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Abstract. A method for generating a pi-electron hamiltonian in an ab-initio manner
using the non-perturbative open-shell many-body formalism recently developed by us
is presented. Thew-hamiltonian thus derived is energy-independent, and is also proved
to be spin-independent. A recipe is given with the help of which Goldstone—like
matrix-elements of H,, can be extracted up to three body terms. It has been demons-

trated that the use of diagrammatics considerably simplifies the algebra and allows one
to keep track of the various quantities involved. Up to a given order of approxima-
tion, an explicit form of H, containing up to the three body terms has been given, and

some of the important physical effects embedded in the hamiltonian are discussed.
A comparative analysis of the various formalisms currently in use forms the conclud-
ing section of the paper.
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1. Introduction

Considerable amount of theoretical studies have so far been made to explain and
correlate various properties of planar conjugated systems. The various schemes—
broadly classified as the semi-empirical Pariser-Parr-Pople (PPP) theories *—have
been remarkably successful in predicting a wide range of phenomena associated with
the low-lying energy levels of conjugated systems. All of them invoke the m-electron
approximation. Lykos and Parr (1956) gave the form of the =-electron hamiltonian
under the assumption that the o-framework is fixed and the =-electron moves in the
field of the o-framework (the frozen core approximation). In concrete computational
terms, only the minimal p, basis-orbitals centred on each atom were used for construct-
ing all the configurations in which o-part is common and the =-part consisted of
different selections of =/#* orbitals and it was tacitly taken for granted that these
configurations are the one which more or less describe the low-lying excitation features
of conjugated systems. In practice, the various matrix-elements of the m-hamiltonian
in the minimal p_-basis are calibrated to fit the spectra of conjugated prototype
systems, and duly adjusted for other systems according to some semi-empirical
systematics. There are a plethora of such systematics, and they are of such varying
nature that it is difficult to discern whether they are related or not, or even, whether
some are consistent or not.

The success of the m-electron theories may at first sight seem to imply the correctness
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of the underlying assumptions. But, in reality, the excitation of m-electrons must
invariably accompany o-reorganisation with a consequent change of the o-r inter-
action effects. Also, correlation of the m-electrons obviously of greater magnitude
than that provided for by the minimal basis «/7* orbitals. There is therefore little
a priori reason that the m-hamiltonian derived after Lykos and Parr (1956) will
provide as accurate a value of the low lying energy levels of conjugated systems as they
do. The situation looks even more complicated if we recall Pariser’s argument in
favour of reduced values of repulsion integrals implying a correlation correction
(Pariser 1953). Is there any guarantee that we would not be overcounting the
correlation effect in a CI procedure designed to improve on the results? This calls
for a deeper analysis of the basis of the w-electron approximation and motivates
development of methods for deriving the m-electron hamiltonian in an ab-initio
manner. One may then clearly see the effect brought out by o-reorganisation effect
(which may have been introduced in disguise during the empirical calibration of the
matrix-elements) and the part of correlation introduced by Pariser’s recipe, so that
one stands on safer grounds and may eventually go in for a limited CI to incorporate
features left out by the empirical systematics. However, the relaxation of the frozen
o-core could not in a straightforward way lead to a form of the #-hamiltonian follow-
ing the procedure of Lykos and Parr (1 956). It was nevertheless felt that an ab-initio
derivation of the 7-hamiltonian would lead one to look upon the n-electron theories
as real microscopic theories with clearly defined theoretical assumptions.

In recent times, there have been renewed attempts to justify the use of a single
m-hamiltonian for studies on conjugated systems by invoking the concept of an effective
hamiltonian. There are presently several ways to construct an effective hamiltonian
for any quantum mechanical systems (see e.g. Barrett and Kirson 1973, J¢érgensen
1974, 1975 for recent references), although the basic underlying idea of all these
techniques is the same: Given a hamiltonian H for a system of N interacting particles,
how to derive a * different * hamiltonian & which will act only on a smaller set of

particles and will yield the same eigenvalues as some selected eigenvalues of H. The
different formalisms implement this objective in different fashions.

Transcribed in the domain of the -electron theory, it would mean that one seeks to
obtain a -hamiltonian H,, which will act within a restricted set of /=¥ configurations
having the common core of occupied o-orbitals and different selections of a/m*
orbitals, but which would nevertheless generate the low-lying eigen spectra of the full
H as its eigenvalues. H,, would thus behave as conforming to the picture of frozen
core but in reality would embody all the effects due to the o-relaxation and the altered
o-r interaction following the relaxation. It would also have, as a built-in feature,
a neat separation of the total m-electron correlation into a minimal basis «/a* cor-
yelation induced by a CI through H, and an external correlation implicitly present
in Hy, as H, would have to generate the exact eigenvalues of the full H, The first
studies in this direction were initiated by Harris (1967), which were later extended and
modified by Westhaus and others (1973, 1975). They approached the problem by
transfon-ning away the matrix-elements of H connecting configurations involving
o->7 excitations and those containing only n-excitations. The method is essentially

a Van Vleck unitary transformation of H, but due to the rather unwieldy nature of the

attendant algebra they could not achieve a complete transformation. Linderberg

and Ohmn (1968) and Shibuya et al (1975) used the Green’s function formalism to
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incorporate o-r interaction effect in the 7-electron spectra. Freed et al (1972, 1974)
used a cluster decomposition of the low-lying eigenfunctions of H in the manner of
Silverstone and Sinanoghu (1966) and Léwdin’s partitioning technique (see Léwdin
1962, 1966, for detailed references) to constructa H, acting within =-z* configurations.

Kvasnicka (1975) used a quasidegenerate Rayleigh-Schrédinger perturbation theory
through the third order to construct a Hp-and discussed the specific features that his
formalism brings out. Freed (1973) published a review highlighting the then state
of affairs and Kvasnicka (1975) also gave a brief perspective of his work against the
background of other theories. Numerical investigations to calculate matrix-elements
of H, from first principles along some of the formalisms described above are also
coming up (see e.g. Freed et al 1974, Westhaus et al 1975, 1976). During the pre-
paration of the revised manuscript of the present paper, we came to know of Freed’s
latest work (1976) where he adapted generalised perturbation theory (Freed 1968)
to Jérgensen formalism (1975) to generate Hy in a manner different from his earlier
work.

The present paper serves to introduce yet another mode of derivation of H,. This
will be along the line of development that we recently followed to formulate a non-
perturbative many-body theory for open-shell systems (Mukherjee et al 1975z, 1975b)t.
The procedure looks like a one-shot unitary transformation of H to eliminate the
matrix-elements connecting o-excitations with 7-excitations to any desired accuracy,
but the transformation is followed through an algebraic-cum-diagrammatic formal-
ism. We hope to demonstrate that the present approach leads to an expression of H,
in occupation number representation just like an ordinary hamilitonian and is suitably
tailor-made to bring out the contribution of zero, one, two, ... many-body terms
in H,. It wil be shown that diagrammatic representation of the mathematical
quantities involved will simplify the attendant algebra to a great extent and allow us
to separate various equations properly. It will allow us also to discuss the relatively
unexplored domains like the importance of three and higher body terms of Hp, the
symmetry properties of H, or its spin-independence. In section 2, we briefly describe
the desirable properties of a bona fide Hy, in sections 3 and 4 we develop the theory, in
section 5 we give an explicit expression of Hto a certain order of approximation.
Finally, in section 6 we indicate the relation of the present theory with the existing
theories.

2. Criterion for a good H -

Let us now lay down the general properties that a good Hp is expected to satisfy.
This is essential for an appraisal of the performance of a particular effective hamiltoni-
an formalism, otherwise we might ascribe physical significance to certain peculiarities
of H, which are due to some special artifice of a particular theory.

1. Firstly, we demand that our H, should be hermitian—otherwise one of the vital
interpretative aspects, that eigen function of H, would behave as wave-functions of
the m-r* states, would be lost.

2. Secondly, we demand that H, should not involve in it the state-energy E para-

_tWe shall henceforth refer to these two papers as I and II respectively. The key argument lead-
ing to H,, by the present formalism is mentioned at the end of L
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metrically—as any true hamiltonian can be defined only with respect to a complete
basis-set, and cannot involve state energies parametrically.

3. Thirdly, we want to have a tractable expression for H,, embodying a large part
of the effect of o-relaxation and o= interaction effects as compactly as possible. By
compactness, we mean that the A, should include a reasonable amount of o-effects by
a combination of rather few-body operators—preferably up to two, and at most up to
three-body terms. Otherwise H, would be too complicated to be of any practical
utility.

4. We also demand that H, should have the same symmetries as that of the full
H—i.e., for a spin-independent H, H, should be spin-independent and should be
invariant under all the symmetry operations belonging to the point group of the
molecule,

It may well turn out that all these together might impose restrictions which are too
stringent for a workable H,, and then one has to abandon one or the other criterion
in favour of workability. But then one would know where one stands and also would
have in mind how much one can and should abandon.

Besides these, we may have in mind more or less aesthetic criterion like (5) transfer-
rability of the matrix-elements of H,,. This is however best studied only in connection
with the numerical illustrations involving a series of compounds and we do not
attempt to look into this feature in the present work.

3. The algebraic structure of H -

The full hamiltonian H for the conjugated systems may be written in occupation
number representation as (I, IT)

H= 2 VR Ty X+ X, + (2...1'.)_2 z (IT| V| KLY, X+ X;+ X; Xy (1)

Ly LJ.K,L

=z(1|hll>X,+X,+% z (IT|V| KLY X;* X;+ X, Xy (1b)
nLJ

LLK L

1, J, etc. refer to spin-orbitals (SO). Each SO can be written as J==i- v, Where i
stands for the space part and y, is the corresponding spin function. The quantities
(/| V| KL),and (IJ|V|KL) are the Hugenholtz-type and Goldstone-type matrix-
elements respectively. We have written H in two different ways as we shall have
occasions to use both of them in our subsequent derivations.

For an N-electron conjugated system having N, m-electrons, we choose on the basis
of chemical intuition a set of N-electron determinants, in all of which there is a
common set of N, o-orbitals (N, =N —N), and a selection of N,, w-orbitals from a set
of M, m-type orbitals (M,>N,). These determinants may be said to span an N~
electron model space of dimension Dp=M,,! [N ! (Mp—Np)!, containing N, o-electrons
and Ny m-electrons. We want our H, to operate on these configurations and generate
the low-lying eigenvalues of H. Besides these, we shall have other N-electron deter-
minants built up from the set of ¢-SO’s and #-SO’s as well as from a set of other
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excited SO’s (all of them together comprising a complete set) in which electrons
would either occupy orbitals other than those considered in the determinants of
model-space, or occupy the same o-and #-SO’s as in the model-space, but the number
of m-electrons differ from N,. These may be termed ° the excited configurations® for
the N-electron system, and they would bring in o-relaxation, external w-correlations
and o-7 interaction effects. We shall designate the N-electron determinants of the
model space as ¢,;, and the excited determinants as ¢;*.

We also classify all the orbitals {I} that build up the functions ¢, and ¢,* as
follows:

(i) the set of ¢-orbitals which are common to all the determinants ¢; are the core
orbitals —to be labelled as oy, oy, etc.;

(i) the set of M, =-orbitals, which appear in some ¢;, but not in all of them at a
time are the valence or m-orbitals—labelled as =, =, etc., and

(iii) the remaining are particle orbitals and are labelled as P, P,, etc.}

The orbitals o, may be found from an ab-initio o-basis-set limit calculation involv-
ing the ground state of the N-electron problem, with a-orbitals constructed from a
minimal Lowdin-orthogonalised p, basis-set. The orbitals =, are the occupied and
virtual zr-orbitals coming out of this HF calculation. Orbitals P, are the virtual o*
and more diffused #*-type orbitals—the latter augmenting the minimal p,-basis and
properly orthogonalised.tt In the semi-empirical w-electron systematics, the nature
of the w-orbital basis is never explicitly spelled out—so that the above choice of the
orbitals entails no difficulty, and may even be replaced by better working sets without
affecting the physical conclusions derived from the formalism. (We may even replace
the orthogonal valence orbitals by the non-orthogonal AO type orbitals at the end—
the resulting modification of the relevant expressions and diagrammatics involved is
straightforward)§.

We now define the vacuum state |0 as the one in which all the ¢-SO’s are occupied

and all other SO’s are empty. The state | 0 is clearly the frozen-core N,-electron

determinant. With respect to this vacuum, we may write A in normal order I 1D
as

H={(0|H|0) +F+V (2a)

where
F=Z I|f|JON[ X} X)) _ (2b)
LJ
with
S| Ty=Ch|T) + 2 o] v] o (20)

fIn our terminology, =, =, include what are conventionally called »* orbitals in semi-empirical
m-electron theories. :

+1In our terminology, the #* orbitals would refer to thosen-orbitals that are contained in the par-
ticle basis-set. ,

§The choice of the orbital basis in w-hamiltonian has not been fully explored as yet. For concrete
numerical applications, we refer to Freed (1974), Westhaus et a/ (1975, 1976).
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and

1
V=§—!§ 121 (| v| KLY N[ XXX, X

K,L

We now define the canonical hole-particle type of transformations:
Y,=X, Y,=X,; Y,=X, (3)

along with their conjugate relations. All the determinants ¢, and ¢;* may now be
written in terms of | 0) as

$i=Q*|0); d*=A*x|0), )

where Q,* and A*x are appropriate products of valence and particle creation
operators Y+ written in the normal order.

For the model space, we may define D, linear combinations y;* of the functions ¢, as

D,
‘pokz.z Cuéi k=1, D, )

=

where the coefficients Cy; are now kept unspecified, but would be so chosen that Dok
would become eigen functions of H,. .
We now define a unitary cluster expansion operatort 5, with § an anti-hermitian

operator such that D, low-lying exact wave-functions of H for the N-electron system
may be written as

Pr=eSyk; k=1, D, , (6)

Further we wish to separate the core enérgy of the system entirely from the r-energy
and the 7o interaction energy, so that core-correlation may never enter in our calcula-
tion. For this purpose, we shall demand further, that e5 converts the vacuum state
| 0) to the exact correlated N,-electron core-function i,:

¢c=es l 0)' ‘ (7)
We choose our operator S to be given by
S=T—T+ ®)
where T'is a sum of one, two, ... N-body excitation operators:
N
T= X T,. €))
p=1

TVan Vleck was the firstto advocate use of unitary transformation of a hamiltonian to bring out
certain physical effects in a more trans

¢ - transparent manner (see e.g. Jgrgensen 1975 for a detailed discus-
sion). Westhaus (1975) calls his unitary operator a * Van Kampen cluster expansion > operator.
Recently Girardeau (1975) considere

C au (1 red a unitary operator similar to ours in a different context,
which he called a * tani transformation operator .
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Now we have to choose T in such a way that S can generate all the excited configura-
tions #,* by operating on ¢,’s, and in addition all the excited configurations 4:]:1' for

a N,-electron problem by operating on | 0). This of course means that all possible
pure core-cxcitation operators must be present in T, irrespective of whether or not
they will correspond to any physical excitation of the N-electron problem. This situ-
ation may arise because for the pure core problem, it is possible to excite electrons
from c-orbitals to m-orbitals which will be occupied for the N-clectron model-space
determinants ¢,. The inclusion of such excitations in T would never cause any pro-
blem, because the Pauli principle would be automatically taken care of by the anti-
commutation property of the Fermion operators Y and Y+.
T, in general, will thus be of the form:

1
p=;'-§)3( .y .PPPQ. [ fpl. Ty T Op + Da

+ ot + + o+ +
N Y, Yo ¥, Vppe Yo, Yoo Yo, Yrger:] (10a)

1
=ﬁ (. amy PpPy. | t] . cmpmy0oy0p. DX

+ + ot +
N[ Yy Yy Yp, ¥y, Yo Yo o Yo Yoy

] (10b)
As T, is a p-fold excitation operator, T+ is destined to serve as a p-fold de-excitation
operator. The matrix-elements like {..mg. .7y 0,405 | 25*]. my. .PpPg)ais equal to
{..mmy PpPy. |t,|. mgmy. .00, Ve SO that we may take the matrix-elements of
T, for all p as the only variables of the problem.” We shall discuss more about the
matrix-elements of T, in section 4. ‘
We look for an operator H, such that

HeS=eS H 11
As eS is unitary, we have
H=e"SHeS=(eS)*HeS (12)

H being a unitary transform of H, is hermitian.

We have recently shown (I, IT) that, for fermion systems, the form of H can be
found out by using the Generalised Wick Theorem (GWT) and the concept of
generalised contraction (which we call pairing). Adopting the same notations as
in I, we may write H as

o0

= 1
F= — O (—Da(s% (0| H|0) + F + V) Sk, (132)
kZO k! ]Zskz
k1+k,=k

with
I‘=(O]Hl0>+F+V. (13b)
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For the proof of this relation, we refer to I. (S*I'S*k),, we called linked term
M. (S*T S*), is a sum of all terms having k; number of S operators on the
left of T, k, number of S operators on the right, in each of which there are subterms
consisting of all possible contractions between groups of creation—annihilation
operators in I" and S on either side of T" following a specific rule. The rule states
that the sets of contractions would start from T" and would proceed both to the
left and right of it without skipping any intermediate S in the process. All the

terms in (S* T' S*2), are linked in the way as dictated by the rule, and this is why
we called (S* I §*), as a linked term in L

From (13), H also thus consists of linked terms only. As [ contains all the sub-
terms containing zero, singly, doubly, ... contracted creation—annihilation operators,

N, N—1, ..., two, one and zero pairs of creation—annihilation operators remain un-
contracted. They constitute the N, N—1, ..., two, one and zero body operators of H.

Let us now consider the Schrédinger equation for the K low lying states of the
N-electron problem:

Hy*=E*J*; k=1, D,. (14)
Using the definition of y* from eq. (6) and the relation (11) we have
H o =E* it k=1, D,. (15)

Projecting (15) on to the excited ¢;*, and using the linear independence of the
coefficients Cy; in (5), we have: .

($i%| H$:5=0 for all i and L. (16)
Similarly, projecting (15) on tc the model space, we have

Z ($;| H|$) Cu=E* Cy; for all j, k. (17
1

Similarly, for the N,-electron core-problem, we may get:

H|0)=E*|0). (18)
Projecting on to the N,-electron excitéd states gbf,’:, we have

($% | 7| 0y=0; all 1 - (19)
and

Ec=(0| H|0) | (20)

substituting eq. (13) in eqs (16) and (19), we get a set of coupled equations in the
matrix-elements of T, (and T,*), which would furnish the matrix-elements of 7}, and
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T,*, and hence of S. The solution of (10) and (19) would thus determine S
completely.

If we now insert the values of matrix-elements of S into the expression (17), the
matrix-elements (¢, | H|¢;) become known, and the solution of the eigenvalue
eq. (20) would provide us with D, exact energies E* of the N-electron problem. Hence,
H may be naturally thought of as a hermitian, state-independent operator which
generates the low-lying exact energies E* of the N-electron problem by acting entirely
within the restricted set of =/z* configurations with a common o-core. H thus satisfies

one of the basic requirements of a true H,, and henceforth we shall identify H simply
as H,. .

4. Diagrammatic construction of H,

4.1. Construction of block of H,

One of the most convenient ways of handling the matrix-elements of H, appearing in
(16), (17) and (19) is to use a diagrammatic approach of the type given in I, IL
We would first transcribe all the terms of H, in terms of Hugenholtz diagrams (Hugen-
holtz 1957) in the spin-orbital basis and later go over to spin-free diagrams for actual
solution. Unlike that in perturbation theory, the conversion of one methodology to
the other is a non-trivial problem in the non-perturbative frame-work.

A general linked term like (S*:T'S*2), of H, consists of all the quantities that can be
formed from all possible selection of k; T, and T+ operators on the left of T, and all
possible selection of kT, and T,* operators on the right of T, which are contracted in
all possible ways in accordance with the rules of contraction laid down in the definition
of a linked term. By definition, (S*{0| H| 0) S*3),=(0 | H|0) for ky=k,=0,
and=0 for any of k;, k,#0, so that we need not draw any diagram for such terms;
(0| H|0) is merely a number. The overall sign of a linked term is (—1)",
where n, is the number of 7,* operators. Diagrammatically a linked term like

(T"1 T",+ T,,k1 v T,,k1+1 Tnk1+nk,)v say, will give rise to a set of diagrams, all

linked, which together comprise all the diagrams that could have been generated
by joining all the (k, + kp - 1)—vertices with one another in all possible
ways, conforming to the definition of a linked term as given in L. As a result,
we shall have sets of linked diagrams differing in the number of external lines.
We may say that each linked term yields a set of different n-body operators.
The collection of all these diagrams may be called the H ,-diagrams.

First of all, we separate the H,-diagrams into various groups according
to the number of external lines. In each group again, we collect the set of
diagrams having the same disposition and orientation of the external lines together
in one G-block (I, II). In this manner, we classify all the diagrams into various
G-blocks.

If we now specify the determinants ¢; and é,* in eq. (17) by indicating the creation
operators in Q,+ and A+, this automatically fixes the labels that can be attached to
the external lines and at the same time fixes the shapes of G-blocks that can
really cause a scattering of electrons from ¢, to é,*. For a scattering involving
o 0 andm, to Py, Py and P, say, the G-block will look like the one shown in
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(a) , (b)

Figure 1. G-blocks showing particular scattering events.

figure 1(a). The contribution of this G-block may be evaluated using the recipe

given in I, IIt, and may be compactly written as

B (P, Pyme, o, op;my) D (P, Ppmes 040557,
where D is a function depending on the order of the arguments and B is a
composite permutation operator generating the sum of all terms that can be
obtained by permuting groups of spin-orbitals (P,, Py, ), and (o, ap) in all
possible ways, with a pairty factor (=1®. & is odd or even, depending on the
parity of the permutation. o
If there are sets of excited determinants ¢,+, ¢,,», etc. which are obtained by I{ftlng
electrons out of the same set of orbitals from the respective model space determinant
i» $5» 52y, and putting them in the same set, then we should someho.W label the
corresponding excitation operators in such a way that we can distinguish .the two
scattering events as distinct. The simplest way of doing this is to artiﬁciall‘y Increase
the rank of the corresponding T, operator by throwing in orbitals which would
distinguish the two scattering processes (Mukherjee et al 1977). Thus, if for the
states considered above, the electrons are lifted from oy, 0, say, to P and P,, then we
should consider the associated T operator as one not of rank 2, but greater—the

actual number depending on the specification of extra labels that .would uniquely
distinguish the two scattering processes (d, - g+ ¢;=>¢n*). Thus if, for example,

the two model space determinants ¢, and ¢, are such that one contains a m-orbital my,
while the other does not contain it, but instead has another orbital wp, it would then

suffice to introduce two Ty—operators for the two scattering events:

@ <P1PJ7TK[ T [UI °J’7x>u N [Y+P] Y+PJ Y+”K YnK Y+a, Y+a,]
(i) <P, P,m,| Tiloyo,m > N [Y+P1 Y*p, Y, Yo, Y+, y+01]

Thus, the two events in this case can be distinguished by increasing the rank of the
T, operator from two to three—and extra pair of creation—anihilation operators
inserted due to this €xpansion of rank causes a passive scattering of an electron from

7g t0 mg or from , to 7z, a5 the case may be. The above argument can be generalised
in a straightforward manner.

If ¢+ is such that there are ce
will be certain other G-blocks,
contribute to the matrix-

rtain valence-lines in common with ¢;, thez}_there
having less number of common lines which will al§o
element (s | [$:>. Thus, for the block shown in

1The details of the recipe is not Decessary in what follows,
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figure 1(a), if m, ==, for certain ¢,» and ¢,, then in addition to the block 1(a) with
m,=m,, a block of the type shown in figure 1(b) will also contribute. In general, for
states with r valence-lines in common, there will be in total (r4-1)—G-blocks showing
explicitly the passive scattering of 0, 1,2, ..., r valence lines respectively. We may
call the G-block with no passive valence-valence scattering as the irreducible one, while
the others may be called reducible G-blocks. Let us now see how the equations for
T, and T,* are set up. We start with the core-part | 0)) of the N-electron problem.

The excited configurations qSﬁa for this problem are the No-electron determinants

that are obtained by lifting 1, 2, ..., No electrons from |0 to all possible particle
and valence states. Thus, written in terms of the G-blocks, contributing to the
matrix-elements of H,, the equation (19) would take the form as shown in figure 2.
We now come to the full N-electron problem. Here again, the set of eqs (16) could
diagrammatically be represented by a sum of G-blocks. Some typical diagrammatic
equations will look like those shown in figure 3.

In these equations, the excitation is such that the labels on the ingoing valence lines
are different from the outgoing ones. If, however, for certain choice of ¢;*, , coin-
cides with any of #, ,, etc., then in place of figure 3, we shall have contribution from

777 77 _Omj«a{s\r// )
?////" % 0o

\\ ¢

No {%
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Figure 2. Core-excitation diagrams. B operator is assumed to be operative on the
external lines in these diagrams.

Figure 3. Typical excitation diagrams from the model-space of #», .- N« electron
problem. . )
Figure 4. Typical excitation diagram showing scattering between ¢ and ¢; with all
N,~valence lines common.
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both reducible and irreducible G-blocks. We have already discussed a typical case
in figure 1(b) with = ,=m.. In particular, for a scattering event with all N,-valence
lines in common, we shall have the diagrammatic equality as shown in figure 4. Since
the block to the extreme right of the figure consists of a pure core-scattering event,
its contribution is already zero from figure 2. Hence the contribution of all the
reducible G-blocks taken together is zero. The same type of argument will hold
good for scattering events having r(<N,) valence-lines in common, if the irreducible
block ocrresponds to a pure core-scattering process. When the irreducible G-block
for a particular scattering process does not correspond to a pure core-scattering, both
the irreducible and the sets of reducible G-blocks together should be equated to zero.

Thus, we may write down the system of eqs (16) and (19) in terms of G-blocks.
For all practical purposes equations have to be truncated, so that each G-block
will contain only a limited number of T,,/T,* vertices. Let us emphasise that a trunca-
tion of eq. (13) does not in general imply a truncation of the system of eqs (16) and
(19); rather it implies a reduction in the number of diagrams entering the G-blocks.

Coming now to the matrix-elements <{ ;| H|¢; >, we note that this will reduce to
a sum of blocks, where the external lines will be labelled by valence-lines only. Blocks
containing zero, one, two pairs of ingoing and outgoing lines would contribute
respectively to zero, one, two, ... body terms of the m-hamiltonian. The zero-body
term corresponds to the closed diagrams coming from {0 | H| 0, and would cause
a common shift of all the energy levels E*, and may be entirely dropped. This will
correspond to the elimination of the core-energy part entirely from our calculation.

From the structure of H,, it is clear that it would contain three and higher body
operators. In contrast, the conventional semi-empirical -hamiltonian contains at
best two-body operators. Another point to note is that the G-blocks contributing
to {¢;| H|$:) are labelled by SO’s, thus defining the matrix-elements of H, with
respect to SO’s. However, the conventional m-hamiltonian is taken to be spin-
independent and is defined entirely in terms of orbitals.

The following questions naturally emerge: (2) How far are the higher-body operators
important vis-a-vis the semi-empirical 7-hamiltonian? (b) How far can one consider
the H, to be spin-independent? (c) How would one correlate the quantities appear-
ing in the ab-initio theory with the parameters of the semi-empirical theory? Of these,
the answer to question (b) is already contained in our criteria, for a H, : H, has to
be spin-independent. Thus at some stage we should try to get rid of the spin-vari-
ables. How far can one do this depends on the formalism adopted and any formalism
which doesnot allow of aconsistent description of H, with spin-independent operators
suffers from an obvious shortcoming. As to the question (a), we cannot at present
furnish concrete answer, as this would require an extensive computation on prototpye
systems. We shall however attempt to provide partial answer to (c); we shall more-

over show that our formalism gives a two-body term in H, which is richer than that
found by others.

4.2. Spin-independence of T and H,

Our first objective, however, is to examine the consistency of the assumption that H,
is spin-independent as implied by our theory. We shall prove by formal arguments
that one can assume the operators T, as spin-independent and still the system of
equations determining T,’s are complete. Then the spin-independence of H, would

I
|
|
|
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automatically follow, as the matrix-elements of F and V are manifestly spin-indepen-
dent.

Let us first remark that the assumption of the spin-independence of T, operators
can be trivially represented as

(A |t | By =La |t B> 8(var 7o)- @1

On the other hand, the corresponding two and higher body operators cannot be so
easily be taken off from the spin-variables and a more sophisticated analysis is
necessary (Mukherjee and Bhattacharya 1977).

Let us start from a general two-body matrix-element { AB | 2.} CD,, and express
left and right side of the anti-symmetrised two-electron functions in terms of spin-
coupled functions. For a spin-independent T,, we then have

b d
(AB|t,| CDY, E<n‘§ |t n‘;’ =z {ab] 1] ed}s X
(33 SM|3mehm hmadm|33SMY 22)

where we have explicitly indicated the associated spin-projections of the spin-orbitals,
A, B, etc. and the quantities (} ¥ SM| } m, 1m,) are the Clebsch-Gordan (C-G)
coefficients. The quantity {ab| 1, | cd}—we would like to call as a reduced Hugenholtz
matrix-element—depends only on orbitals a, b, ¢, d and a spin-index S, and not on
spin-projections. Equation (22) is a consequence of the Wigner-Eckart theorem
(Wigner 1959). S can take on values 0 and 1, so that for distinct orbitals a, b, ¢, d
we should have two independent reduced Hugenholtz matrix-elements.

For the three particle operator, we can likewise define the corresponding reduced
matrix-element as

a b ¢

(ABC|t3]DEF>a=<ma g et

I3
my My My / a

= Z {(ab)Sl ¢ ‘ t3‘ (de)sjf}s <(%‘ %) S]M,ﬂ %; SM‘ %‘md %me%m}‘> X

Sy, 85, S

(ymgymy kme! (3 B) SiMy; 35 SMD (23)

where the coupling scheme is to couple (4, B)to S, (C, D) to S;and a final coupling
of these pairs with C and F respectively to give a resultant S. The transformation
coefficients are the generalized C-G coefficients (see e.g. Fl Baz and Castel 1972).
For distinct orbitals a, b, ¢, d, e and f there are five linearly independent matrix-
elements. An analogous procedure may be followed for the higher-body operators,
and we are not explicitly showing their forms. The quantities {(ab)s; C| 45| (d)s; e}s
can be written a linear combination of {(ab)s;, C|% | (de)s; f }s because of transforma-
tion properties of the generalised C-G coefficients.

We shall now concretely demonstrate the elimination of spin-variables for the set
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of equations containing up to three-body operators. The generalisation to higher-
body operators is straightforward and is not particularly illuminating:
Consider all equations of the form

B, D#=0; i=1, 2, 3. 24

where D, stands for the contribution from the Gi-block containing i-pairs of external
lines. The superscript  on a D, is given to indicate that there may be more than one-
G-block containing i-external lines. The equations contain Hugenholtz 'ma.trlx-
elements of Ty, T, and T3 as variables. We shall now write these equations in terms
of the reduced matrix-elements. For the sake of clarity, let us choose a specific
example:

Pick out of the class of equations B, D,*=0 for all g, a particular sub-set B, D,*=0,
say, in each of which the external spin-orbital labels carry the same space-parts.
Moreover let us deal with the most general situation by choosing the ingoing and

outgoing orbitals to be all different. The general form of the selected sub-set of
€quations would look like

Bz(Cd;ab)Dz"(Cd;ab)=O A (25)
me my’ m, m, me my’ m, m,
for all choices m,, m,, etc.

From these equations et us construct the following equations

m. my’ m, m,

my, my, D C d ., a b =0 (26)
mcs md 2 mc md’ mg mb ) ‘

: b
E k& SM[{meima) (hm,im, | § § SO Bz(c e )

there would be two linearly independent equations for the two possible values of .

Now breaking up all Hugenholtz matrix-elements in terms of reduced matrix—elementS.
in D,, we arrive formally at €quations of the type:

Ky(ab; ed)=0; §=0, 1. (27)

Now for a set of orbitals a, b, ¢, d there are two linearly independent reduced

fmatrix-elements, and we thus have as many equations as there are unknowns. For
the case i==3, Jet g again choose a particular Dy, Again let us take all orbitals to

be different, and select G-blocks with SO’s which differ in spin-allocations only. We
can likewise construct equations of the type.

z (G DM, 3 51 imagmme) (hmdmgm, | (3 DS.M,; §; SM)
MgyMy,m, |
ma,mz,mf Ba(d"f;abC)Daa(def;abc
M‘,MJ my me mf my my, m my m, m, m, m, m.

) —0 (28)

for all allowed S, Syand S,
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After breaking up the Hugenholtz matrix-elements in D, in terms of the reduced
matrix-elemeats, we get equations of the form

K;516:55 5 (def; abc)=0 (29)

for all Sy, S;, S.

For a fixed set (def; abc), there are five reduced #; matrix-elements and we have
corresponding five linearly independent eqs (29), so that we again have as many
equations as are unknowns. This shows that it is possible to eliminate spin-variables
from eqs (16, 19). The case of equations containing both reducible and irreducible
blocks can be analogously treated. The same holds true also for higher body opera-
tors. For the representation of the matrix-elements {(¢; | H | ¢,>, we can follow the
same procedure. We break up all the matrix-elements in terms of the corresponding
reduced matrix-elements, and finally sum overall spin-projections to get the reduced
matrix-elements of H,. The above analysis proves that H, can be written in a
manifestly spin-independent manner.

Now we shall show, following a procedure of the type first used by Paldus et al
(1972), that up to three-body terms the above problem can be cast in terms of Gold-
stone-like matrix-elements also. This would be of more practical value because of
ease in computational procedure.

Equations (27) can be alternatively written as

dy’(cd; ab)—d,® (dc; ab)=0

dy®(cd; ab) =0 (30)

dy*(cd; ba) =0
d;? is a new functional of orbitals only obtained from D,? by spin-integration. From
(30), it is obvious that two of these three equations are linearly independent and we
choose the last two as our desired set. For the orbital set (¢, d; a, b) there are two

distinct Goldstone matrix-elements {cd | t, | aby and (cd|1,| ba) and we have as
many unknowns as there are equations.

For i==3, similarly we can get eight equations for a fixed orbital set (def; abc), as

in (30), of which only five are linearly independent. We give below a particular
choice;

- A5 (def; abc)—dj( fed; abc)=0

d;b(fde; abc)—db(edf: abc)=0

d,(fde; abc)—d,*(dfe; abc)=0

dt(efd; abc)—db(fed; abc)=0 (3D |
dy(def; abc)—dy(dfe; abc)+dgb( fde; abc)—dgX( fed; abc)-+dg(efd; abe)

—d3b(edf; abc)=0
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However, the number of Goldstone-type matrix-elements that can be formed .frOI}I
the set (def; abc) are six in number, so that we seem to have five equations in six
unknowns. However, we can get around this difficulty by noting that each anti-

symmetrised z; matrix-element is invariant under a common shift of all the Goldstone
matrix-elements by x. From (31), we have

dy’ (def; abc)=d(edf: abc)=d(dfe; abc)=d,*( fde; abc)
=dy"(efd; abc)=d¥(fed; abc)=y, say. (32)

Let us now choose our x in such a way as to make y=0. Then we have a set of
six eqs (32) with y=0, and again we have as many equations as are unknowns. Such
an analysis cannot however, be carried over to T,(p>4) operators.

This means that although T, = 4-body operators are spin-independent, a Goldstone
representation for them is not straightaway possible. However, we have proved
earlier that the present formalism embodies the folded diagram perturbation expan-
sion of Brandow (II), which may be made spin-independent, the spin-independence of
the ¢ matrix-elements can be assumed as a consistent sufficiency condition:

a2 (s, 4 ...;ab..) =0 (33)

for all s, ¢, a, b, etc.

This again, just as in (30), would give us Goldstone matrix-elements to deal with.

As we have proved the spin-independence of 7, this seems to be consistent. In any
case, up to Tj, we can generally write eqs (24) as

d" (¢, @) = 0; dy? (cd; ab) = 0; dy® (def; abe) =0 (34)
for distinct orbital lables and superscript labels.
We are now in a position to discuss the diagrammatic representation of eqs (34).

4.3. Goldstone diagrammatics

Following the convention of Goldstone (1957), we may represent each of the operators
F,V,T,and T,*

—written in terms of the Goldstone matrix-elements—by Goldstone
diagrams. As a typical example, we show in figure 5, some V, T, and T,* operators.
Diagrammatic construction of the block d; is straightforward, and parallels the
recipe laid down for the Hugenholtz-block diagrammatics of 4.1. The external
labels on the G-block should be such that it implies the same scattering event as that

g g
'IK ﬂ<
0" N oni
R : n ,EI R
(@) ) (c)

Figure 5. Some typical ¥, Ty and Ty+ Goldstone diagrams.
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induced by the particular T, matrix-element. In pratice, it will be possible to label
the G-block in more than one way so that each represents the same type of scattering
and we have to consider all such scattering events. For a T)-diagram containing r
passive valence-valence scattering lines, the corresponding equation will look like

2 d'yy@ww..,abe..) =0 (35)
k=0 .

where k=r term corresponds to the G-block having the same shape as the T, diagram,
and k=1 to r all correspond to reducible G-blocks. The k=0 terms is the irreducible
ones and may or may not be present depending on whether or not it is a pure core—
scattering event. The prime in d implies that the arguments %, v, etc. common with
a, b, etc. have to be dropped suitably as k changes in the sum. To make the system
of equations complete, we should not include in (35) reducible G-blocks carrying more
than r passive valence lines. Thus, a truncation of T = T, brings about a

p
truncation of the possible G-blocks. We have given in appendix 1 the rules for the
construction of d,’s. More explicitly, the system of egs (34) will look like

2 4y TGY + Z Buy TG)YT®) +.. =X for i=1ton, (36)
j 2

n, is the total number of distinct T, matrix-elements, stored in a column like T'(i).
The quantities A, come from 7 diagram having no T, or T,* vertices whatsoever;
they therefore originate either from an F or from a ¥ Goldstone diagram.

Returning now to eq. (17), we note that the non-vanishing Goldstone H-diagrams
contributing to {¢;| H|$; ) can have only the valence labels on the external lines.
Using the same considerations as we have done for (¢, | H|#;), all these diagrams
may be grouped into various blocks, having various pairs of ingoing and outgoing
valence lines with all possible valence labels put on them. The groups of labelled
G-blocks containing p-pairs of ingoing and outgoing external lines may be identified
with the p-body part of the H,. Using the same rules as given in appendix 1,
we may write down the corresponding expressions for the G-blocks, and as we know
this time the values of the matrix-elements of T from (34) we may evaluate the
matrix elements of H, (¢, | H|#:)-

5. Explicit expression for the matrix-elements of H,: An analysis of the one, two and
three body operators

In this section, we shall give an explicit expression of the matrix-elements of H,
within the approximation:

T=2T,
p=1

All the different shapes of the T’ matrix-clements and G-blocks are shown in figure 6.
We have omitted from our considerations all 7, matrix-clements that vanish due to
o-7 symmetry.

P2
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Figure 6. The shapes of all possible G-blocks that can be constructed under th
approximations introduced in section 5.

. . . it from
Moreover, we shall work in the linear approximation, hence we shall om

(36) all terms containing By;, and upwards. Equation (36), then, reduces to a sys_tte?f;
of linear simultaneous equations in matrix-elements of T, For our.purpose’b i
convenient to order the matrix-elements in such a way that for equation mum6 er i;i
the T-matrix-element, T(i) appears in the ith row. The G-blocks in figure 6 W

contain at best one 7, or T,* Goldstone-vertex under the lineal: approximatifnﬁazﬂg
values of the matrix-elements of T, and T,*, when substituted in the G-blocks
external valence lineg only,

will give us the matrix-elements of H,. Any p-body
matrix-element (ww | H, | abe. . » will have the form

Cow.. | Hy,|abe..)=b, £ M, (uw. . ; abe) 37
p

where p’ stands for all

permutations interchanging [(www..) and (abe. .)], 8, stands
for the operation of a,

dding the hermitian conjugate of the expression I.JZ.,' M (ww. . ;
abe..) to it. Diagrammatically,

abe. .y, we shall have another whic
looks like the mirror-image of th
lines remains unalter
given in appendix 2.

for every diagram contributing to (zww. . | Hy, |
h is its hermitian conjugate. The conjugate diagram
¢ original, but the orientation of the arrows of the
ed. The expressions of the quantities M, for p=1, 2, 3 are
In terms of these, H, may be finally written as

H=2x <7TI]H”I [”J) [Y+, Y, 1 +l‘ z <7TI"JI H"T:I"TK’TL> x
7 7 4 2! IJ
KL
[YI+ Y+ YL YK] + _31_' z ("I"J"KlH‘"’aleﬂMﬂ‘N> X
[YP Yy, YnYy Y] (38)
with each H,, matrix-element having the property:

<"IWJ“' 1 H"’l “"'x’”z' '> = (7";",]- . Iqu l T -> 8(7’1’ Vi) 8(71’ Y1)- (39
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In (39) spin-independence of H, written in terms of Goldstone matrix~
elements is manifest. As for valence labels, the operator X, and Y, are equivalent,
we could have replaced Y and Y* by X and X+, dropped the normal ordering
operator N altogether, in that case H, takes up exactly the same form as that of an
ordinary hamiltonian.

In the construction of the G-blocks, whose contributions are shown in appendix 2,
we have neglected further the contribution of T, matrix-elements involving only core-
excitations. They are likely to be small, as the core wave-function |0) is a closed-
shell system (Sinanoglu 1964). The matrix-elements of H, are given by

(10| Hay |15 = (ma| f|my) +0gch (ma )
(et | g | sy = (army | v | mema) + By (1-+-PapPeg) da (mamy; mema) - (40)
(argmsme | Hoy | mameney = O (1 +PayPae+PacPar+PocPos+PapePaer
PP rea) Ay (mas Ty, 5 Ta ey 7p)
where 6, is the hermitiser introduced earlier, and P,;, P, etc. are the permutation

operators acting on the labels 7, j, etc. The quantities d;, d; and dj are given in the
appendix 2. Some typical three body diagrams are shown in figure 7.

S*

Ty —at—eat ~—a—TTp TS ——tatt—et—4 D
% t* 7Tw

M —e—i~ - Ty 7Tt et} Gttt -t~ 77

7TU atf - —at- 7Tr 7ru -y | 77}-

(<)} “(b)

(d)

Figure 7. Some typical three-body diagrams of He.




564 Debashis Mukherjee et g]

We may now identify the matrix-

elements (a, | Hy, | m,» and (o, | Hy, | momy)
with the parameters By and y,, of th

€ semi-empirical mr-electron theories. The other
qQuantities neglected in the ZDO-approximation are not necessarily zero in Fh‘e ab-
initio formalism, and the validity of ZDO must be ascertained by an explicit ab-
initio calculation,

To get an idea of the type of corrections brought about by the unitary operator

es, it is instructive to decouple eqs (36) in the linear approximation, and attempt
‘at an approximate solution of the matrix-elements of T as

)= N (1)
T(z)ﬁm.

Under this linear uncoupled approximation, all the T; matrix-elements are zero

(as A’s for all the T; matrix-elements are zero), and the three-body part of H, is
constituted only by the 7} and T, matrix-elements. Further for the matnx—element_s
in the HF basis A/’s are zero for the T, matrix-elements, and thus under the approxi-
mation (41), all the T, matrix elements are also zero. The approximate expression
for the one-centre repulsion parameter Yaa> then, takes the form

{aramy | H;,2 |7,y = {mm, |» | mama)

L5 {mramg| v | IXBDICALR ]v I A

o3 0, K9 [ 105) +(o | £ [on5—20m, [ ey

~(argm, |v | mamed —{oy0, |v l 00, )
-<7ra°'b I;, °'b7741> —'<7Ta°'c I ;l O'c"a>]
n {mramy | v Icr,,*ac*> {op*a.* [ V|,

Gb*,ic* fz?wa l f I ‘”"> _<°1’* lfl ab*)'—(a'c* ,f{ac*> +<7T'a7ra i v l"ﬁ”’a)

—"<°b*0c* ] v l cr1:"“’%:*)]

T
+7:;’r L A L wr ey e e ey 5 [7ama

— (mym. ] v | myr, ] (42)
The quantity 7 — (2 — Pyy) includes the direct and
The starred orbitals are of particle type.

We find that the denominator in the second term of the eq. (42) is of the f‘Ol‘m
E,—E,, where E; and E, are Tespectively the average energy of the configurations
#1~ Yo, Y2 ..|0) and ¢, ~ Ytm, Yz .. [0) (the bar on the orbital labels
denotes opposed spins). Asé, is obtained by lifting two electrons occupying o, and
o to m-orbitals =, the value of E,—F, will be negative. Physically speaking, this term
Tepresents the dielectric screening effect created by the o-electrons on the coulomb
repulsion of the m-€electrons, Similarly,

the denominators of the third and fourth

exchange operators together.
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terms in (42) are dominated by the negative quantities 2{m,|f|m> — (my| f|m)
— {my| flme), etc., and are also negative. These two terms represent the screening
effect due to correlation of the w-electrons induced by the o* and »* orbitals. These
are external correlation effects. The internal correlation effects, i.e. the effect
brought about by m-orbitals only, will be taken care of by the CI procedure implied
by eq. (17). The formalism thus clearly separates the contribution of o-electrons and
excited configurations from the pure =-type corrections. The danger of double
counting is thus completely avoided. In a similar manner, the effect of the
o-screening and the contribution of the configurations outside the model space to
the two centre coulomb repulsion integral vy, can be found out.

Returning to eq. (36), if one goes beyond the zeroth order iterate, i.e. the linear
uncoupled approximation, then one would generate matrix-elements of T(i) which
would embody not only the screening contributions included in the uncoupled
approximation, but also their coupling effects as also various other types of coupling
between the different T-operators. Direct solution of the eqs (36) would thus give
matrix-elements of T which are equivalent to an infinitely summed up series
involving many classes of diagrams. Let us emphasise that the construction of the
coupled system of egs (36) was remarkably simplified by introducing the diagram-
matics and the notion of the division of diagrams into various G-blocks. In
particular, the generation of the three-body terms of H, containing genuine three-
body operators like T, would have been extremely unwieldy in a purely algebraic
approach. This is presumably the reason why a derivation of the three-body terms
of H, has been tried only very recently (Freed 1976). We came to know about
Freed’s work after the first draft of our paper was submitted for publication.

Besides the transformation of the full hamiltonian H to the model-space effective
hamiltonian H,, we have also to consider the transformation of other useful one-
and two-particle operators. In particular, in the calculation of oscillator strengths
of the allowed electronic transitions, the transformed operators corresponding to the
electric and magnetic dipole operators d and p would be extremely important. They
may be obtained in a straightforward manner by substituting f everywhere by d or
in the expression for H,, in eq. (37), and dropping the terms containingv. It should
be noted that, although the operators d and p are one-particle types, the transformed
operators d" and p" would have to contain two, three... body terms. The situation
parallels closely the case for H itself. The extent to which the higher body operators
are important must be determined by a concrete calculation.

6. Discussion

We begin this section by indicating the relation of the present formalism with the
other developments. Perhaps the formalism close in spirit and structure to ours is
that of Westhaus (1973, 1975, 1976), developed along the earlier work of Harris
(1967), and should be discussed first. Westhaus induced a canonical transformation
on H by a unitary operator e with S chosen as i s with s hermitian operator. This
contrasts with a real representation of e in our case where we choose S = T—T+
as an antihermitian operator. However, this difference of choice in the two methods
is more apparent than real, as a real anti-hermitian operator is algebraically equi-
valent to i times a hermitian operator. The real difference lies in (a) his purely
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algebraic manipulation without having recourse to a consistent use of occupation
number representation and diagrammatics, (b) the truncation of the hierarchy of
equations induced by the transformation in a way to decouple all matrix-elements qf
T'(@) and (c) not considering the core-valence separation theoretically in an e)_cphCIt
manner. In fact, due to a purely algebraic approach, a straightforward inclusion .of
more than linear terms in the transformation would be rather unwieldy. Our d‘m-
grammatic systematics however can avoid this problem by suitable book—keegmg
procedure. Furthermore, the use of the core part as the vacuum in our formall.sm
automatically defines an effective one particle potential F which embodies scattering
events under the vacuum sea and separates out the operator ¥ free of such processes.
This seems to be conceptually more transparent, as our one, two and three bo@y
operators really scatter one, two and three #-electrons. In contrast, Westhaus did
not separate the passive core-core scattering events as we did and consequently
classified some matrix-elements as three body forms which involve one or twc? core
scattering events and are thus in effect not really three body terms. Westhaus did not
include Sj; in his unitary operator and did not calculate real three body terms.. It
appears that the expressions of §; and S, given by Westhaus correspond essqntlally
to a decoupled calculation of S; and S, as given in (41) of our formalism, with t_he
difference that he worked with Hugenholtz matrix-elements and we worked with
Goldstone matrix-elements, and in contrast to his—ours is a spin-independent re-
presentation. The decoupling implies an inconsistent truncation in the sense that
H,, ceases to behave as a scalar in the symmetry group of the molecules. Wes_thaus
and others (Westhaus et al 1975, Westhaus and Bradford 1976) in their calculation Qf
the valence-shell hamiltonians of C, N and O atoms and some simple molecul.es did
in fact obtain broken-symmetric solutions. But such truncations can easily be
avoided by going over to a fully coupled solutions of the linearised equations of (36).
We are at present investigating an alternative procedure in which only reduced
matrix-elements, left out after the use of Wigner-Eckart theorem (Wigner 19§7), of
F,V,Tand T+ corresponding to any point-group symmetry would appear 1n‘the
calculation, so that the inclusion of relevant symmetry can be accomplished right
from the start (Mukherjee ef al, to be published). o
Linderberg and Ohrn’s (1968) Green function approach is structurally very dissi-
milar to ours. The same can be said of the work of Shibuya et al (1975). In bpth
these, the m-excitation spectra are calculated in such way that they avoid the explica-
tion of the underlying =-hamiltonian. In Shibuya’s theory the formalism leads to a
RPA like equation which is non-hermitian. In our view, an explicit formulation

of the #-hamiltonian would be conceptually more transparent, and a non-hermitian
formalism should be avoided as far as possible. '

The earlier partitioning technique formulation of H, by Freed (1972, 1974), and
the consequent numerical applications are quite extensive and they bring out the
various factors contributing to H,. But the formalism had the disadvantage of
leading to an energy-dependent hamiltonian. It seems that Freed considered the
energy-dependence of H, as both natural and unavoidable, but this feature is cer-
tainly due to the special formalism that he used. By adopting an alternative parti-
tioning technique due to Coope (1970), for example, the energy dependence could
have been avoided. After the submission of the first draft of our manuscript for
publication, there has appeared another paper by Freed (1976), in which he shifts
from his earlier view and gives an energy-independent formulation of H,,, much
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along the same line as Jgrgensen (1975). The generalised perturbation series that he
builds up is structurally analogous to the simultaneous equation solution method of
our theory (I, IT), with the difference that explicit inversion of a set of matrices is
needed to generate his series. Freed also discusses the question of core valence sepa-
ration, and defines a suitable partition of the hamiltonian to achieve this. In con-
trast we achieve this by introducing T,-matrix elements with passive valence-valence
scatterings. The relative efficacies of the two formalisms remain to be tested. Freed
also discusses three body terms of Hy which look quite similar to ours. Freed,
however, does not discuss the elimination of spins, and this may pose non-trivial
problem in an algebraic theory. In particular, the ladder terms that appear in the
energy denominators of his perturbation series strongly resemble the Epstein-Nesbet
perturbation series, which is known to be manifestly spin-dependent.

It should also be pointed out that numerical studies may indicate that the elimina-~
tion of the energy dependence of Hyn would lead to a slowly convergent expansion in
which p > 2 body terms are also significant. In that case, one would say that the
parametric dependence of H, on E is a compact way of handling these latter terms.
The situation is then comparable to that encountered in Green function type of
formalism. But until a detailed numerical calculation settles the issue, we should
suspend our judgement regarding this rather tricky question. :

Kvasnicka (1975) used a third order degenerate Rayleigh-Schradinger perturbation
theory to derive a hermitian H,. This formalism uses Goldstone diagrams right
from the start, so that elimination of spin-variables is' accomplished at the outset
and the series is of such a structure that it can be used in a straighforward manner
to generate the three and higher body spin-independent terms of H,. In this sense,
Kvasnicka’s method is manifestly spin-independent. In contrast, the formalism of
the present paper has the complexity that after the one body term, the spin-indepen-
dence had to be proved. This is due to artifacts that are peculiar to the formalism.
But, whereas it would be impossible in a perturbative formalism to include classes of
diagrams which do not form well-defined algebraic series, in the non-perturbative
formalism it is a built-in feature and in this sense yields a much more compact ex-
pression of Hy In particular, the so-called off-diagonal ladder and ring diagram
contributions cannot be included exactly by summing up any algebraic series, but
are shown to be quite important in actual calculations on closed-shell systems (David-
son 1973; see e.g. Mukhopadhyay et al 1975 for an actual calculation). There is no
reason to suppose that they will not be as important in open-shell cases. It also
appears that the simple diagrammatic representation of the degenerate perturbation
theory would be lost, if one goes beyond the third order (Kvasnicka 1975). No such
limitations exist in the non-perturbative formalism.

We would like to conclude the comparative study of the various effective hamil-
tonian formalisms by drawing attention to an as yet untested but potentially very
powerful formalism developed by Johnson and Baranger (1971). This formalism
also generates a spin-independent hermitian effective hamiltonian, as in Kvasnicka’s
formalism, but the structure of the perturbation series is entirely different. ‘Whereas
in Kvasnicka’s theory (K-theory in short), corresponding to each diagram in Hy, there
is another which is hermitian conjugate to it (unless the diagram is self conjugate),
each diagram of Johnson and Baranger formalism (JB in short) is intrinsically self-
conjugate. To use a jargon from stereochemistry, K-theory yields a hermitian H,
by external compensation while J B-theory achieves the same property by internal com-
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pensation. The number of ter

ms in JB-series is less for a particular order of pertur-
bation, and in this sense mor

¢ compact than the K-series. Moreover, there‘ is no
difficulty of diagrammatic interpretation as one goes beyond the third order of per-

turbation.t The K-formalism was initially meant for nuclear structure'calculatlons
but has not yet been applied in either nuclear physics or molecular thSICS-_

It appears now that we have quite a few theoretical apparatus at our disposal .to
tackle the m-electron problem in an ab-initio manner. It seems extremely worthwhile

at this stage of development of n-electron theories to undertake a comparative ab-

initio studies on prototype w-systems using the different formalisms that have been
currently develo

ped. A parallel study in nuclear structure calculations has already
begun (see e.g. Barret ez al 1975, Richert et al 1976).

Let us now discuss certain specific features of H, as coming out of the present
formalism. From eq. (42), it appears that the extent of screening of the mr-electrons
would depend on the dominance of contribution of certain terms in the sum. As.tl:lle
matrix elements appearing in (42) are of the dispersion type, they fall off rap}d y
with the distance of separation of ¢, o* or * with 7 ; thus onlythose o, o* or 7* orbitals

which are spatially closest to the 7-orbitals concerned would give a sizeable contri-

bution. It thus appears, that the extent of screening will be greater for m-electrons in
atoms which have greater number o

f nearest neighbours. This gives us a physically
appealing picture; for atoms with greater number of nearest neighbours would have
to be in the interior of the molecule in some sense, and electrons sitting. on them are
likely to experience more screening, as they would be screened from all sides. In this
sense, even for alternant hydrocarbons, the one-centre repulsion integra!s Yaa fqr
C-atoms which are at the periphery are theoretically expected to be greater in magni-
tude than those for the interior C-atoms. This spells a breakdown of the Coulson-
Rushbrook like theorems (see Parr 1963), and is a consequence of the effect of correla-
tion and o-screening. The two-centre repulsion integrals y,, would also be ¢X17fe°ted
to display a similar site-dependence, being more screened in the interior than in the
periphery. The conclusions would remain the same also for the more accurate
coupled calculations [eq. (36)]. A similar conclusion to ours was also rea.che_d. by
Westhaus and Freed. Gutfreund and Little (1969) estimated in a purely empirical
manner the extent of screening of the w-electrons for large condensed hydrOC§rbonS

by putting a probe-charge at various places, and also reached a similar conclusion.
The question of the transferability of the #-hamiltonian parameters must be regard-
ed as sub judice till detailed numerical results become available. But in order to test
this criterion, the n-hamiltonian must have to be formulated in terms of a non-ortho-
gonal, slater-like, pz basis-set, The generation of such a H, from an orthogOI{a]
basis set is straightforward. We start out with the Lowdin-orthogonalised pz basis-
set, and end up with eqs (16)and (19). We next expand each orthogonal pz in te‘rms
of the non-orthogonal set, and generate for each block containing orthogonal orbitals
as the external labels a sum of blocks labelled by various non-orthogonal orbitals
in the external lines, As the non-orthogonal basis-set is lineraly independent, CE}Ch
such block in the sum must Separately be zero. Thus, for equations corresponding
to blocks labelled by orthogonal basis sets, we would have as many blocks labell'ed
in the sum over internal valence-lines in a dia-

by non-orthogonal basis, Further, .
gram, we can expand the orthogonal orbitals in terms of the non-orthogonal orbitals,

1The K-formalism is ve

Ty general and, for example, may be used to generate natural orbitals of
a system by a Green function formalism (Mukhopadhy

ay et al to be published).
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and can retain terms up to any order of expansion by a slight modification of the
diagrammatic rules. This is shown in the appendix 1.

We are currently undertaking a numerical investigation on the m-hamiltonian
corresponding to 1s* 2s® p? spectroscopic states of carbon using the formalism de-
veloped in the paper. Our aim is to provide theoretical values of the effective Slater-
Condon parameters for the p-orbitals of carbon which would generate formally
exact values for the energies of the spectroscopic states when calculated with the
model space functions only.

Acknowledgements

We would like to thank Paul Westhaus for sending us preprints of his work and for
his valuable comments on the non-perturbative open-shell formalism developed by
us. Thanks are also due to the publication sections of IIT (Bombay) for the help in
preparing the manuscript.

Appendix 1

Here we give the rules for finding out the expression corresponding to a Goldstone
H,-diagram in a G-block

(a) In a G-block only the topologically inequivalent diagrams should be included.

(b) For each diagram, label the external lines in such a way that the block implies
the same scattering event as that implied by the corresponding T-matrix-element
(see section 4.2).

(c) Label the internal lines appropriately, and sum over them.

(d) Attach a sign factor (—1)rH+m to the diagram, where n is the number of
T, or T,* operator on the left of an F or a ¥ vertex, & is the number of hole lines,
] is the number of loops and m is the number of T,+ operators in the diagram.

(e) Assign a factor 1 |K! for each of K sets of equivalent vertices. Equivalent
vertices are the ones in which equivalent lines enter and leave the same vertices.

In the diagram, there will be two types of strings formed by connecting Tp[T,*
vertices together. The first kind consists of strings which lie entirely on the left or
right of an F or a V vertex. If n, and n, be respectively the number of T[T+
vertices in any string lying on the left or right of the F.or ¥ verteX, then attach a
factor [(1)mm?) (1fmm, D], the product o goes over all such strings. The second kind
of strings are those which extend to both sides of the F or V vertex. Draw an ima-
ginary vertical line passing through the F or ¥ vertex. Let n'; and n', be the number
of T vertices in the left and right segment of any such string. Attach a factor (1/7n’, 1)
(1/=n’,"), where the product goes over all strings of the second kind.

(f) collect the strings of T,|T,* vertices into classes, each class containing a set of
equivalent strings. Let the number of strings in any class be 7. Then attach a
factor (1/mn,!), the product running over all classes. :

For non-orthogonal valence lines, the rules for drawing and finding out the contri-
bution of the diagram are practically the same, with the difference, that (2) each
internal valence line is labelled by two distinct dummy valence labels and there is a
two-fold sum over those two dummy labels. (b) If the overlap matrix S between the
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'+ -
non-orthogonal AO basis be written as § =1 -+ A, then for each pair of valence
© ~
labels (m;, =) on any internal line, attach a factor X  (—1)% (A™.),, where
- - n,=0 )
(A”»),; is the ij element of the A”» matrix. For all practical purposes, the series has
to be truncated after certain finite n,.

Appendix II

In this appendix we shall be giving expressions for the quantities d,, d, and d,
introduced in eq. (40):

dy (73 mp) =my (w3 m)) + 2 (mao” | V| my0p) (o |t et>  (AD)

O’b, ()

where
My (ma; m) = & (m [ f| mp*y {m* | 1| m,)
ﬂb*
+ & (im0 I ﬂ'"‘b a*) <Ub*l L | o) — 2 Loy I vl Ty )
Tpy Tp* Ops Ops Tp*
(g my* ]tz\ o0y + Z (C'blf\ RO lt—z l”b a5
Tps "
=+ z <77a7"bl;|Pc*Pb*> <P0*Pb*ltzl7rbgb>
oy, Py, P>
+2 z <0ba'c|;]Pb*Pc*><Pb*Pc*7Taltslabacﬂb>
Tps Oy Pb" Pc*
— z (o 0c | V| Py* P*y (P* P m, |ty | my P* Pp*) (A2)
Op Oy Pp¥, P ¥
dy (mamy; mem) = my (m, Tys Temg) + 2 {m Xy | v]|m, mg) X
¥
{7, l L* Ivrc‘> (A3)
where
my (”n‘”b; "c’”d) =2 <7ra Tp l v l "c* ﬂd) (772:’l= I tl IC>
*

e

+3 2 <°-°’b|v‘"c‘”d> <‘”a7fbltzl 04 Op

Od, Gb
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4+ 2 ((oama | v ‘ ot ey (o4 ™ ‘ ;;‘ Oa Te)

E 3
gy Oq

— (oama | V| me 0aY {mp0a” | fa] T 0a))

+ 2 (oaop \ ;;‘ P {rray e | Iy ! e Op a,)

Ogs Tps e
— (o4 o |v ‘ me* ma) (Ta™ L l tal 02 O 7))

+ z ((”a“a\;llpc*Pd‘> (”ch*Pd*Ital'”dﬂcoa>

Pr P, o,

—~{maa,|V| P’ P (my P P [ ty| oamea)) (A4)

ds ('”a Ty ey TdTe 7’_{) == Mgy ('”a Ty Tey TaTe '"'f)

+3 2 {m, 04 | ﬂ ma 0y {myTe Oc ‘ tgt | e Ty o*y

o5 o,

+3 2 (mme l v] 0, 04) {72 0c T2 | g™ \ Ty e Tp) (A5)

T g
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Mg (g My Tes TaTe m)= 2 {myme | v 1 m* my {md* ™ [ty | mame)
Trd*

+ % E* ("u ‘f‘ ”dxt) <'"'d* "b"c‘tai"rd'"e"f>
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PP

+ F (meoe | 9|7 0a®) (mamy 0d | tg| ma 7e )
ad*! Oc

— <’”b e ‘ Vl og" '”f> {ma of o l I3 l TgTe UC>

+ ('”c O ' v‘ Ty Ud*> (’”a U: Ty ! I3 ‘”d Te ”c»
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