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In the Precambrian Singhbhum Craton of eastern India, newer dolerite dikes occur profusely with
varying outcrop lengths. We have analysed the nature of their length-size and orientation distri-
butions in relation to the theory of fractals. Two orientational sets of dikes (NW–SE and NE–SW)
are present. Both the sets show strongly non-power-law size distributions, as reflected in non-
linear variations in logarithmic space. We analyzed thousands of data, revealing that polynomial
functions with a degree of 3 to 4 are the best representatives of the non-linear variations. Orientation
analysis shows that the degree of dispersions from the mean trend tends to decrease with increasing
dike length. The length-size distributions were studied by simulating fractures in physical models.
Experimental fractures also show a non-power-law distribution, which grossly conforms to those
of the dolerite dikes. This type of complex size distributions results from the combined effects of
nucleation, propagation and coalescence of fractures.

1. Introduction

In recent times the concept of fractal geometry
has been widely used in the analysis of geologi-
cal objects in different scales, from river systems
at map scale to sedimentary pores at micro-scale.
The basic tenet of fractals employed in geologi-
cal studies is mainly concerned with a power-law
distribution of the object properties. For example,
the number of rivers belonging to a certain order
can be shown to vary with their wavelength fol-
lowing a power-law function (Korvin 1992). Such
a distribution implies that the two parameters will
have a linear variation in log space, where the gra-
dient of the linear variation indicates the fractal
dimension.

Fractal analysis has been employed to character-
ize the nature of fracture or fault populations in
many tectonic belts (Walsh et al 1991; Watterson
et al 1996; Jackson and Sanderson 1992; Turcotte
1992; Cowie et al 1993; Clark and Cox 1996;
Wojtal 1996; Yielding et al 1996). Several workers

have analyzed displacements on faults using the
fractal theory, and demonstrated power-law varia-
tions with their length (Marrett and Allemendinger
1991; Cowie and Scholz 1992; Walsh and Watterson
1992; Villemin et al 1995; Clark and Cox 1996;
Knot et al 1996; Gross et al 1997; Poulimenos 2000;
Van Dijk et al 2000; Volland and Kruhl 2004).
Similar analyses have been employed to estimate
various geological parameters, e.g., hydraulic con-
ductivity in jointed rocks (see Korvin 1992 and
references therein). Some field and experimental
studies reveal that fault-size distribution may not
exactly follow a power-law function (Cladouhos
and Marrett 1996; Nicol et al 1996; Basu 1996;
Cello 1997; Klausen 2004), and depending on the
fault growth process, the distributions can switch
over to an exponential law function (Ackermann
et al 2001). Theoretical analyses show that dif-
ferent parameters, e.g., finite net slip in case of
faults or the opening in case of tensile fractures,
are proportional to fracture dimensions. Under-
standably, these fracture-associated parameters are
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Figure 1. Geological map of the southern part of the Singhbhum Craton. (This is based on Map No 73J, Geological Survey
of India). Note the profuse dolerite dikes (dark green) broadly forming two sets, trending NW–SE and NE–SW.
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Figure 2. Dike hosted in metasedimentary rock in Ghatsila,
Singhbhum region. The dike runs diagonally from top left to
bottom right.

likely to show non-power law distributions (e.g.
Gudmundsson 2004; Klausen 2004). In spite of sig-
nificant developments in this subject over a couple
of decades, further studies are needed for a better
understanding of the geological factors controlling
the fractal and non-fractal distribution of fractures
or faults in natural systems.

We studied the geometrical distribution of newer
dolerite dikes of the Precambrian Singhbhum
Craton (figures 1, 2, Mukhopadhyay 2001 and ref-
erences therein). The dikes define broadly two
directional sets, trending NW–SE and NE–SW
(figures 1, 3). Tectonic models demonstrate that
the dikes have been emplaced along planes of
disruption during early to late Proterozoic time
(Dunn 1929; Dunn and Dey 1942; Sarkar 1984;
Saha 1994; Gupta and Basu 2000; Mukhopadhyay
2001), which appear as conjugate shear fractures.
In this paper we analyze the nature of size dis-
tribution of these fracture systems. Dike lengths
were measured from the published map of the
Geological Survey of India (1996). We also con-
sidered their orientations, and analyzed them as
a function of their length. In order to comple-
ment the field data, fractures were simulated in
physical models. The size distributions of both
the field and experimental fractures show system-
atic patterns inconsistent with those of power-law
distributions.

2. Types of fractures

The Singhbhum Craton underwent brittle defor-
mation, developing fractures of varying lengths,
which acted as locales for emplacement of dikes
(∼934Ma; Sarkar and Saha 1962; Mukhopadhyay
2001). In this section we briefly review the differ-
ent types of fractures, in particular those filled by
dolerite dikes. Experimental and field observations
show that brittle deformation of rocks can occur

Figure 3. Rose diagram showing two populations of dikes
(a) NW trending dikes and (b) NE trending dikes. Dark
line indicates the vector mean of each population.

in two principal types: tensile fracturing and shear
fracturing (Jager 1969; Ranalli 1987). In the lat-
ter type, the slip direction may be parallel or per-
pendicular to the tip line of fractures (Atkinson
1987). These are two end-member types, and there
can be fracturing by a combination of extension
and shear, described as extensional shear or hybrid
fracturing (figure 4). There are several physical
factors that govern the mode of fracturing. One
of the important factors is confining pressure. It
has been observed in experiments that increas-
ing pressure generally leads to a transition from
the tensile to the shear mode of failure (Griggs
and Handin 1960; Paterson 1978). There are other
physical factors controlling the nature of fractur-
ing in rocks. For example, in layered systems the
mode of fracturing depends on the thickness ratio
of competent and incompetent layers (Mandal et al
2000).

The orientation of fractures depends essentially
on the principal axes of stress. Tensile fractures
form parallel to the principal compression direction
and perpendicular to the principal tension direc-
tion. On the other hand, shear fractures develop
parallel to the intermediate principal axis of stress,
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Figure 4. Three principal modes of fracturing. (a) Tensile fracturing, (b) Extensional shear fracturing and (c) Shear
fracturing. Dark band is shown as a marker for revealing the nature of displacement across the fractures. This is a sectional
view perpendicular to the intermediate axis of principal stress.

and usually make an angle less than 45◦ with the
principal compression direction (figure 5). Under
tectonic compressive stresses shear fractures gener-
ally develop in conjugate sets. The line of intersec-
tion between the two sets is along the intermediate
stress axis, which is vertical. The overall geome-
try of fracture patterns in the Singhbhum Craton
resembles conjugate shear fractures, and appears
to have developed in response to a horizontal N–S
compressive stress, maintaining the intermediate
stress axis nearly vertical. The fractures show a
wide variation in their strike trace length, rang-
ing a few metres to several kilometres (table 1).
This variation gives an impression of self-similarity
in their pattern. The following sections present an
analysis of their size distributions.

3. Size distribution of dolerite dikes

3.1 Method of analysis

We analyzed the size distribution of dolerite
dikes considering them as one-dimensional objects.
Mandelbrot (1967) had shown for the first time
that objects forming a fractal set follow:

Nn = C
1
rD

n

, (1)

where Nn is the number of objects (i.e., fragments)
with a characteristic linear dimension rn and C is
a constant of proportionality, and D is the frac-
tal dimension (Turcotte 1992). A fractal dimension
may be an integer, which is equivalent to Euclid-
ean dimension. For example, the Euclidean dimen-
sions of a point, a line, a square and a cube are

Figure 5. Geometrical dispositions of tension (a) and
shear (b) fractures in relation to the principal axes of stress.

0, 1, 2 and 3 respectively. On the other hand, the
fractal dimension is not an integer but a fraction
(Turcotte 1992).
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Table 1. Frequency distribution of newer dolerite
dikes in Precambrian Singhbhum Craton.

Length of dikes
(×250 m) No. of dikes

Frequency distribution of NW trending dikes

>0.5–1.5 92

>1.5–2.5 132

>2.5–3.5 58

>3.5–4.5 30

>4.5–5.5 32

>5.5–6.5 22

>6.5–7.5 7

>7.5–8.5 7

>8.5–9.5 3

>9.5–10.5 5

>10.5–11.5 2

>11.5–12.5 3

>12.5–13.5 1

>13.5–14.5 0

>14.5–15.5 2

>15.5–16.5 1

>16.5–18.5 0

>18.5–19.5 2

>19.5–22.5 0

>22.5–23.5 1

>23.5–28.5 0

>28.5–29 1

Frequency distribution of NE trending dikes

>0.5–1.5 138

>1.5–2.5 354

>2.5–3.5 144

>3.5–4.5 88

>4.5–5.5 57

>5.5–6.5 43

>6.5–7.5 23

>7.5–8.5 14

>8.5–9.5 19

>9.5–10.5 17

>10.5–11.5 9

>11.5–12.5 6

>12.5–13.5 8

>13.5–14.5 3

>14.5–15.5 4

>15.5–16.5 2

>16.5–17.5 2

>17.5–18.5 0

>18.5–19.5 2

>19.5–20.5 1

>20.5–21.5 2

>21.5–22.5 1

>22.5–23.5 0

>23.5–24.5 3

>24.5–25.5 1

>25.5–26.5 0

>26.5–27.5 2

Table 1. (Continued).

Length of dikes
(×250 m) No. of dikes

>27.5–32.5 0

>32.5–33.5 1

>33.5–34.5 1

>34.5–35.5 2

>35.5–36.5 1

Equation (1) can also be written in the form:

ln Nn = ln C − D ln rn, (2)

Y = K − DX, (3)

where Y = ln Nn and X = ln rn. Equation (2b)
shows that the number of objects and their length
will have a linear variation when plotted in the
XY space, where X and Y are the log values of
the parameters under consideration. Data with a
power-law variation will thus be characterized by
a linear distribution in the log space.

In our case we deal with dike length (X) and
the number of dikes (Y ) of a characteristic length
as the parameters for our analysis (table 1), and
attempt to reveal if their distributions, appar-
ently self-similar in look, do obey the rule of frac-
tal (equation 1). We used the published map of
GSI (1996) in the scale: 1 cm = 2.5 km (figure 1).
It may be noted that the fractures show traces
on a section nearly perpendicular to the inter-
mediate principal axis of stress and parallel to
the movement direction. This provides us a good
opportunity to deal with actual length of the frac-
tures, showing a strike-slip movement. We consider
the dispositions of dikes shown in the geological
map of GSI reliable, as they have been traced
out based on ground observations. Secondly, the
terrain is mostly granitic, and the ground sur-
face is almost flat (Topographic sheet no. 73/J,
Survey of India), and the outcrop pattern is not
affected by topography. Dikes in the two popula-
tions (NW–SE and NE–SW; figure 3) are mostly
steeply dipping, and therefore the distributions
observed at the present level of erosion are likely to
remain statistically similar with varying sectional
levels.

Dike lengths and orientations were determined
from their traces on the quadrangle geological
map (figure 6). Most of the dikes show reason-
ably straight trajectories (figure 6a). To measure
the length of dikes with minute irregularities, a
straight line was drawn along the mean trend of
the dike, and the length of the dike was mea-
sured along that straight line (figure 6b). Some of
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Figure 6. Measurements of length of dikes with different geometry; (a) straight dikes, (b) dikes with slight geometrical
irregularities. Dashed line shows length along the mean trend and (c) two differently oriented dikes coalescing each other.
In this case their lengths are measured separately.

the dikes show tangled geometry, similar to dislo-
cations observed in defect crystals. They actually
represent coalescence of two dikes of different orien-
tations. We measured their length and orientation
independently (figure 6c). The analyses of the two
populations of dikes are presented in the following
sections.

3.2 NW–SE trending dikes

The NW–SE trending dikes show a wide vari-
ation in their length (table 1). We plotted the
dike lengths and their numbers in the XY space
(figure 7a). The data show a systematic varia-
tion, but their regression follows a trend with a
strong departure from linearity as reflected in the
increase in R2 value with increasing degree of poly-
nomial order (figure 7a–e). The non-linearity in
the XY space indicates that the NW–SE trending
dikes do not follow a fractal distribution, though
they apparently do so in the map (figure 1).
It may be noted that different kinematic para-
meters of fractures, such as opening or slip,
are found to be proportional to their length
dimension (Li 1987; Pollard and Segall 1987;
Vermyli and Scholz 1995; Gudmundsson 2000).
Thus, other geometrical parameters, such as dike
thickness are likely to have similar non-fractal
distributions, as documented from several field
observations (e.g., Gudmundsson 2004; Klausen
2004).

We have analyzed the length-size distribution
considering best-fit polynomial curves of differ-
ent degrees. If a straight line is chosen, data
points show departures on the positive side in
the lower size fraction, whereas negative depar-
tures in the higher size fraction (figures 7a–b).
Increasing the polynomial degree to 2, the best-
fit curve shows a slight curvature with convexity
in the positive direction (figure 7c). However, data
points still show large departures from the over-
all trend (R2 = 0.9182). With further increase in

the polynomial degree to 3, the best-fit curve is
obtained, which shows a reasonably good match
with the data points (R2 = 0.9658; figure 7d). The
geometry of the curve does not change much when
the polynomial degree is increased to 4 (R2 =
0.966; figure 7e). The curve is sigmoidal in shape,
where its flanks show relatively gentle gradients.
It appears from the curve that the distribution in
middle-size range has a tendency to follow a more
or less a straight trend line. Considering this size
range (1 to about 2.5 in the log space; figure 7),
the distribution can be approximated as fractal.
However, the overall distribution does not strictly
follow the power-law.

In summary, NW–SE trending dolerite dikes do
not follow a fractal distribution. In contrast, a poly-
nomial function with a degree of 3 (R2 = 0.9658)
or more is a better approximation for size distri-
bution in the log space.

3.3 NE–SW trending dikes

In the same way we analyzed the size distribu-
tion of NE–SW trending dikes. The dispersion of
data points in the XY space was somewhat more
scattered than the NW–SE trending dikes, though
are confined within a lower and an upper bound
(figure 8a).

Generally, the data points show a strong depar-
ture from a straight line, implying a non-fractal
size distribution (figure 8b). Increasing the poly-
nomial degree to 2, the curve does not fit well
with the data points (figure 8c), as in the previous
case. The polynomial curve shows a strong curva-
ture with the concave side facing up. The degree
of match betters with increasing polynomial order
(figure 8d). For a polynomial degree of 4, a better
match (R2 = 0.7802) is obtained, where the curve
describes typically a sigmoidal shape (figure 8e),
which is similar to that obtained for NW–SE trend-
ing dikes. The flanks of the curves show relatively
gentle gradients.
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Figure 7. (a) Length (X) versus number (Y ) plots in a logarithmic space for NW-trending dikes. (b)–(e) Extrapolation
of the best fitting curve to the data by increasing polynomial degree (P ).

3.4 Interpretation of field data

The size distributions of both NW–SE and NE–SW
trending dolerite dikes are clearly non-fractal in
nature, and show strong departures from the

power-law distributions (cf. Ackermann et al 2001;
Klausen 2004). Let us first inspect the nature of
these departures, and then analyze the non-fractal
distributions in the light of fracture mechanics.
Based on the distribution (polynomial function of
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Figure 8. (a) Length (X) versus number (Y ) plots in a logarithmic space for NE-trending dikes. (b)–(e) Extrapolation
of the best fitting curve to the data by increasing polynomial degree (P ).

degree 3–4), we consider an ideal curve in the
XY space (figure 9), and take a tangent line at
the point of inflection of the polynomial curve.
The size-distribution would follow the tangent
line if the dikes were ideally fractal in their size

distribution. The polynomial curve is deflected
downward from the tangent line for the smaller
size range. This departure implies that the num-
ber of dikes of smaller lengths is less than that
predicted from the power-law distribution. On the
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Figure 9. Idealized curve showing the variation of dike
length and their corresponding number in a log space.
Thin line represents the probable fractal trend of the size
population (the line is drawn tangentially at the point of
inflection).

other end, the curve shows upward deflection from
the tangent line, indicating longer dikes larger in
number than that predicted from the ideal size
distribution.

In order to interpret these departures, we con-
sider the process of fracture development in rocks.
There are three processes involved in the evolution
of fractures:

(1) nucleation of fractures,
(2) propagation of fractures and
(3) coalescence of fractures in the course of their

propagation (figure 10).

These three processes operate simultaneously,
but at different rates in successive stages of brittle
deformation. For example, nucleation of fractures
is likely to dominate at the initial stage, the rate of
which is likely to reduce with progressive deforma-
tion (cf. Ackermann et al 2001), as the nucleation
of fractures will be associated with a stress drop in
their surroundings (Pollard and Segall 1981; Ji et al
1997). On the other hand, coalescence of fractures
will be progressively more active in the course of
brittle deformation.

We now try to extrapolate the conditions devel-
oping fractures with a power-law size distribu-
tion. Consider a system of fractures uniformly
distributed in a physical space. Following the
reverse process of fragmentation, the fractures
can be linked randomly to produce fractures of
increasing lengths. At any moment of progressive
development of the fracture system, the length
size distribution is likely to follow a power-law
size distribution. This distribution is likely to be
perturbed as soon as the effects of nucleation of
new fractures or increases in fracture lengths due
to propagation are added to the system. If the

Figure 10. Successive stages of development of a fracture
system involving three principal processes: (a) nucleation of
fractures, (b) propagation of fractures and (c) coalescence
of fractures.

fractures coalesce and at the same time prop-
agate in length, the resultant lengths of frac-
tures will be larger than these predicted from the
process of coalescence only. This explains the poly-
nomial size distributions with long dikes being
more in number. On the other hand, it is some-
what difficult to explain why fractures of smaller
length are less in number, compared to the power-
law size distribution. We infer that, following
nucleation fractures immediately propagate, and
increase in length. Secondly, nucleation of new
fractures would produce fractures of smaller size,
maintaining the size distribution as expected in
fractal distribution. However, the nucleation rate
of fractures is likely to be reduced with progres-
sive deformation. As a result, at the advanced
stage, frequency of fractures of smaller lengths
remain relatively less than that predicted by the
power-law as also revealed from the field data
(figure 7).
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Table 2. Variation of orientation for the different
length classes of dikes.

Length of dikes Orientation of the
(×250 m) dikes (in degrees)

Length versus orientation of NW–SE

trending dikes

>0.5–1.5 275–360

>1.5–2.5 276–360

>2.5–3.5 280–356

>3.5–4.5 300–359

>4.5–5.5 307–360

>5.5–6.5 290–357

>6.5–7.5 319–360

>7.5–8.5 292–354

>8.5–9.5 326–345

>9.5–10.5 307–357

>10.5–11.5 301–355

>11.5–12.5 321.5–338

>12.5–13.5 355

>13.5–14.5 –

>14.5–15.5 320–338

>15.5–16.5 325

>16.5–18.5 –

>18.5–19.5 316–324

>19.5–22.5 –

>22.5–23.5 335

>23.5–28.5 –

>28.5–29 308

Length versus orientation of NE–SW

trending dikes

>0.5–1.5 2–89

>1.5–2.5 2–82

>2.5–3.5 2–88

>3.5–4.5 2–88

>4.5–5.5 2–84

>5.5–6.5 3–86

>6.5–7.5 7–63

>7.5–8.5 5–45

>8.5–9.5 7–78

>9.5–10.5 6–85

>10.5–11.5 23–47

>11.5–12.5 4–37

>12.5–13.5 4–35

>13.5–14.5 7–36

>14.5–15.5 15–32

>15.5–16.5 3–35

>16.5–17.5 35–38

>17.5–18.5 –

>18.5–19.5 9–35

>19.5–20.5 25

>20.5–21.5 27–39

>21.5–22.5 14

>22.5–23.5 –

>23.5–24.5 30–38

>24.5–25.5 30

Table 2. (Continued).

Length of dikes Orientation of the
(×250 m) dikes (in degrees)

>25.5–26.5 –

>26.5–27.5 34–42

>27.5–32.5 –

>32.5–33.5 40

>33.5–34.5 37.5

>34.5–35.5 29–31

>35.5–36.5 38

4. Analysis of dike orientation

4.1 Approach

The orientations of individual dikes of both NW–
SE and NE–SW trending sets show wide dispersion
from the respective mean orientations (figure 3;
table 2). In this section we analyze the orientation
distribution of dikes as a function of their length.
The orientations of dikes in each set were mea-
sured separately, and analyzed in two steps (fig-
ures 11, 12). First, the geographic orientations and
the lengths of dikes were plotted in a Cartesian
space. Such plots show a systematic variation in
orientation dispersion with increasing dike length
(figures 11, 12). In the second step, the degree of
dispersion from the mean trend of dikes (θt; fig-
ure 3) is taken as a parameter (D). According to
the concept, a parameter associated with fractal
objects can be expressed as:

D = KLn, (4)

where K is a constant and n is the exponent of
power-law distribution. L is the length dimension
of object (dike length in our case). D is taken as a
measure of orientation dispersion, which is defined
in terms of the following equation:

D = |θb − θt|, (5)

where θt is the observed value.
The purpose of our analysis is to investigate if

the orientation dispersion (D) holds a power-law
distribution with dike length (L), as defined in
equation (3).

4.2 NW–SE trending dikes

The orientations of dikes show a wide variation,
encompassing virtually the entire NW quadrant
(figure 11a). However, they tend to attain a per-
sistent orientation with increasing length, which
is also apparent in the geological map (figure 1).
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Figure 11. (a) Plot showing the variation in the orientation of NW trending dikes as a function of their length, (b) represent
their dispersions from the mean trend as function of dike length, and (d) maximum dispersion values (Dmax) as function
of dike length, which is represented in logarithmic space in (c).

The plot suggests that fractures are likely to
be diversely oriented when they are small in
size. Longer fractures develop through coalescence
and propagation. These two processes probably
occur tracking the principal axes of stress, and
thereby lead fractures to orient themselves along
a particular direction, irrespective of their initial
orientations.

Using equation (4) we have determined angu-
lar dispersions (D) for individual dike and plot-
ted them against the length (figure 11b), the plot
shows that the D value decreases systematically
with increasing dike length. We also determined
the maximum orientation dispersions (Dmax) for
different dike lengths, and plotted them against the
length (figure 11c). Dmax varies systematically with
dike length. The value of Dmax decreases system-
atically with dike-length and eventually assumes a
stable value. We then plotted Dmax and dike length
in log–log space to test whether they obey a power-
law distribution (figure 11d). Our plots clearly

reveal that fluctuations in the orientation of dikes
do not follow such a distribution, as reflected from
the strong non-linearity in the variation. Follow-
ing the method described in section 3.2, it appears
that a polynomial function of degree 3 fits better
with the distribution.

4.3 NE–SW trending dikes

Dikes in this population also show similar varia-
tions in their orientations (figure 12a). Data disper-
sion is large for smaller dike lengths. Dikes tend to
attend a stable orientation with increasing length.
Dispersion in dike orientations was analyzed using
equation (4) and plotted against dike length and
the plot shows the same pattern as the plot for
NW–SE trending dikes (figure 12b). We have also
determined maximum dispersion (Dmax) and plot-
ted them against the length which also shows a
systematic variation (figure 12c). The log–log plot
of Dmax versus dike-length variation is evidently
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Figure 12. (a) Orientation distribution of NE trending dikes as a function of their length, (b) orientation dispersions of
dikes with varying lengths, and (c) maximum dispersions values (Dmax) as a function of length, which is represented in
logarithmic space in (d).

non-linear, implying that the orientation dispersion
of dikes does not follow a power-law function of
their length (figure 12d). The nature of orientation
distribution of NE–SW trending dikes is, however,
grossly similar to that of NW–SE trending dikes.

5. Fracture-size population in
physical models

5.1 Experimental approach

We simulated fractures in test models (cf. Mandal
et al 1994). Experimental fractures were tensile in
nature, instead of shear fractures discussed in the
previous section. However, both tensile and shear
fractures evolve in the same fashion, i.e., involving
three principal processes: nucleation, propagation
and coalescence, as discussed earlier. Experiments
were performed by resting a brittle layer of plaster-
of-paris on a viscous (pitch) block (figure 13).

Brittle layer was developed in the following man-
ner. A plastic sheet was placed on the pitch block.
The plastic sheet had a rectangular blank area. Liq-
uid plaster-of-paris was poured in the blank area
in the form of a thin layer. The layer was allowed
to dry for about 5 minutes. The plastic sheet was
pulled out when the layer became somewhat dry.
The tensile strength of the layer was measured to
be 18.5× 103 Pa. At this stage the pitch block was
allowed to flow in horizontal direction under its
own weight. The flow in the other horizontal direc-
tion was arrested by two glass plates. The viscous
flow of pitch developed traction and thereby ten-
sile stresses in the overlying layer. The entire setup
was placed on glass plates, where the interfaces of
all the glass plates, including the lateral and basal
ones, were lubricated with liquid soap to minimize
friction to flow in the pitch block.

The brittle layer underwent fracturing when
the tensile stresses reached the tensile strength
of plaster-of-paris. Successive stages of fracturing
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Figure 13. Experimental setup for simulation fractures in a brittle layer (plaster of paris). Arrows indicate the direction
bulk flow in the model. (a) Initial model and (b) deformed model.

were photographed (figure 14). An analysis of
experimental data is presented in the next section.

5.2 Fracture-size distribution

Following the method described in section 4, we
plotted the number of fractures and their corres-
ponding lengths in log space (figure 15a). The dis-
tribution was analyzed by increasing the order of
polynomial function, as exercised for the dolerite
dikes. Considering a straight line in the plot (fig-
ure 15b), it is revealed that the fracture-size distri-
bution shows marked departures from a linear one,
implying that the experimental fractures do not
obey a fractal distribution. This type of non-fractal
size distribution is consistent with that of newer
dolerite dikes. By increasing the degree of polyno-
mial, a better match is obtained as revealed from
increasing R2 values (figure 15). The data curve
is gently convex up, which resembles that shown
by the NW–SE trending dikes (figure 15c). How-
ever, there are still large departures of the data
points from the curve of polynomial degree 2 (R2 =
0.5936). The departures are minimized when the
degree is increased to 3 (R2 = 0.6276) (figure 15d).
The distribution is represented by a curve of sig-
moidal shape, which is also evident in the distri-
bution of natural fracture systems (figure 7d).

We studied the different processes in the evo-
lution of experimental fractures, which are illus-
trated in figure 16. At the initial stage a large

number of cracks nucleated in the brittle layer.
These cracks propagated as well as opened out
and thereby produced fractures with lenticular
shapes. At this stage further extension in the brit-
tle layer produced new cracks, and earlier fractures
propagated in length. Finally, coalescence of frac-
tures became important. Our experimental results
clearly reveal that fracture-size distributions are
not likely to follow a power-law one, as the devel-
opment of macro-scale fractures involve a combi-
nation of three processes: nucleation, propagation
and coalescence.

6. Discussion

In Earth sciences a trend which looks into vari-
ous geological systems in the light of fractal theory
has been set over the last decade. A line of such
work is concerned with understanding the nature
of fracture populations and associated parameters,
e.g., displacements. Power-law size distribution is
a common type, where the number of faults varies
linearly with the corresponding size in a log–log
plot. However, several workers have reported non-
linear distributions. There have not been many
theoretical and experimental attempts for explain-
ing the origin of non-fractal distributions. Based
on our field observations and experimental find-
ings, it seems that the fracture-size distribution
is essentially controlled by the mode of fracture
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Figure 14. Successive stages of fracturing in a brittle layer
under bulk extension (vertical direction).

growth (cf. Cladouhos and Marrett 1996). Most of
the natural fracture populations involve the three
processes of nucleation, propagation and coales-
cence of fractures. A population is likely to show
non-power-law size distributions as these processes
operate at varying rates. In order to quantify the
size distribution of an evolving fracture population
it is therefore necessary to understand the relative
rates of the three processes, and how they can vary
with time, giving a combined effect in the final size
distribution.

Newer dolerite dikes in the Singhbhum Craton
show non-linear distributions in log–log plots,
which have not been reported earlier. The non-
linearity is defined by polynomial functions with
degrees 3 to 4, which also conform to that of exper-
imental fractures. Non-power law distributions of
fracture dimensions have been documented by sev-
eral workers (Yielding et al 1996; Ackermann et al
2001; Gudmundsson 2004; Klausen 2004). It has
been proposed that this kind of distribution may
be a result of varying data resolutions or obser-
vational limitations (e.g., Yielding et al 1996). We
performed physical experiments to address this
issue, and noticed that the experimental fracture
systems also showed a strong departure from a
power-law distribution. The finding leads us to sug-
gest that a fracture population can show a non-
power law distribution even in an ideal situation.
There are other probable factors, e.g., incomplete-
ness in dike outcrops, which may have influenced
the length distributions of the dike populations. To
analyze this, consider a set of lines as an example.
The lines are partially erased in a random fash-
ion, which basically simulates a kind of fragmen-
tation process. At any stage of this operation, line
segments of varying lengths would tend to follow
a power-law distribution (Turcotte 1992). Based
on this point as well as experimental findings, we
suggest that incompleteness in outcrop does not
seem to be a crucial factor in dictating the distri-
bution to follow a non-power law, as also suggested
by others (Klausen 2004). An alternative model is
thus presented to explain this type of size distri-
bution qualitatively in terms of the three processes:
nucleation, propagation and coalescence of frac-
tures. However, the model describes schematically
the mode of progressive evolution of a fracture sys-
tem, and the approach is somewhat simplistic in
nature. Evidently, the study needs to be strength-
ened with quantitative models, considering tem-
poral variations of the relative rates of the three
processes and additional complex processes, like
mutual interaction of fractures due to their spatial
proximity. Such modelling would provide a better
understanding of the evolution of a fracture popu-
lation and its size distributions in space and time.

Several workers have considered cumulative fre-
quency in the analysis of fault or fracture length
distributions (e.g., Cladouhos and Marrett 1996;
Knott et al 1996). Such a cumulative frequency
analysis of newer dolerite dikes also shows a non-
power-law distribution. However, we have prefered
size-class frequency (cf. Turcotte 1992; Barnsley
1993) in order to understand the nature of concen-
tration of dikes of different lengths in the system,
and their characteristic departures from a fractal
trend, as shown in figure 6. In this approach it has
been possible to recognize that dikes of the smallest
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Figure 15. Analysis of fracture population in the physical model. (a) Plot (logarithmic) of fracture lengths versus their
corresponding numbers. (b)–(d) Extrapolation of the best fitting curve to the data by increasing polynomial degree (P ).

and largest sizes show departures from a probable
fractal trend.

Geochronological studies reveal that the newer
dolerite dikes were emplaced in the Singhbhum
Craton over a broad time span, K–Ar dates for the
dikes range from 923 Ma to 2144 Ma (Mukhopad-
hyay 2001). Their present topology is evidently a
result of the progressive history of fracturing, as
observed in physical model experiments. To ana-
lyze a fracture population we primarily need to
know whether fractures forming the population
belong to a system, and developed in the same
stress field. They may form in the system sequen-
tially at different stages, and show different ages in
geological time scale. It appears from the consistent
geometrical dispositions that dikes in the Singh-
bhum Craton have evolved in the same tectonic
stress field.

Natural fracture systems have been studied in
physical experiments. Both natural and experimen-
tal fractures show grossly similar size-distributions
in log space, which are characterized by a polyno-
mial function with degrees higher than 2. However,
further experiments are required to test whether
shear fractures in experimental conditions exhibit
similar distributions. It may be noted that large-
scale failure by shear fracturing generally follows
the Coulomb–Navier criterion. On the other hand,

extensional fractures that we simulated in brittle
layers have probably developed following Griffith’s
failure criterion. Experiments are thus required
to verify whether the size distribution of a frac-
ture population can be dependent on the failure
criterion.

In this study we have described newer dolerite
dikes of the Singhbhum Craton as bodies emplaced
along shear fractures. The prime focus of our analy-
sis, however, is not concerned with the mechan-
ics of dike emplacement, which can take place
in different ways, e.g., hydrofracturing, faulting
and tensile fracturing (Anderson 1936; Pollard
1973; Spence and Turcotte 1985; Pollard and
Segall 1987; Gudmundsson 1990; Parker et al 1990;
Gautneb and Gudmundsson 1992; Gudmundsson
1995; Fialko and Rubin 1999; Gudmundsson 2002).
The bases of designating the dikes as shear frac-
tures are as follows:

• They occur in two distinct conjugate sets on
varying scales, as commonly observed in case of
shear fractures produced under triaxial tests of
brittle materials.

• The two sets broadly show a similar spectrum of
geological age.

• The conjugate orientations are consistent with
an overall N–S tectonic compression in the
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Figure 16. A schematic sketch demonstrating nucleation of
fractures and their subsequent propagation and coalescence
in the course of model deformation.

craton. Individual dikes often run for tens of
kilometres, implying a large-scale failure in the
system. It is a well-established fact that the
uppermost crust on a large scale behaves essen-
tially like a Coulomb material, and fails through
shear fractures following Coulomb–Navier cri-
terion. This is the reason why scaled experi-
ments on large-scale faults are performed using
Coulomb materials, such as non-cohesive sand
(McClay and Ellis 1987).

• Most of the dikes are nearly vertical, and contain
slickensides, implying shearing movement along
them.

• These are similar to many Proterozoic dike
swarms of fault origin (Windley 1982).

Our analysis considers the outcrop traces of dikes
as one-dimensional object, and analyzes the dis-
tribution of their length dimensions without any
connotation to their spatial density. It has been
possible to follow this method, as the dikes describe
simple, linear geometry, and do not show much
irregularity in their trajectories, as often observed
in many natural features, like dendritic streams
or coastlines. Evidently, alternative methods would
be required to handle such complex geometrical
systems. For example, one can employ a method
like the Box-counting method. The basic opera-
tion in this method involves overlaying a grid of
square boxes over the object under consideration,
and counting the number of boxes (Nn) as a func-
tion of their size (rn). It can be shown that a sys-
tem containing objects with fractal distributions
will have a linear relation between Nn and rn in
log–log plot. However, special computer software is
required in order to employ such a method.

7. Conclusions

The principal outcomes of our analysis are as
follows.

• Newer dolerite dikes of the Singhbhum Craton
grossly show a non-power-law size distribution.

• NW–SE (n = 401) and NE–SW (n = 948) trend-
ing dikes have more or less similar size dis-
tribution patterns, which are characterized by
a non-linear variation in the log space. Sig-
moidal curves representing the variation are
typical, which is also observed in physical
experiments.

• A polynomial function with degree 3–4 fits with
the non-linear variation.

• Complex fracture-size distributions result due
to the nature of fracture development, which
involve three processes: nucleation, propagation
and coalescence at varying relative rates in the
course of evolution of a fracture population.

• The overall two sets of dikes in the Singhbhum
Craton show dispersions from the mean trend
in their orientation, which tend to reduce with
increasing length. The angular deviations from
the mean orientation show an inverse relation
with dike length, and the relation is found
to be non-linear in both arithmetic and log
space.
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