the
dynamics of chain entanglement±disentanglement process in the bulk and at the wall and their relation
with the existence of a critical shear stress.

2. Theoretical

We begin by outlining the framework of a unified model based on the transient network concept.
Consider the physical picture near the wall as depicted in the schematic shown in Fig. 1. Polymer
segments attached to the wall form a transient network with segments of the bulk chains. The segments
can break away from the network by either disentanglement from the bulk chains or by desorbing from
the wall. For simplicity of the analysis, it is assumed that a polymer molecule attaches to the wall at a
single site only. If Pw is the number of chains per unit area attached to the wall, P the number of bulk
polymer molecules per unit area coming in contact with the bare wall and w the number of bare sites
per unit area on the wall on which a molecule can be bonded, then the reaction of adsorption±
desorption can be written as

Pw @
kd

ka

P� w; (2)

where, ka and kd are kinetic rate constants for adsorption and desorption reaction. From Eq. (2),

d �Pw�
dt
� ka�P��w� ÿ kd�Pw�: (3)
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Considering Eq. (3) to be at equilibrium, we get

� � �Pw�
�wt� �

ka�P�
ka�P� � kd

; (4)

where � is the fraction of surface coverage, wt the total number of sites per unit area to which polymer
molecules can attach (wt � Pw � w). [P] can be assumed to be constant, because it is a very high value.
Since the kinetics of adsorption and desorption are extremely fast as compared to the rheological time
scale, it is appropriate to consider reaction (2) to be under equilibrium before the process of
disentanglement starts.

The process of entanglement±disentanglement also can be written as a kinetic reaction as follows:

Pe
w @

k1

k2

Pd
w; (5)

where Pe
w are the molecules which are attached to the surface and entangled with the bulk, while Pd

w

those attached to the wall but disentangled from the bulk. Also Pw � Pe
w � Pd

w. Considering reaction (5)
and using Eq. (4), the fractional surface coverage of the molecules that are entangled with the bulk can
be written as

' � �P
e
w�
�wt� � �

k2

�k1 � k2� : (6)

It can be seen from Eq. (6) that whichever be the governing mechanism for slip (i.e. desorption
or disentanglement), the value of ' decides the extent of total physical bonding between the wall
and the bulk. It is assumed in this analysis that the adsorbed molecules do not detach from the wall
(� � 1).

Consider the case of polymer molecules strongly adsorbed on the wall, say by hydrogen bonding.
Flow induced desorption would require that the tension in the segment should exceed the adsorption
force. The tension in the freely joined segment can be estimated as FT � kT=a

�����
Ne

p � kT=10a [20].

Fig. 1. Schematic representation of flow-induced disentanglement and debonding of polymer molecules attached to a wall. In

case of disentanglement, the pipe is divided into two regions as shown in the figure.
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Here, Ne is the entanglement length. The force of adsorption can be estimated to be FH�EH/a, where
the energy of hydrogen bonding EH � O(2kT). Thus, FT� FH and it is expected that chain stretching
by flow would not significantly affect the adsorption±desorption dynamics. In this case, the network
dynamics is expected to be governed by the entanglement±disentanglement process.

For the case of weak adsorption, for which EH� O(2kT), the flow can significantly affect the
adsorption±desorption kinetics, making it the governing mechanism for network dynamics. The above
discussion also suggests that the `side reaction' of desorption of disentangled chains can be neglected.
This is because strongly adsorbed chains (e.g. PDMS on mica) have to be stretched much beyond the
disentangled state to be desorbed by flow, and weakly adsorbed chains (e.g. on fluoropolymer-coated
die) can be desorbed much before disentanglement. In this paper, we will only consider the case of
strongly adsorbed chains. Hence, the following analysis considers the case of full surface coverage, that
is � � 1.

We will now combine this conceptual development with a transient network model. In transient
network models, the contribution to stress is considered to be localized at entanglement points called
junctions. A segment, which joins two junction points, is assumed to be a Gaussian spring. If the
number of segments of type i and length Q, that are created per unit time per unit volume at time t, is
denoted by Li�Q; t� and the probability that the segments are destroyed is �ÿ1

i �Q; t�, then the diffusion
equation which determines the distribution function of such segments is given by [37]:

@  iN

@t
� ÿ @

@Q
�
� k� �Q�

� �
 iN

� �0@ 1A� LiN�Q; t� ÿ  iN

�iN�Q; t� ; (7)

where Q
�

is the segment vector and k� � �r� v
�
�T is the deformation gradient tensor.  iN�Q

�
; t�d Q

�
is

number of segments per unit volume at time t that have end-to-end vector in the range of d Q
�

at Q
�

. In

the transient network model, the total stress is assumed to be the sum of contributions from individual
segments The expression for the total stress is given by

�� � ÿ
X

i

HhQ
�

Q
�
ii; (8)

where H is a spring constant.
The constitutive equations obtained from Eqs. (7) and (8) are given by

�i�
��i �i

r
�
� ÿkTL̂

eq

i �
eq
i �i�t� 
�

�
ÿkT �L̂i�t��i�t� ÿ L̂

eq

i �
eq
i � �� (9)

and

�
�
�
X

i

�i�
: (10)

Here, L̂
eq

i and �eq
i are the equilibrium creation and loss terms and �i

r
�

is the upper convected derivative.
The modulus G0i is defined as

G0i � kTL̂
eq

i �
eq
i : (11)
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Next, the creation and loss functions are defined as

L̂i�t� � fi�t�L̂eq

i �t�;
�i�t� � �eq

i =gi�t�: (12)

We further assume for the sake of simplicity that the network segments are of only one type (i � 1) and,
henceforth, drop the subscript i. Inserting Eqs. (11) and (12) into Eq. (9) and non-dimensionalizing with
respect to the following parameters for pipe flow,

��
�
�

�
�

G0

; t� � vm

R
t; r� � r

R
; _
�
�
� � _


�
; z� � z

R
; r�
�
� Rr

�
; ��
r

�
� G0vm

R
�
r
�
; (13)

we get,

g ��� �We ��
r

� � ÿWe 
�
�

�
ÿ�f ÿ g� ��; (14)

where, superscript * indicates non-dimensionalized variables, � the relaxation time, R the radius of the
pipe, vm the maximum velocity, We � �vm/R the Weissenberg number.

We now consider the fully developed pipe flow problem for which, v � v(vz), vz � vz(r), P � P(z,r),
�
�
� �
�
�r�. The equation of motion simply reduces to

0 � ÿ @ P

@r
ÿ 1

r

@ �r�rr�
@r

� ���
r
; (15)

0 � ÿ @ P

@z
ÿ 1

r

@ �r�rz�
@r

: (16)

It can be easily shown that the transient network model predicts � rr � ��� (refer Eqs. (19) and (20)).
Thus, from Eqs. (15) and (16)

P�r; z� � F�r� � G�z�; (17)

and, hence, from Eq. (16):

�rz � ÿ r

2

@ P

@z
: (18)

For pipe flow, the constitutive equation (Eq. (14)) can be written in component form as:

g��rr � ÿf � g; (19)

g���� � ÿf � g; (20)

g��zz ÿ 2We ��rz

@ v�z
@r�
� ÿf � g; (21)

g�zz ÿWe ��rr

@ v�z
@r�
� ÿWe

@ v�z
@r�

: (22)

Eqs. (18)±(22) represent the final set of equations for the pipe flow problem.
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The solution of this set of equations requires description of functions f and g. Since the kinetics of
entanglement±disentanglement are extremely complex, a theoretical derivation of the functional form
of f and g has not been possible so far. Several empirical forms have been suggested [38±41]. In
principle, it is possible to formulate the creation- and loss-rate functions as a function of the segment
length Q

�
. However, any functional dependence of this nature gives rise to complex coupled constitutive

equations, which require demanding computations. In a simplified approach proposed by Ahn±Osaki
[41,42], the complexities are overcome by assuming that the creation and loss rates are functions of the
effective strain

f � exp �a
e�; (23)

g � exp �b
e�; (24)

where


e � �11 ÿ �22

2�12

: (25)

Deeper mechanistic considerations of the problem at hand suggest the following:

� Because of adsorption of chains on the wall and the possibility of them getting stretched more easily
as compared to chains in the bulk, the dynamics of entanglement and disentanglement near the wall
are different from those in the bulk.
� Consequently, the capillary can be divided into two domains, namely, the bulk and the wall. The wall

domain can be assumed to be an annulus of diameter equal to that of the pipe and thickness of the
order of the radius of gyration of the molecule (see Fig. 1). The wall domain is significant till the
molecules are attached to the wall.
� On stretching, the rates of creation and loss of entanglements also increase to a point of nearly

complete disentanglement, after which the rates remain constant.
� Desorption of the molecules from the wall does not happen even at nearly complete disentanglement.

As discussed earlier, this will hold for strongly adsorbed molecules.

Any of the mathematical forms of f and g will make the transient network model phenomenological
to a certain extent. The foregoing arguments suggest that the formation and loss rates should have an
`S' shaped functional nature with respect to the effective strain. We propose a new empirical function
for creation and loss rates,

f � Ff

2
1� erf


e ÿ �f

�f

� �� �
; (26)

g � Fg

2
1� erf


e ÿ �g

�g

� �� �
; (27)

where erf �x� � 2=
���
�
p R x

0
exp�ÿ�2� d�. The model parameters are Ff , Fg , �f , �g. The parameters �f , �g

are fitted such that f � g � 1, at 
e � 0.
The main difference between the above functions and the Ahn±Osaki exponential functions is that

the creation and loss rates become asymptotically constant at high strains, at which the molecules might
be sufficiently stretched. This behavior predicts a plateau at infinite shear rate, which is not possible
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with the Ahn±Osaki exponential function. As mentioned earlier, the creation- and loss-rate functions
proposed here are purely empirical in nature. We proceed now to solve the capillary flow problem by
using these functional forms and show that wall slip can be successfully predicted.

3. Results and discussion

3.1. Important general predictions

The five simultaneous equations (Eqs. (18)±(22)), i.e. the equation of motion and the constitutive
equation can be elegantly simplified to give one main equation in terms of the effective strain as
follows:

G0
e
f

g
� ÿ r

2

@ P

@z
� �rz � r��w; (28)

where f and g are explicit function of 
e as discussed in the previous section. This is the main equation
of the paper. It describes the relation between the shear stress and the strain on a flowing fluid element.
It can be shown that this equation holds not only for capillary flow but can be derived for other simple
shear flows, such as in cone and plate or couette geometries (see Appendix D).

We consider here the case of steady state capillary flow under a controlled pressure gradient. As
discussed in Section 2, the capillary is divided into two domains, namely the annular wall region
(r � R ÿ � to r � R) of thickness � � 10ÿ8 m to account for attached chains and the remaining bulk
region (r � 0 to r � R ÿ �). For a numerical solution of Eq. (28), the bulk region is divided into 100
nodes and the wall annular region divided into four nodes. Eq. (28) is solved for obtaining the strain, 
e,
at each radial position using the bisection method. In some calculations, the capillary is not divided into
two domains, but its cross section is directly divided into 100 nodes from r � 0 to r � R. The velocity at
each radial position, r, is calculated from the effective strain by the following equation using a simple
finite difference scheme as follows:

@ v�z
@r
� g
e

We R
: (29)

Fig. 2 shows prediction of Eq. (28) for a typical set of model parameters. The stress±strain
curves for the wall region can be seen along with creation and loss functions plotted with strain.
The stress±strain curve for the wall region shows a non-monotonic behavior as the effective strain
increases. The stress increases, then goes through a maximum, followed by a minimum, after which it
increases continuously. A plot of stress±shear rate also follows the same pattern, but is shifted on the
abscissa.

The origin of the non-monotonic stress±strain curve lies in the comparative rates of entanglement and
disentanglement of chains at the wall. Fig. 2 also shows the functions f and g which are described by
Eqs. (26) and (27). For low effective strain (low shear rates), the f and g values are small and close to
their equilibrium value of unity. Thus, in the limit of zero strain, the stress increases linearly with strain.
With increasing effective strain (shear rates), the strongly adsorbed chains at the wall stretch more
easily than those in the flowing bulk do. The rate of disentanglement increases rapidly once a certain
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effective strain is reached until the chains almost completely disentangle. Simultaneously, the rate of
entanglement also increases in the stretched chains, as more sites are available for possible junction
formation. The rates of entanglement and disentanglement balance each other at a state in which the
number of entanglement points is very small and the chains are stretched. This is similar to the
`marginal state' proposed by Brochard and de Gennes [20]. The rapid rise in disentanglement rate
causes the stress to decrease first, which gives rise to the maximum in stress. As the entanglement rate
increases, the stress increases again; thus giving rise to the minimum in stress. At higher strains, f and g

remain constant and the stress again increases linearly with strain.
The effect of disentanglement of adsorbed chains can be seen directly by recognizing that the left-

hand side of Eq. (28) can be written as G0
e f /g � G0
en, where n is the normalized number of steady
state network junctions. Thus, the Y-axis of Fig. 2 can be written as G0
en. It is now clear that, as the
stress decreases after the maximum, it is n which decreases (i.e. disentanglement of chains). At larger
strain, when n remains constant the increase in stress corresponds to an increase in 
e.

Eq. (28) can also be written as

�rz � G0
e f

g
� ��n0kT�n
e; (30)

where n0 is the equilibrium number of entanglements of the adsorbed chains with the bulk chains per
unit volume under no-flow condition, and n0n the total number of entanglements under full surface
coverage (� � 1). Since the adsorption±desorption time scale is much smaller compared to the
rheological time scale, �n0 denotes the `equilibrium' number of entanglements under flow conditions.
In this study, we have considered the surface coverage � to remain constant (� � 1). Eq. (30) shows

Fig. 2. Predictions of Eq. (28) in annular (wall) region. Non-monotonic curve in the wall region shows hysteresis. Also,

behavior of f and g functions proposed in this paper (Eqs. (26) and (27)) are plotted on the right-hand side. The f and g

functions are used to plot the stress±strain curve in the wall region.
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that the wall shear stress is directly proportional to the temperature and to the surface coverage �. Both
of these predictions are in qualitative agreement with the prediction of Brochard and de Gennes [20]
[see Eq. (1)].

Non-monotonic stress/shear rate curves have been predicted by other models, as discussed in
Section 1. For example, the Doi±Edwards model predicts a maximum in stress. A modification of this
model by Mcleish and Ball [28] predicts both, a stress maximum and a stress minimum. They found
that, above a critical shear stress, there would be a radial discontinuity in the flow rate and they
assumed that the stable interface would exist at the minimum possible radius from the center. Similarly,
the Johnson±Segalman model also predicts a stress maximum and minimum [16]. However, a
fundamental difference between these predictions and our work is that the non-monotonic nature of the
stress±strain (or strain rate) curves shown in Fig. 2 is due to disentanglement of chains at the wall and
not in the bulk. In fact, our model also predicts a similar curve for bulk chains at much higher stresses,
the implications of which will be discussed later.

It is pertinent to state that non-monotonic curves have also been observed experimentally. Akay
[43] has observed non-monotonic flow curve for reinforced PP through a series of capillaries. Kissi
and Piau [2] observed a non-monotonic pressure/flow rate relationship for PDMS melts, and Kolnaar
and Keller [44] have reported a non-monotonic curve for uncorrected pressure vs. apparent wall shear
rate.

Fig. 2 can be used to predict the flow curve, i.e. wall shear stress (�w) vs. apparent shear rate
� _
a � 4Q=�R3�, where the flow rate can be obtained by integrating Eq. (29). Thus, an increase in strain,

e, is analogous to an increase in flow rate, Q. The region of the non-monotonic stress±strain curve in
Fig. 2 in which the stress decreases with strain is a domain of unstable flow. Thus, if capillary flow
experiments are carried out under controlled flow-rate conditions, i.e. along the abscissa of Fig. 2, then
it is possible to travel through the unstable region. In such a case, the model would, in principle, predict
pressure oscillations. However, if the experiments are carried out under controlled pressure-drop
conditions, then the model predicts the existence of a critical wall shear stress at which a sudden jump
in flow rate will be observed. Moreover, a hysteresis effect is also predicted. With increasing shear
stress a `top-jump' is possible, while with decreasing shear stress the system would probably show a
`bottom-jump' as indicated in Fig. 2.

It is important to note here that a multi-valued curve, such as that shown in Fig. 2, is not a necessary
condition for the prediction of certain slip-characteristics, such as flow enhancement and diameter
dependence. A difference in the dynamics of entanglement and disentanglement between bulk chains
and wall chains is sufficient to predict flow enhancement and diameter-dependent flow curves.

Finally, it is interesting to note that the stress±strain diagram of Fig. 2 is qualitatively very similar to
those observed in mechanical testing of solid polymers. In the limit of zero strain, the stress is linearly
proportional to strain similar to Fig. 2. The `yield' point in Fig. 2 occurs when the wall chains
disentangle and stretch. At higher strains any further stretching of the disentangled chains requires
increasing force, which is similar to the `strain-hardening' phenomenon.

3.2. Polymer solutions

We now begin quantitative comparisons between model and experiments by analyzing experimental
data on polymer solutions. As an example, we consider the data of Cohen and Metzner [8] for 0.5%
aqueous hydrolyzed polyacrylamide (PAm) solution. The molecular weight of PAm is in the range of

Y.M. Joshi et al. / J. Non-Newtonian Fluid Mech. 89 (2000) 303±335 313



0.8±4.5 million [45]. The critical concentration C* can be calculated following Kulicke et al. [46]

C� � 1:8� 10ÿ25 M

�hR2
gi3=2�

: (31)

Substituting the values of the radius of gyration as
���������
hR2

gi
q

� 10ÿ10 M1=2=
���
6
p

in meters [47], C* is found

to be between 0.13% and 0.3%, which indicates that C > C* and, hence, network theories can be used
for data analysis.

We will first consider the f and g functions proposed by Ahn and Osaki [Eqs. (23) and (24)]
to solve Eq. (28). The Ahn±Osaki model consists of four parameters namely, a, b, relaxation time
�, and modulus G0. In order to obtain realistic values of these parameters, we have fitted the Ahn±Osaki
model to viscosity/shear rate data of Cohen [45] for the PAm solution. Fig. 3 shows the fit of a
power law model (n � 0.453) and that of the transient network model with the Ahn±Osaki f and g
functions.

Fig. 4 shows the predicted non-dimensional velocity profile for pipe flow using the Ahn±
Osaki transient network model, the power law model and a Newtonian model at different pressure
drops. As expected, the velocity profile predicted by the Newtonian and the power law models is
pressure-drop independent, whereas that predicted by the network model is pressure drop dependent. It
can be seen from Fig. 4 that the velocity gradient at the wall for the network model increases with
pressure drop.

Using the same model parameters, the volumetric flow rate Q is plotted against wall shear stress �w

in Fig. 5. The prediction of the transient network model with the Ahn±Osaki's f and g functions lie

Fig. 3. Fit of the different models to viscosity±shear rate data of Cohen [45]. (1) Model parameters for transient network

model using the Ahn±Osaki functions are G0 � 0.128, � � 60, a � 0.12215 and b � 0.1; (2) Model parameters for transient

network model using Eqs. (26) and (27) are G0 � 0.3, � � 2.25, Ff � 50 000, Fg � 3000, �f � 20, and �g � 20; and (3) for the

power-law model, n � 0.453 and m � 0.977.
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above the power law prediction, and are in good agreement with the experimental data. Thus, the
network model shows an apparent `flow enhancement' at the same pressure drop over the power law
model. This might be interpreted as slip-like behavior.

Fig. 4. Velocity profiles predicted using model parameters for the Ahn±Osaki functions as given in Fig. 3. Power-law model

profile used in Fig. 3 and Newtonian profile are also shown.

Fig. 5. Prediction of flow rate vs. wall shear stress for the power-law model and the transient network model using the Ahn±

Osaki functions. Model parameters are the same as given in Fig. 3. Points represent experimental data [8].
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Although the above analysis predicts a pressure-drop dependence of the velocity profile, it fails to
predict a radius dependence. Since effective strain (
e) is a function of non-dimensionalized radius (see
Eq. (28)), Eq. (29) can be integrated to give

Q � 2�R3

�

Z1
0

r�
Zr�
0

g
e dr�

0@ 1A dr�: (32)

It is clear that the apparent shear rate � _
a � 4Q=�R3� is independent of R.
It can be concluded from the above analysis that, if the dynamics of entanglement and

disentanglement are the same in the bulk and near the wall, results of the transient network model
fail to show a radius dependence of the flow curves. Also, though the model predicts an increasing
velocity gradient with increasing pressure drop, it still does not show a `slip' velocity very close to the
wall as observed experimentally [11].

The above discussion suggests that the behavior of the network at the wall might be different from
that in the bulk. We, therefore, conceive the capillary as being divided into two domains, namely, an
annular wall region having a thickness of the order of radius of gyration of the polymer molecule
(�10ÿ8 m), and the remaining space (bulk). It should be noted here that significance of the annular
region is only to take into account different dynamics of attached molecules from that of the bulk. As
discussed in Section 2, we assume that the dynamics of entanglement and disentanglement are given by
Eqs. (26) and (27) and that the model parameters Ff, Fg, �f, �g, the relaxation time � and the modulus G0

have different values in the bulk and in the wall region. Eqs. (28) and (29) are solved in the two regions
with different model parameters, such that continuity in velocity and shear stress is maintained at the
boundary of the two domains. Fig. 3 shows the fit of the transient network model using creation and
loss functions given by Eqs. (26) and (27) to the viscosity/shear rate data of Cohen [45] for the PAm
solution. We use the parameters obtained by this fit for the bulk domain during capillary flow. The
reason for this is that the stress levels in cone±plate viscometric data are well below the critical stress,
so that the dynamics of chains in the bulk and in the wall regions are the same. Therefore, although, in
principle, the bulk and wall regions can exist for a cone±plate geometry, they are indistinguishable
under the given experimental conditions.

Fig. 6 shows model calculations of apparent shear rate � _
a � 4Q=�R3� vs. wall shear stress (�w)
compared with the experimental data of PAm [45]. The parameters for the bulk domain are obtained as
discussed earlier. The parameters in the annular wall domain are obtained by fitting to the experimental
points for D � 0.109 cm. Using the bulk and annular region parameters so obtained, the flow curves for
other diameters are predicted and are in good agreement with the experimental data.

Thus, the network model now shows diameter-dependent flow curves because of the consideration of
two different domains. This can be easily shown as follows. The total flow rate can be written as the
sum of contributions from the velocity in the bulk region and in the annular region:

QT � 2�

Zrÿ�
0

r�vÿ vb� dr � �R2vb; (33)

where vb is velocity at the boundary of bulk and wall domain and � the thickness of the annulus. It can
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be shown that

_
a �
4QT

�R3
� 4QB

�R3
� 4vb

R
; (34)

where QB � 2�
R rÿ�

0
r�vÿ vb� dr and vb/R can be calculated as

vb

R
�
Z1ÿ�=R

1

g
e

�
dr�: (35)

At constant wall shear stress, the integrand is a function of r* only; hence, as R increases, 1 ÿ �/R
increases and tends to 1 at large R. Consequently, change in vb/R, with increase in R decreases and tends
to zero. Thus, the model predicts significant diameter dependence for small diameter capillaries and as
the diameter increases, the flow curves gradually become diameter-independent.

Flow enhancement and diameter dependence are only indirect evidences for slip. Comparison of the
predicted velocity profiles with experimentally measured velocity profiles should provide a better test
for the model. As an example of direct slip measurement for polymer solution, we compare our model
calculations with the experimental data of Muller-Mohnssen et al. [11] on the velocity profile of a
0.25% aqueous PAm solution. C* for this solution was found out to be 0.078% using an estimation
similar to that discussed earlier. The model parameters for bulk flow are obtained by fitting viscosity±
shear rate data as shown in Fig. 7. Model parameters in the annular region are fitted so as to predict the

Fig. 6. Wall shear stress vs. apparent shear rate plot for transient network model using Eqs. (26) and (27). Points represent

experimental data [8] and line represents model prediction. Model parameters used for the bulk are the same as given in Fig. 3.

Wall parameters Ff � 50 000, Fg � 38 000, �f � 20, and �g � 15.5 are used to fit the flow curve for D � 0.109 cm. Flow

curves for other diameters are also predicted.
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slip shown by Muller-Mohnssen et al. [11]. Fig. 8 shows good agreement between the predicted
velocity profile and the experimental velocity profile. In the foregoing calculations, we have assumed
the flow to occur through a capillary of equivalent diameter. Since the experimental data was for flow

Fig. 7. Fit for experimental viscosity±shear rate data [11] using transient network model (Eqs. (26) and (27)). Fitted model

parameters are G0 � 0.77, � � 8.5, Ff � 90, Fg � 65, �f � 12.65 and �g � 12.65. Points represent the experimental data and

the line represents the model fit.

Fig. 8. Comparison of the velocity profile calculated by our model with the measured velocity profile [11]. Bulk parameters

are the same as those in Fig. 7. Wall parameters are Ff � 900, Fg � 2000, �f � 48.99 and �g � 28.28, wall shear stress is

�w � 4.6 Pa. Points represent the experimental data and line represents the model fit.
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through a rectangular conduit, this might be the reason for a small difference between the model and the
experimental data.

Muller-Mohnssen et al. [11] did not measured the pressure drop across the conduit and, hence, could
not detect the presence or absence of any critical wall shear stress, at which a jump in flow rate occurs.
Our model calculations predict a critical stress for their data. Metzner and Cohen's data [8] does not
show any critical wall shear stress. This could possibly be due to the fact that their capillary surface was
pre-treated to decrease the adsorption of PAm chains on the wall. We have seen earlier that a reduction
in the grafting density can reduce the critical wall shear stress. For their data, it is possible that the
critical stress was below the investigated range. It is also possible that a critical stress is completely
absent. As discussed earlier, a multi-valued stress is not a necessary condition for flow enhancement. In
our model calculations for Metzner and Cohen's data [8], the model parameters do not predict a multi-
valued stress function (Eq. (28)). Our model parameters indicate that the dynamics of chains at the wall
differs from that of chains in the bulk at a low wall shear stress. This is enough to predict flow
enhancement and diameter-dependent flow curves shown in Figs. 5 and 4.

3.3. Polymer melts

Our network model can also be applied to data for an entangled polymer melt. Polymer melts are
known to show a sudden enhancement in flow rate above a critical pressure drop in controlled stress
capillary flow. Flow curves for melts also show diameter dependence and stick-slip oscillations in
controlled flow rate capillary flow.

Fig. 9 shows the comparison of our model with the capillary flow data of Wang and Drda [29].
Apparent shear rate (without correction) is plotted against wall shear stress for capillaries of different
diameters. The model is fitted for D � 1.04 mm and flow rates for the lower diameter capillaries are
predicted. Experimental data for a polyethylene melt shows a jump in apparent shear rate (or flow rate)

Fig. 9. Comparison of model prediction for apparent shear rate vs. wall shear stress with polyethylene melt experimental data

[3]. Flow curve for D � 1.04 mm is fitted using model parameters Ff � 75, Fg � 100, �f � 1265, �g � 12.65 in the bulk

region, and Ff � 60 000, Fg � 375 000, �f � 178.88 and �g � 112.42 in the wall region and G0 � 19 200, � � 8.5. Flow curves

for other diameters are predictions. Points represent the experimental data and line represents the model fit.
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at a critical shear stress of about 0.3 MPa. It can be seen that the magnitude of the jump increases with a
decrease in diameter. The network model provides a good fit to the experimental data.

It is interesting to note that at very high shear stress some polymers show a second first-order
transition in apparent shear rate. For example, Wang and Drda [3] show a second criticality for LLDPE
resin. They found that unlike the first jump in _
a, the second jump does not show diameter-dependent
flow curves. Wang and Drda argue that the second criticality in flow rate may be due to stretching of
the bulk chains. Our model is able to predict bulk disentanglement at a much higher shear stress and,
hence, a second jump in flow rates as shown in Fig. 10. Interestingly, our model also predicts diameter-
independent flow curves after the second criticality. This is so because near the disentanglement of the
bulk chains, the difference between the wall and the bulk chain dynamics is lost. Hence the capillary is
now a single domain, which is responsible for the diameter-independent flow curves. However, the
chain desorption models suggest that pressure dependence of viscosity can effectively cancel out the
diameter dependence of flow curves [73]. Hence, it is difficult to say whether the diameter
independence observed by Wang and Drda [3] in the second flow-rate jump is necessarily due to bulk
disentanglement. The second criticality can arise from either bulk stretching or desorption of chains
attached to the wall. We plan to investigate this phenomenon in our future work.

It is particularly interesting to compare the predicted slip length from our model with that of the
Brochard±de Gennes model. An experimental study of Leger et al. [26] showed three distinct regions of
slip in agreement with Brochard±de Gennes [20] model. These are:

(i) A linear friction regime at low shear rates, wherein the slip length is very small and constant with
respect to slip velocity.
(ii) A non-linear friction regime above critical velocity, in which a near-linear relationship (of slope
unity in a log±log plot) exists between slip length and slip velocity.
(iii) A linear friction regime at large shear rates, wherein the slip length is much larger than the size
of a surface-anchored polymer molecule.

Fig. 10. Prediction of two discontinuous flow rate transitions and their diameter dependence.
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Our model predictions are shown in Figs. 11 and 12. The model successfully predicts these three
regimes mentioned here. The slope of the b vs. vs curve in the second regime is predicted to be unity,
which is close to that obtained by Leger et al. [26]. Here, the slip length is calculated as b � vb/(dv/dr),
where vb is the boundary velocity and dv/dr is the velocity gradient in the bulk region at the boundary. It
can be seen from Fig. 11 that there exists a fourth regime in which the slip length decreases with slip

Fig. 11. Slip-length vs. slip-velocity plot for model parameters the same as in Fig. 8.

Fig. 12. Slip-velocity vs. wall shear stress plot for model parameters the same as in Fig. 8.
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velocity. This decrease in slip length is due to the increasing effective strain on bulk molecules
near the boundary. The velocity gradient in the bulk increases more than the corresponding increase
in the slip velocity, resulting in decrease of slip length. Though Brochard and de Gennes predicted
the first three regions, they did not predict the fourth region, since their model does not consider
dynamics of bulk molecules. Yang et al. [77] have indeed observed a decrease in b with stress. They
have defined b as

b � �B

�I

a; (36)

where �B is the bulk viscosity, �I the interfacial viscosity and `a' the monomer length scale. They argue
that, at higher stresses, �B decreases due to the shear thinning nature while �I remains constant (of the
order of monomer viscosity after slip), which results in a decrease in b. Recently, Mhetar and Archer
[78] have also seen a decrease in the slip length at higher shear stress in couette flow of polystyrene
solution in diethyl phthalate. They interpreted this decrease to be a consequence of shear thinning,
which can be related to bulk stretching and/or disentanglement.

4. Conclusions

We have attempted to unify various features of the slip phenomenon in one theoretical framework.
Unification has been achieved for systems (solutions and melts) and for the underlying physical
mechanisms (wall disentanglement, desorption and bulk disentanglement).

We have modeled wall-slip by using a transient network model, in which a dynamic network near the
wall is formed by entanglements between adsorbed chains and bulk chains. The network can be broken
by either disentanglement of chains or by desorption of the wall chains. We have considered only the
first mechanism in this work. We show that, the model predicts flow rate enhancement, diameter-
dependent flow curves, decrease in diameter dependence with increase in radius, a discontinuous jump
in flow rate for controlled pressure-drop experiments and a second jump in flow rate at a higher stress.
The model predicts a non-monotonic flow curve for severe disentanglement. The model also predicts
three different regimes for the slip-length/slip velocity relation. Further, the critical stress is predicted to
depend directly on the grafting density of adsorbed chains and also on temperature (provided no
desorption occurs).

5. List of symbols

a monomer length scale (Eq. (36))
a,b arbitrary constants
C* critical (overlap) concentration
D diameter of capillary
Ff,Fg empirical parameters in Eqs. (26) and (27)
FH force of desorption
FT tension in freely joined chain
f rate of creation
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g rate of loss
G0 constant modulus, (kT �eq

i L
eq
i )

H spring constant
k Boltzman constant
k1,k2 kinetic rate constants in Eq. (2)
kd,ka kinetic rate constants in Eq. (4)
LiN probability of segment creation per unit time per unit volume (at equilibrium L

eq
i )

n normalized cross-link (entanglements) density
n,m parameters in Power law model
Ne entanglement length (Eq. (1))
P pressure
P bulk chains
Pw chains attached to the wall
Pe

w entangled with bulk but attached to the wall
Pd

w disentangled with bulk but attached to the wall
Q
�

segment vector

Q volumetric flow rate
r radial coordinate
R radius of capillary
T temperature
v
�

velocity

vm maximum velocity
w free sites on wall
We Weissenberg number, (�vm/R)

6. Greek letters

�f,�g empirical parameters in Eqs. (26) and (27)
�
�

unit tensor

� thickness of wall layer
� fraction of surface coverage of molecules attached to the wall
' fraction of surface coverage of molecules entangled with the bulk and attached to the

wall

e effective strain, {(�11 ÿ �22)/2�12}
_

�

rate of strain tensor �r
�

m���r� m��
T

� viscosity
�B bulk viscosity (Eq. (36))
�I interfacial viscosity (Eq. (36))
�
�

transpose of deformation gradient tensor, �r
�

v
�
�T

�iN probability of segment loss per unit time per unit volume. (at equilibrium �eq
i )

�i relaxation time
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� number of adsorbed chains per unit area (under equilibrium v0)
�� total stress tensor, (P, �

�
� �
�

)

�f,�g empirical parameters in Eqs. (26) and (27)
�
�

stress tensor

 iN configuration distribution function

B
r

upper convected derivative of arbitrary variable
B* non-dimensionalized variable
hBi average over configuration distribution function

7. Acronyms

HDPE high density polyethylene
LDPE low density polyethylene
LLDPE linear low density polyethylene
PAm polyacrylamide
PDMS polydimethylsiloxane
PEO poly ethylene oxide
PS polystyrene
PMMA poly methyl metha acrylate
PVC polyvinylchloride
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Appendix A

Experimental observations on wall slip in polymer solutions

Reference Polymer solution Experimental method and observations Remarks

[48] PMMA in monochlorobenzene Noticeable slip effect for concentration

above 2.5 g/l

Anomalous behavior near wall observed

above 5 gm/l

[49] PEO in water Apparent viscosity decreases with

capillary diameter

Different solutions of various molecular

weights indicate a relation between friction

reduction and volumetric concentration

[50] Aqueous solution of PVOH and sodium

borate

Capillary flow in rough and smooth

tubes. Slip measured by hot-film

anemometer Extrudate distortion

observed in rough tube at lower

apparent shear rate.

The microscopic nature of the wall can promote

or inhibit macroscopic slip. Slip at the wall

reduces extrudate swell and delays the

onset of extrusion instabilities. Slip decreases

local momentum transfer and increases local

heat transfer.

[8] O.5% aqueous PAM Flow measurements. Flow rate

enhancement and diameter dependence

Results are in qualitative agreement with

proposed diffusion theory (stress-induced

migration)

[11] 0.25% aqueous PAM Measured velocity profile using tracer

particles. Observed high velocity

gradient near wall. Observed a

decrease in slip velocity if Ca��

and Na� were added to solution.

Infers that 0.1 mm thickness layer near wall

behaves like a highly dilute solution of low

viscosity. Infers stress-induced migration of

chains away from wall

[51] HEC in water Slip velocity function of wall shear

stress, polymer concentration and

capillary diameter.

Surface characteristics undergo a dramatic

change from Polymer adsorption gel formation

at the tube surface to the phenomena characterised

by slip in narrow tube

[9] 0.6% aq. PAM; 0.4% aq. Xanthan gum Flow measurements. Flow rate

enhancement and diameter

dependence. Greater slip for rodlike

xanthan than for PAM

Infers that effect of polymer -wall interaction

influences molecular conformation in flow and

the corresponding formation of anisotropic layer

[52,53] PAM in water Apparent viscosity decreases with

decrease in diameter

Depletion thickness near wall was close to radius

of gyration and decreases rapidly with concentration

[54] Xanthan in water Apparent viscosity decreases with

decrease in diameter

Flow in long capillaries is divided in to four regions,

entrance, developing flow, developed flow and exit

[32] Polystyrene solution Displacement of tracer particles in

plane couette

Inferred that slip is observed either at wall or at

thin disentangling layer near wall

[55] PAM, PEO Flow curves show diameter independence

but L/D ratio dependence, which

become asymptotic as L/D ratio

increases

Proposed a new method for correction of end effects
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Appendix A (Continued )

Reference Polymer solution Experimental method and observations Remarks

[56] Xanthan solution Flow measurements in glass

capillaries. Temperature, concentration

and diameter dependence studied

Slip velocity was found to be dependent on sample,

concentration and independent of temperature

[57] 0.2% aqueous xanthan solution Apparent slip detected by Rheo-NMR.

No slip detected after degradation

Slip mechanism may be associated with the

formation of gel-like structures in the

xanthan solution

[34] Polystyrene solutions Couette flow. Significant level of slip

seen during steady shearing of

entangled polystyrene solution

The slip is in qualitative agreement with predictions

of Brochard and de Gennes; slip length is much

greater than expected for entangled system

[5,33] Polystyrene in tricresyl phosphate and

in diethyl phthalate

A critical stress is observed above which

slip is seen. Critical stress is independent

of solvent and molecular weight

Inferred that origin of slip is due to disentanglement

of bulk molecules with those attached to wall rather

than desorption of molecules attached to the wall

[78] PS in diethyl phthalate Couette shear flow. Observed decrease in

slip length at very high shear stress

Slip behavior was observed to be a strong function of

nature of surface. Decrease in slip length at high

stress is attributed to shear thinning
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Appendix B

Various theoretical analyses on slip for polymer solutions and melts

Reference Approach Prediction

Polymer solutions

[12] Stress induced migration: thermodynamic theory Migration towards center

[13] Stress induced migration: fluid mech. Theory No radial migration

[8] Polymer species dissolved in the fluid diffuse away from the

wall, which generates a region of low viscosity adjacent to

wall and as a result bulk slips

Concentration profile develops down stream from the tube

entry. Only small decrease in concentration of polymer near

wall can give rise to significant slip

[58] Stress induced migration: two fluid approach (based on

Osaki, Doi theory, 1991)

No radial migration

Polymer melts

[14] Constitutive instability Many-valued shear stress

[79] Constitutive instability Predicts hysteresis loop

[59] Junctions are assumed between wall/polymer interface as

well as in the bulk of the polymer fluid. Junctions are

described by kinetic equation describing a reaction

between bonded and free macromolecules at the interface

Prediction of the temperature dependence of wall-slip

velocities. At constant temperature, slip velocity depends on

wall shear stress according to a power law

[16] Viscoelastic fluid model is proposed which exhibits local

maxima of steady state shear. Suggests that there may

be phenomena which can give appearance of slip but which

are governed solely by material properties of fluid

Experimental data on spurt is fitted.

[17] Peeling experiments on LLDPE are shown to predict onset

of surface distortion and functional form and magnitude

of subsequent wall slip

Critical stress is relatively insensitive to temperature. Flow

curves are diameter independent due to pressure dependence

of viscosity

[20] Before critical wall shear stress there exists a no slip

boundary condition. When such critical stress is

exceeded molecules attached to the wall undergo coil to

stretch transition and bulk molecules slip by

disentanglement from attached molecules

Critical stress at which slip occurs is directly proportional to

the temperature of the melt and density of the grafted chains

[18] The molecular model for slip of a polymer as it flows through

a die is based on the concept of the activation rate theory of

the kinetics of chemical reactions

The model correctly predicts the dependence of slip velocity

of high molecular weight, linear polyethylene resins

on temperature, pressure, wall shear stress, and molecular weight

[60] Nonlinear constitutive equation (K-BKZ) is introduced

into relaxation-oscillation model

Non-monotonicity of the stress±strain curve is observed.

A boundary layer is developed which shows oscillatory behavior

[36] A multi-mode interfacial constitutive equation for

molten polymers. Hookean segments with different

relaxation times were assumed

Model predicts steady state slip data quantitatively and

dynamic slip data qualitatively
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Appendix B (Continued )

Reference Approach Prediction

[61] The model consists of a viscoelastic constitutive equation

for polymer flows in bulk, the wall-slip model and model

for compressibility effect in capillary flows

It describes onset of critical conditions for spurt, hysteresis,

and pressure oscillations

[62] The effect of pressure dependence on the flow curve

multiplicity is studied using a multivalued slip relation to

model the phenomena of the hysteresis and spurt

Multiplicity of the curve is seen to be absent for high L/D ratio

[19] A chemical theory is developed by modelling the exchange

of bridging sites between two opposing polymeric and

solid surfaces. A catastrophic loss of adhesion occurs at a

critical stress, which depends on difference in work of

adhesion (polymer-polymer) and work of cohesion

(polymer-wall)

The polymer slips at all stresses. Slip velocity obeys time

free volume superposition and depends on both shear and

normal stresses
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Appendix C

Experimental observations of wall slip in extrusion of melts

Reference Polymer melt Observations Remarks

[80] PE Capillary flow. Hysteresis is observed There are three modes of flow. One related

to smooth extrudate. Other related to

rough extrudate, and last related to

spiral filaments

[81] PE and ethylene-propylene copolymer Capillary flow. Observed that hysteresis

loop becomes shallower as

polydispersity increases

Occurrence of oscillatory flow can be avoided

by choice of a resin with proper balance

of mol. wt. and polydispersity

[63] HDPE Shape of extrudate varies periodically

with time, sharkskin plug and rough surface

Sudden increase in flow rate is believed to arise

from multivalued flow curve

[64] Elastic properties of polyethylene melts

at high shear rates with respect to

extrusion

Short time sandwich rheometer.

Stick-slip transition and extrudate

distortion is seen. Critical shear rate

for high mol. wt. is lower than that of low

mol. wt.

Shear rate dependence of shear stress

is correctly described on the basis of

discrete relaxation time spectrum

[43] Filled PP and PA 66 Injection capillary flow with various

capillaries in series. Nonmonotonic

pressure/flow rate curves can be seen

for multiple capillaries in series

Mechanism of unsteady flow is investigated by

fiber orientation using molding simulation

[65] PE Slip with pressure oscillations seen for

HDPE. Slip is not observed for LDPE

It is inferred that the molecular mechanism

responsible for the pressure oscillation within

a certain range of deformation rates must

be based on the inability of the polymer melt

to sustain larger strain than critical strain

[21] Range of rubbers Shows presence of a critical stress at

which flow rate increases discontinuously

The spurting and sliding flow is characterized

by transition from a fluid to a highly

elastic state

[66] Slip flow of non-platicized PVC

compounds

Slit rheometer. Wall slip only occurred

for compounds with very high shear

viscosity, which corresponds to

high mol. wt

Concludes that energy dissipated during flow is

not decisive for shear or slip flow. For a given

output, power dissipated is found to be lower

than that for wall adhesion

[1] HDPE LLDPE melt Stick-slip behavior seen in melt Inferred that slip is due to failure of adhesion

between metal-polymer interface

[22] Various polyethylene Critical stress is relatively insensitive

to molecular characteristics. Melt fracture

is strong function of material of

construction of die

Inferred that slip is due to failure of adhesion
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Appendix C (Continued )

Reference Polymer melt Observations Remarks

[67] HDPE through rectangular conduit Measurements by hot film probe Under slip conditions, relation between Nu and

Pe departed from that excepted under no slip

[68] Several PBs Slip phenomenon probed by hot-film

anemometer technique

Lowest molecular wt. PB amongst four different

samples of PB did not show slip while others

showed pressure oscillations and slip

[6] HDPE Slip is observed above critical stress. Slip

velocity depends on L/D ratio

Melt slip is a result of an adhesive failure

occurring at the wall-polymer interface

[69] SBR compound Found a power-law relationship between

wall slip, wall shear stress and geometry

of the flow

Mooney method failed to fit the

experimental data

[70] LLDPE Found a stable window in stick-slip region

with no oscillations and low pressure

and undistorted surface

Mesoscopic transition has been suggested

for such a pressure decrease

[71] Polydimethylsiloxane, polybutadiene

and polyethylene

Slip is observed at a critical stress Slip behavior explained with a model having

static friction stress at wall

[4] PDMS For weak grafting density surface, a

sharp transition between no-slip and slip

condition is seen

Shear induced elongation of adsorbed chains

is responsible for slip

[72] Monodispersed PS The slip velocity is proportional to the shear

rate in the Newtonian flow regime considered

and the proportionality constant is related to

the mol. wt. to the 1.11 � 0.33 power

Various apparent slip models were presented

and were argued to be invalid, thus concluded

that the true slip was present

[10] PE Show a temperature window of least

flow resistance, after which pressure

oscillations are seen

In situ X-ray experiments show existence

of hexagonal phase

[3] HDPE Showed first order transition in flow rate

at a critical shear stress. Also showed

diameter and temperature dependence.

Observed two critical stresses

Infers that chain stretching may be the

right mechanism for slip on unmodified

surfaces and chain desorption is the mechanism

for modified surface

[73] LLDPE Experiments performed using various die

materials, which show different critical

shear rates. In addition, gap dependence

is not seen

The flow curves can be fitted with the

slip theory of Hill et al. [17]

[74] Metallocene LLDPE Critical shear stress (where instability began)

was found to be much less than

conventional values

Infers that slip is dominated by competition

between flow induced chain detachment and

disentanglement of the chains adsorbed at wall
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Appendix C (Continued )

Reference Polymer melt Observations Remarks

[75] Linear and branched PE Extrudate distortion and pressure

oscillations observed

Inferred that these do not arise from slip

but from melt compressibility

[76] Polyethylene Sharkskin effects observed by profilometry,

optical microscopy and observation of

cross section

Resins exhibiting long chain branching and

strain hardening are less sensitive to sharkskin.

An increase in temperature is shown to shift

the onset and the development of the

sharkskin to higher shear rates

[77] PS, LDPE, EVA Observed no slip and pressure oscillations in

bare aluminum dies and observed slip when

wall is coated with fluoropolymer. `b' found

to decrease with stress at higher stress

Absence of slip in Bare Al die is inferred from

Mooney analysis, decrease in `b' is due to

shear thinning
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Appendix D

A. Derivation of Eq. (28) from constitutive equation

The constitutive equation for transient network model is given as

g ��
�
�We ��

r

�
� ÿWe 
�

�

�
ÿ�f ÿ g� �

�
: (A1)

For shear flow we have, v
�
� v
�
�v1�, v1 � v1�x2�,

�
�
� �
�
�r� �

�11 �12 0

�21 �22 0

0 0 �33

0@ 1A and 

�
�
� dv1

dx2

0 1 0

1 0 0

0 0 0

0@ 1A:
Hence, we get

g��22 � ÿf � g; (A2)

g��33 � ÿf � g; (A3)

g��11 ÿ 2We ��12

@v�1
@x�2
� ÿf � g; (A4)

g��12 ÿWe ��22

@v�1
@x�2
� ÿWe

@v�1
@x�2

: (A5)

From Eqs. (2) and (3) it can be seen that ��22 � ��33 � �ÿf � g�=g. Inserting this in Eq. (4) we get

We
@v�1
@x�2
� �

�
11 ÿ ��22

2��12

g; (A6)

which can be written as

@v�1
@x�2
� 
eg

We
: (A7)

Now using Eqs. (5) and (7), we get

��12 � 
e

f

g
: (A8)

Eqs. (7) and (8) give a final set of constitutive equations to be solved.
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