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Abstract. A non-perturbative theory is proposed in this article in which an energy
independent effective Hamiltonian is obtained for open-shell systems. We have
given a diagrammatic version of theory to facilitate the analysis of the problem.
The theory has been applied to a model 4-= electron problem, for calculating the
lowest =-n* singlet and triplet energy levels of transbutadiene. Comparison
with full Cl calculation indicates the excellent workability of the theory.
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1. Introduction

The usual procedure for the determination of accurate wavefunctions of finite
many electron systems is the method of superposition of determinants. It is
well known that by adding more and more determinants one may eventually
converge to the true energy. The earliest method for determining the combination
coefficients of the determinants uses the Rifz variation principle, and this is
known as the configuration-interaction (CI) procedure. Anothér method is to
choose a suitable model Hamiltonian and use its eigenfunctions as a basis in a
perturbation calculation. In both of these methods one starts out with a limited
number of determinants comprising a * reference ” function, and builds up more
and more accurate functions by bringing in the effects of more determinants.

It has become customary to classify the many-electron systems into two broad
“categories depending on the minimum number of determinants in the reference
function that may adequately reflect the symmetry of the system. Systems with
a single determinant as the reference function are called “ closed shell” systems;
similarly, systems for which a multi-determinant reference function is necessary
are termed ° open-shell” systems. The relevant perturbation techniques for
these two classes of problems are rather different. A field theoretic version of
perturbation theory for the closed shell case was first given by Goldstone (1957).
The linked cluster nature of this theory and the use of a diagrammatic representa-
tion of the perturbation series simplified the calculation. A straightforward
use of this treatment to open-shell cases, however, leads to divergence difficulties,
as some of the energy denominators become zero. Recently these difficulties
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have been removed by Brandow and others (Brandow 1967; Oberlechher et al.
1970; Johnson et al. 1971 ; Kuo et al. 1971) who have been able to formulate a
linked cluster perturbation series appropriate for the open-shell case.

In the present paper we envisage another type of approach, neither variational
nor perturbational, in which the -wavefunction is written as an Ursell-type
expansion about the reference function (Cizek 1966). The reference function, will
be taken to be multi-determinantal, so that the method is applicable to open-
shell systems. The theory naturally goes over to the closed shell case when the
reference function consists of only a single determinant, and this has been developed
earlier by Cizek (Cizek 1966).

The outstanding merit of this kind of approach is that there are no energy
denominators in the theory. Moreover, any specific N-body correlation effect
can be isolated clearly, unlike the case in perturbation theory. In the following
sections we give the derivation of this theory and show how it can be given a dia-
grammatic representation. Finally, the workability of this theory is described
through a pilot numerical calculation in a 4 m-electron problem, transbutadiene.

2. Theory

2.1 General considerations

We want to build up our reference functions from a set of M linearly independent
determinants ¢;, which may be said to span a “ model space”. We thus have
M distinct reference functions ¢§, which may be written as

o = > Cy $ €Y

Our object is to define an operator 7, which acting on ¥¢ s gencrates all the
“ excited ’ determinants that enter the description of the problem. We now
take that the exact wave functions * of the M energy levels of the system may be
written. as :

Pt = eT yp )
The Schrodinger equation then gives

Hy* = EF g | G a)
or,

HeT yf = E* o7 4 3 b)
If we can find an operator U such that
i He" =eT U
then

HeT J = e Uk = E* eT i (4)

-so that eqs (4) reduces to
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Uy = E5fy 5a

or
U S Cib = E*IC 4, | (55)

- The operator U obviously involves T, whose explicit construction has been dealt
with in section 2.2.

Taking the scalar product of eq. (5 ) with any N particle determinant gﬁ, lymg
outside the model space, we have

Zicik<¢'l(Ul¢i>=0 for all L - (6)

Here we assume that each ¢, or ¢; is an antisymmetrized product of a selection
of N spin-orbitals chosen from a complete set of orthonormal smgle—partlcle
functions.

As mentioned before, in many atomic and molecular systems of interest,.the

reference functions #} is multi-determinant as a consequence of symmetry. For
example, with a spin-independent Hamiltonian, it is often necessary to combine
a number of determinants to make ¥{s eigenfunctions of S2 and S, If the
total number of spin-eigenfunstions for the problem be equal to the dimension of
the model space, then we may say that the problem is symmetry-degenerate.
In this case, the combining coefficients Ci for the components ¢, in the reference
functions ¢ for the various spin eigenstates are determined entirely by the spin-
coupling scheme. The coefficients Cf form an orthonormal, and therefere lineally
independent set.

Hence, for the symmetry degenerate open shell case, we may replace eq. (6) by
the simpler relation

(| U|ds)=0 for each / and i. " %)

These equations are coupled simultaneous equations in the matrix elements
of T appearing in U, by solving which T may be determined. Taking now the
scalar product of eq. (55 ) with the functions ¢; of the model space, we have h

(4| U|$)CE—E*C}  for cach ¢,

In matrix notation, this méy be written as
UC = CE | (8)

Putting in the matrix elements of T found from eq. (7) in eq. (8), we may find
out the set of exact energies by solving the eigenvalue relation (8). Eq. (8) signi-
fies that a single operator U generates the M exact energies E® acting entirely within
the model space. The operator U may thus be looked upon as a state independent
effective Hamiltonian. In older perturbative developments of the open sheil .
problems (Bloch and Horowitz 1958), one encounters effective Hamiltonians which
depend parametrically on E%, and thus may be called * state dependent”. The
later perturbative developments, however, do not share this shortcoming,.and
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in this sense our non-perturbative development is at least at par with these later
theories. In many body language this state independence of E* is often referred

to as “energy independence”. As we shall show in the following sections, U
may be constructed so as to consist of linked terms only.

In the general open shell case, the coefficients Cf are not symmetry determined,
and u possible method of handling this case is discussed in section 4.

2.2 Construction of U

Let us first classify the single parficle orbitals from which the determinants ¢

and 95: are built. The orbitals which appear in all the ¢,’s of the model space will

be called holc orbitals and will be labelled as «, 8, ..., etc. The orbitals that
are not present in any ¢; will be called particle orbitals and will be indicated by
Ps Q5. .-y etc. The remaining orbitals which appear in some ¢,’s but not in all
of them at a time will be called valence orbitals, and will be denoted by the letters
P, g, ..., etc. An unspecified orbital will be labelled by the lettets 4, B,..., etc.

The Hamiltonian for the system may be written in occupation number represen-
tation (Schweber 1961) as

H= 3 (4|h | BYX] X+

tam ), (ABlelCDLX] X} XX, ©)

A,B,C,D
where X and X are the creation and destruction operators for the states 4 and

(13 2

B respectively. The suffix “a” indicates an antisymmetrized matrix element
(Cizek 1969). We may also express each function ¢; as

¢, = Q'10) | (10 0)

where ©! is an appropriate product of valence creation operators acting upon
the ¢ core ” part consisting only of the occupied hole states. We use the convention
of taking the core part as the vacuum, and designate it as | 0 ).

With respect to this vacuum, we may write eq. (9) in normal order (Cizek 1966)
as

H=(0|H|0) +A,>;<A|le>N[X§ Xz +

+ o ). (4Blg|CD) NIX] X} XX,
A,B8,C,D
=(0[H[0)+F+V 11
with
(A|/1B)=(A|h]|B)-+ X (dalg]|Ba), (12)

We now make the canonical transformations
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Y;‘:Xa} {y,;:X;, Y, =X
v = xib vioxib et 13)
so that
Y,]0)=0, for any A. (14)

Equation (11) may be written down entirely in terms of the Y-operators. It is
not necessary, however, to give here the transformed expression.
We now define 7" [eq. (2)] to be a sum of 1, 2,..., N body operators

T = pz* T, (15 a)
where 7, is of the form
T, ,)2Z< PG w2, TS o),
yiyioooviviviyl .o o yiyr.oo] (15 b)

We place the restrictions that (@) the value taken up by any label on the right
of a matrix element must not coincide with any on the left, and (b) the matrix
elements which cause scattering only within the model space are to be excluded.
The suffix a once again indicates an antisymmetrized matrix element. It can be

easily checked that this form for 7 generates all the configurations ¢; lying out-

side the model space.

Featurewise, the operators F, V¥ and T have one property in common, namely,
each of them is a sum containing products of even number of creation and destruc-
tion operators in normal order. For convenience, we shall refer to such operators
as “ objects ”’. Consider the product of any two objects A and 2. Using Wick’s

theorem, we may write

= (A2), + 42 (16 a)
where (ARQ), is the collection of all terms in normal order containing no contrac-

tions, and AQ is the collection of all terms containing at least one contraction
(Schweber 1961) or more. We call ™ to be the pairing symbol. Thus a paired

set of objects AQ represents a collection of many contracted terms, and one must

not confuse it with a single contracted term. Making a similar expansion for

!271, we have,

= (R4), + 24 (16 b)
Evidently (A40), = (24), and hence
AQ = QA+ AQ — Q4 . (16 ¢)

or, for two objects I' and T, where I' is either F or V,
I'T =TT + I'T — 1T (17)
We then have, using eq. (17),
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I =T+ IT—THT |
— T2+ TIT — TIT + TIT + I'T — 11T
— TFF — FFT + 17T
— T4 27 (FT — 1T + FTT — (ITT + T'IL"_I-’T)
+ (IFh) 19)

Let'us now introduce the idea of a linked term: Suppose we are given a product
of k; number of T operators to the left of I" and k, number of 7 operators on the
right of it,

Tk I'Tks

By a linked term (7% I'T*%s), We mean the sum of all terms generated from this
product by pairing I' with a T on its immediate right or left first, then the paired
object I'T or TT with another T to its immediate right or left, and so on for all
objects T, without skipping any intermediate 7" in the process. For example,

(I'T),=IT; (T, =TT
ey [yl
(°'T?, = FTT; (T, = TTT

=
(TT'T), = TFT + TPT, etc.

The total number of paired terms in a linked term (77 I'T%s), is (ky + ko) ! [k, ! k!
We may now write eq. (18) in the condensed notation

T = Z (i) T+ Z (— 1)k (T I'TH), (19)

k=0
kybka=k

We now assume the validity of this form for I'T™", i.e. we write

n

T = Z (Z) -t Z (— 1) (T T'T%), (20)

k=0 Ky ¥o2
kitko=%

and show that this indeed is the correct choice. We proceed by the method of
induction. Each linked term is also an object, and from their definition we
have the basic recursion relations,

—— 1

= —=
(T% I'T%), = T (T2 I'T#), + (T8 I'TY, T (21 a)

for k, or ky, >0,
and

(). =T | (21 )
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for k, =k, =0.

A linked term vanishes for negative powers of T on either side of I. It then
follows that

[ —— ,_,:“j

5 (= D[ T@HITS, + TAIT), T = I (= Ds (05 ITH),

H

1, k2 k1, ka
kitka=k kEytRe=k+41
(22)
We then have
T = {Z (3) Z (= D (7% r:rk),}
k=0
kx'l”kz"'k '
k=0 k1, kg
kqtko=k
X | ——
+ Z: (k) Tn-* Z (— D} [(T" I’T")L T(T" I'T%) ]
k=0
kyhan
= Z (") - Z: (— 1)% (T% I'T%),
k=0 ka2
k1+i'g=k
v Z(k) Tr Z (— 1) (7% TT*), (23 a)
=0
kr;l—kz=k+1
Putting &' =k 4 1 in the second term and using the relations
n-+4+1 ( n _ n ): 0
()+G2)=C%): GE)-(1)=0
we may now combine the two terms, and have
ntl
[t — Z (” ‘]\t 1) e Z (— D) (75 I T%), (23 b)
k=0 :

Tt ank
Since relation (20) is valid for » =1 and 2 and n + 1 it is also valid for all ».
We then have

Z’e"=§jl"}%
- Zn,Z( )7 ) (- aasI T,

n=0 k=0 %y, ka
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Sy - 1 ke, (T b
= — — ‘1 1 .[' T )L
Z Ao LR ) 24 a)
n=0 k=0 ke, k2
Eitka=k
. 1
Since = 0 for n <k, we have
Ier —er Z ;711 Z (— 1) (T ' T%), (24 b)
k=0 Ty, k2
kit ko=k
Taking
'=s(H)+F+V,
we have
HeT = ¢eT U, (25 a)
where
o¢
]
U=Z i Z (— D (Th ((H) + F+ V) TY), (25 b)
=0 %1, k2
kytlene=ke

Thus U consists of a sum of linked terms, and eq. (25 b) gives the factors accom-
panying each of them for each pair of values k; and k,. Since each 7T'is a sum of
T,’s, and since I'= (H) + F + V every linked term in eq. (25 b) may be broken
up into its components in terms of all possible selections of T, and any of F, V
or {H). We may represent the operators T, as in figure 1, where we use the Hugen-

p*
p¥ 5
Do
o
(a) (b)
Q* Q* q*
p* p* 5
8 u
U
o o
p¥
(c) (d) (e)

Figure 1. All possible shapes of 7; (2 and b) and T (¢, d and €) operators. A
eircle around an arrow indicates that the line can take up both valence and particle
lables. We indicate this by putting a star on the lable.
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holtz convention for drawing the particle and hole lines (Hugenholtz 1957). The
valence lines are treated in the same way as particle lines, they being distinguished
by the placement of a double arrow on a line. The F and V operators may be
represented by analogous diagrams, with vertices represented by open circles. A
linked term like (7% I'T*), will then give rise to a number of linked diagrams
containing a string of k; T,-vertices to the left of an F or a V vertex, and k, T,-
vertices to the right, they being paired with each other in all possible ways consis-
tent with the pairing sequences present in the linked term. In this manner one
can give a diagrammatic representation of U to any order of approximation
desired. We may call the diagrams representing the operator U to be the
U-diagrams. .

The structure of the U-diagrams simplify considerably when we consider the
closed-shell case. Here we have no valence lines in a diagram, and thus there
are no T,-vertices with lines to the right. Moreover, we cannot now join any
T,-vertex directly with another T,-vertex, nor can we have a T,-vertex connected
to the left of a F or V vertex. The U diagrams then reduce to the same set of
diagrams as obtained earlier by Cizek in his discussion of the closed-shell theory
(Cizek 1966, 1969).

We may now proceed to calculate the matrix elements (¢, | U ¢,y and (¢, | U | 4,)

appearing in eqs (8) and (7). Each of the ¢,’s and $7’s may be written as

4=l 10) (10 2)
¢; = A5 10) (10 B)

where 2! and A} are appropriate sets of creation operators. If. we consider

only the distinct determinental states ¢, and ¢: that may be built out of our starting
set of single-particle orbitals, then in each of the representations (10) for these
determinants the creation operators appear in a certain fixed order, which we
call the *‘standard™ order. In actual applications using the states ¢, and ¢,* we
shall always have in mind this particular order of creation operators.

In any matrix element like (qﬁf | U ¢, ), only those U-diagrams contribute which
cause a scattering from the group of single particle states present in ¢, to those in

qﬁ\:. If we compare the array of single particle labels in Qf with the array of labels
in A}, then we may find some common valence labels, say ¢ in number. The
remaining labels in @} and 4] are all distinct from one another. The most
elementary kind of U-diagrams connecting ¢, and #; will be those which cause

scattering only between the distinct single particle states present in 2] and A].
Next we have U-diagrams, which apart from causing scattering between the
distinct single particle states, cause scattering from a single valence state in Qj
to another valence state in /4] having the same label. We may then say that the
U-diagrams concerned cause a ‘‘ passive ’ valence-valence scattering. Continuing
in this manner we have groups of U-diagrams which cause one, two ..., up to
a maximum of g passive valence-valence scattering, over a background of scattering

processes between the distinct single particle states in ¢&; and b, .
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Each collection of U-diagrams, having a common disposition of the external
lines, may be represented by what may be called a G-block (figure 2). In a G-
block, corresponding to every U-diagram there may be other diagrams giving the
same contribution. These are the diagrams which may be brought into coinci-
dence with one another by suitable topological deformations. It suffices, there-
fore, to take only the topologically inequivalent diagrams in a G-block, and
multiply the contribution of each by a suitable factor called the “ weight ”” which
is just the number of diagrams topologically equivalent to a given diagram. To

obtain the contribution of a G-block to (¢, | U |4;), we must calculate the
contribution of each topologically inequivalent U-diagram separately. To do this,
we proceed systematically in the following manner. First we mark the operators

72

Figure 2. All possible G-blocks for the 4=
clectron system, transbutadiene.
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appearing in each of Q] and 4] by the numbers 1, 2, ... sequentially from left
to right. We now place the labels of the creation operators present in £! on
the ingoing lines of the U-diagram in a manner compatible with the geometrical
orientation and the arrow placings of the lines, and also put the markings along-
side the labels. In this process, of course, all the labels present in £{ may not
be required. In a similar manner we put the labels and the markings corresponding
to the operators in 4] such that the ingoing line marked by a particular number
traverses a continuous path within the diagram and goes out along a line with
the same number. The whole length of such a line is marked by the same number
marking its external segments. The remaining internal lines from closed loops
in the sense that if one starts out from a vertex, one returns to it via some con-
tinuous path. Each loop again, is characterized by a certain number.*

We now evaluate the contribution of a U-diagram by using the following set
of rules.

(i) Assign the weight w of a diagram.

(i) Assign the factor 1/k!, where & is the number of T,-vertices present,
and the factors 1/(p!)? for each T,. If a P-vertex be present, then also
include the factor 1/(21)%

(ili) Assign the factor (— 1)"*% where / is the number of loops, A the number
of hole lines, and k; is the number of T)-vertices appearing on the left
of the F or V vertex.

(iv) Label the internal lines appropriately, and write down the matrix
elements for the scatterings at each vertex. Now sum over all internal
lines.

(v) Let us call the quantity obtained by using rules (i)-(iv) as ¢. If the

U-diagram has n, outgoing particle and valence lines, 7, ingoing hole
lines and #, ingoing valence lines, then ¢ is a function of these variables

C=C(py .. Puss -+ sl PuyPae-- Dua)-
The total contribution of the U-diagram to the matrix element is then given
by the formula
APy Pui @ees Oy Pro By =2 (D" Plp...py,)
X Pay ... a,) P o D) €(Pr e Pays Gy el Gags Pree Dagy
where P’s are the permutations for the labels indicated, and e (ny, ny ) is the

parity for the whole permutation. The summation runs over all permutations,

‘the parity of the identity permutation being unity.
Hence the contribution of a G-block to the matrix element is the sum of all

such d’s, and will be denoted by D. In this manner the contribution of every G-
block to the matrix element (¢; | U| ¢, ) is found. The evaluation of the matrix
elements (¢, | U |4, ) is made in the same way.

3. Application to a 4- electron problem: transbutadiene
To test the applicability of the non-perturbative open-shell theory (NPOST)

* For an algorithm to calculate the weight of a diagram, see our forthcoming paper (Mukherjee
et al.; to be published),
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described in the preceding section, we have made an application to a 4-m electron
problem, transbutadiene, using the PPP parametrisation (Parr 1964). Our object
is to calculate the energies of the lowest m-m* singlet and triplet states of this mole-
cule. These energies are then compared with the model exact answer by carrying
out a full CI calculation in the chosen basis. We use two sets of orbitals, one
obtained by diagonalizing the core Hamiltonian f; and the other by carrying out
a SCF calculation for the ground state.
The two components of the model space for this problem are

¢y = o [1123] (26)
¢, = A [1132]

so that the reference singlet and triplet functions are given by

P — \/2{04|1123|+u&|1132 }

7 w/2 {A 1123 | — A | 1132} 27

This is a symmetry determined case and the coeficients for ¥§ and ¥, are
+ 1/V2. The vacuum state is given by

|0) = A[lT] | (28)

1 and 1 are therefore hole orbitals. There are a total of 8 spin-orbitals in this

problem, built out of 8 spin-AO’s. The orbitals 2, 2, 3 and 3 are the valence

orbitals and 4 and 4, which do not appear in the ¢;s are the particle orbitals.
The orbitals 1, 2, 3, 4 are numbered in order of increasing energies.

In this calculation we have confined ourselves to the linear approximation in
U. Thus U is approximated as

=Q|H|O+F+V+FD A VD) — (TF),— (TV), (29)

4
For the present 4-electron problem 7= }' T,. We have listed all the non-
p=]

vanishing matrix elements of #, up to p =4 in table 1. All U-diagrams containing
a single T,-vertex may be classified into G-blocks, which are displayed in
figure 2. As an example, we have reproduced all the topologically inequivalent
diagrams belonging to block G in figure 3. Equations (7) in this case become
the following set of 14 simultaneous equations.

CLASS I: Scattering of the type o —p*

D, (3;1) +_ Z; Dy (3,v; 15”_)‘1“-07(3’ 2,3;1;2,3)=0 (304) .
v=2,
CLASS II: Scattering of the type @ — p*
Dy (4;2) + Dy (47§§27 3)20 _ (30 b)

%
CLASS II: Scattering of the typeg} - {fj «

Dy(4,2;1, )+ X ” 5 Di(4,2,3;1,1;d) + D (4,72,2,3;11;2,3) = 0
u=
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’ Tgble.l. The T-matrix elements for the #-»* singlet and triplet states of trans-
butadiene
No. Matrix element Value
HF* orbitals Core diagonal

orbifals
1. @lul=3ulD 0-01450 0-1690
2. @ll2y=lnl2 0-0145 —0-0294
3. @261, =416[1D, 0-0161 —0-0281
4. (44| 1:|17), —0-0475 —0-0464
5. (24 113]13) = (24| 12| 13), 0-2772 0-2718
6. (42 |13]13)g = (24|22 |31 0-1746 0-1749
7. (34 |1,]23), = (43 | £2]32), 0-0832 0-0908
8. (3411 112) = (3411112, 0-0225 0-0185
9, (32 |ty|21) =23 |22112) 0-0909 —0-0788
10. (44|12 ]13), = (44 ] 22| 31), —0-0161 —0-0010
11. (34| 1:123), = (43 | 12| 32)4 —0°:0909 0-0897
12. (334 |1, | 113), = (243 | £, | 131), —00291 0-0214
13. (424 |t;| 213), = (244 | 15| 132), —0-0291 0-0181
14. (3434 |1, 1213y, = (2434 | 1,1 1312), —0-0015 —0-0016

* HF stands for Hartree-Fock.

Dy (473"71; I)TUZ)JFDS 4, 4, 27§§ 11;2)3-3):0

=2,3
(30 d)
a p*
CLASS IV: Scattering of the type 11} - {q*
D, 2;1;3) + D, G 2,2;1;3,2)=0 (30 €)
D4(42 1; 3)+D7(422 1;3,2)=0 (30f)
D,@&3;1;2)+D: 33,3, 1;2,3)=0 (30 g)
D,(4,3; 1'2)+D7(43§ 1; 2§)=0 (30 /)
D4(4,4;1;3)+D7(4,42 1'32)=0 (30)
*
CLASS V: Scattering of the type } {
a 30k
Ds(3,4;2,3)=0 (30 k)
) p*
CLASS VI: Scattering of the type if} — Z::
’ 7]
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(]

(+4a), (+li6)
Figure 3. All the U-diagrams comprising the block G;. The weight and overall
sign factors are also displayed with each diagram. The Fand V vertices are designated
by open circles. The diagrams contain all vertices up to 7.

L.
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Dyg (37 27 Z; I, TS§)+D8 (372’27 2; 1yi§§72)=0 (30 £)
o p*
CLASS VII: Scattering of type #b —s { *
v ¥
D;(4,2,4;7;2,3) =0 (30 m)
a p¥
%
CLASS VIII: Scattering of the type ﬁ S
u
v v*
Dg(3,4,2,4;1,7;2,3) =0 B0

where D, is the contribution from block G,. The energies are then given by
Ent = [Do+ Dy, (2;2) + D, (3;3) + D5 (2,3; 2, 3)]
4+ D5 (2,3;3,2) (31)

where the -}- sign corresponds to the singlet and — sign to the triplet energy. The
computed values of the matrix elements found from eqs (30) are given in table 1.
In table 2 we give the calculated energies. A perusal of this table shows that
even in this linear approximation the agreement between the results obtained
from the present theory with the CI values is extremely good. The results can
be improved by including the non-linear terms in the U-matrix elements, but the
present results are sufficient demonstration of the workability of NPOST.

4. The general open shell case

We now come to the case of systems for which the combination coefficients C¥F
in the reference functions % are not determined by symmetry. In this case, one
has to diagonalise eq. (8) to get the energies E£* as well as the coefficients CF’s.
As eigen-vectors of a matrix are linearly independent, we still have egs (7) as the
defining equations for 7. However, the matrix U in this case is not hermitian in
general, so that the functions * lose their interpretation as wavefunctions. If
we want to retain the wavefunction interpretation, then we must find out a hermi.
tian U. This may be attained by carrying out an alternative Ursell type expansion

Table 2. The =-=* singlet and triplet energies for transbutadiene in eV

T+ T i+ T+ T Full (73+ Ty+ T+ T Full C1
Singlet Triplet Singlet Triplet Singlet Triplet Singlet Triplet

HF *
bi-
?;lsl —83-9462 —86-8177 —83-9617 —86-8273 —83-9629 —86-8256 —84-0013 —86-7060

Core
di nal :
011'%%&18 —83-9600 —86-7722 —83-9740 —86-7851 —83-9754 —86-7834 —84-0013 —86- 7060

*HF stands for Hartree-Fock
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of #* -around ¢%* We now set

Y = e i (32)
with |

s=7T— Tt

T being given by eq. (155). We then have, using relation (24 5), which is also
applicable here

He® Jt = e Uyt = E* e (33 a)
Hence ”

U,V = EVE (33 )
Also from eq. (33 a),

Uy= ¢ He' (34)

since S by choice, is anti-hermitian,

) =+ =¢°

and hence
Ui = (e Uge)t = U, (35)
Thus Uy is a hermitian operator, and eq. (8) may be cast in the form
UyC=CE (36)

with C a square matrix whose columns are orthogonal to each other. Hence
they are also linearly independent, and we have again

() | Uy |,y =0 foralll/andi (37)

The problem is now solved exactly as before. The diagrams for Uy are similar

to those for U, except that we have, 7. in addition to the T ,-vertices already present.
The explicit construction of U, will form the subject of later publications.

The fact that it is possible to constructa hermitian operator Uy has far reaching
implications. One can, for example, now formulate the o-7 separability problem
in conjugated molecular systems by being able to construct a hermitian =-electron
effective Hamiltonian, which, acting entirely within the model space of the w-n*
configurations, generates all the low-lying energy levels of the system. The o-7
separability condition then reduces to the simple requirement that one may solve
for the matrix elements of T, constituting U, and the relation (36) to find the
energy eigenvalues.
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