Pramana, Vol. 12, No. 3, March 1979, pp. 203-225, © priated in India

On the hierarchy equati'ons of the vwave-operator for open-shell
systems '

DEBASHIS MUKHERIJEE

Department of Physical Chemistry, Indian Association for the Cultivation of Science,
Calcutta 700 032

MS received 5 April 1978; revised 6 October 1978

Abstract. Starting with the open-shell analogue of the Gell Mann-Low theorem of
many-body perturbation theory, a non-perturbative linear operator equation is de-~
rived for the linked part of the wave-operator W for open-shell systems. It is shown
that, for a proper treatment of the linked nature of the wave-operator, a separation
into its connected aund disconnected components has to be made, and this leads to
a hierarchy of equations for the various connected components. It is proved that the
set of equations can be cast into a form equivalent to the non-perturbative equations .
of the wave-operator recently derived by Mukherjee and others in a coupled-cluster or
exp(T) type formalism if a consistent use is made of a °core-valence separability ’
condition introduced earlier. A comparison of the coupled-cluster representation of W
with the perturbative representation reveals that various alternative forms of W in the
coupled-cluster representation are possible and these reflect alternative ways of realis-
ing the core-valence expansion of the wave-operator. In particular it is emphasised
how the use of Mandelstam block-ordering simplifies the coupled-cluster theories
to a considerable extent and a comparison is made with coupled-cluster methods for
open-shells put forward very recently by Ey and Lindgren. Finally, it is shown how
difference energies of interest may be derived in a compact manner using the Mandel-
stam block-ordering of the wave-operator. ' :

Keywords. Many-body. theory; non-perturbative open-shell theory; atoms; mole-
cules. : : :

1. Infroduction

The present paper—the first in a series—is mainly concerned with the relation between
non-perturbative and perturbative treatments of the linked part of the wave-operator
W in many-electron open-shell systems. Unlike that in the closed-shell context,
the relation between the perturbative and non-perturbative theories in open-shells
has not been completely explored (see, e.g., the comments by Brandow 1975, 1977)
and the present work may be taken to serve as a preliminary study in that direction.
The paper is organised as follows. In § 2, we develop a linear operator equaticn for
the linked part of the operator W starting with the opsn-shell analogue of the Gell
Mann-Low theorem of the open-shell perturbative theories, and show that, for a
proper treatment of the linked-nature of the terms, a scparation into its connected
and disconnected components have to be made. The operator equation is non-
perturbative, but is derived in a perturbative manner. In § 3, we show that using
the linked cluster theorem derived in connection with the non-perturbative open-
shell theory (Mukherjee er a/ 1975 a,b) and a generalisation of the concept of core-
valence separation. (Brandow 1967; Mukherjee et al 1977a; Mukhopadhyay et al
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1978; Ey 1978), we may convert the lingar operator equation for W into hierarchy
of equations for the connected parts of W and show that this set is equivalent to the
non-perturbative equations recently derived by us (Mukherjee et al 1975 a,b). In
§ 4, we compare the algebraic structure of the linked part of W with the correspond-
ing open-shell perturbative expression and show that various alternative avenues
exist for realising the wave-operator in the non-perturbative theory. It is shown that
these various alternatives correspond to different ways of expressing the core-valence
interaction in the non-perturbative expansion of the wave-function for the system.
In particular, the relative efficacies of two alternative expansions—the Baker-
Hausdorff multicommutator expansion and the other a Mandelstam block-ordered
operator product representation—are compared, and the relation between the present
work and the very recent theories of Ey and Lindgren (Ey 1978; Lindgren; to be pub-
lished) is investigated. We came to know about these studies after the first draft
of our paper was completed. In§ 5 we shall outline a theory dealing with difference
energies of interest—like transition energy and ionisation potential—using the
Mandelstam-ordered product representation of the wave-operator.

2. The open-shell analogue of the Gell Mamnn-Low theorem and derivation of an
operator equation in W R

We start with the hamiltonian H, and partition it as follows:
H=H+V | | ¢))
with Hyd® = BP0 Lo ()

The functions ,° are either exactly degenerate or nearly so, and may be said to
span a model space characterised by the model-space projector P:

P= Z [ ] | 3)

In what follows, the formal manipulations are considerably simplified if we assume
an exact c‘iegeneracy of the model-space functions ,°, and put all the unperturbed
energles simply as E°.  Removal of degeneracy may be effected later by using the
technique advocated by Brandow (1967).
tth: classify all the spin-qrbitals into core (hole), valence and particle orbitals in
( e usual manner (Mukherjee ef al 1975 a,b, 1977 a,b,c), and designate them as
cg,r B, ..), ép, g, ...), and (p, g, ..'.) respectively. The exact eigenfunctions ¥, of H,

responding to the exact energies EX, are then expressed as the action of the wave-
ggefaéor W(Mf)]le.r 1945) on a linear combination of the model space functions;
andl;;lh uces excntatlo‘ns f‘rom,core to valence/particle and valence-to-particle levels
¢ us superposes ‘ excited f}mctlons on to the model-space components ,0. . -
wasndier‘;i:(; )t/‘gi.rs, sevelrlal studies have appeared where a compact expression of W
Sanden e X open-shells using many-body perturbation theories (Brandow 1967;
; Oberlechner et al 1970; Johnson and Baranger 1971; Kuo et al-1971;
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Kvasnicka 1974; Lindgren 1974). ~Although the approach to the problem and the
emphasis given to various aspects differ rather considerably from one author to the
other, all derive a form of W containing linked terms only, and all show that a linked
cluster theorem is valid. for open-shell systems as well. The relationship between
these theories is far from trivial, and this has been explored in recent studies by Klein
(1974) and Brandow (1975). For our purpose, it is useful to start with the- Gell
Mann-Low factorisation theorem for the open-shell case which leads to an operator
equation for the linked part of the wave-operator. In so far as we shall exploit
only the algebraic factorisation implied by the open-shell Gell Mann-Low theorem,
several alternative perturbative approaches deriving the theorem in a time- depen-
dent formalism using different time-bases (Morita 1963; Kuo et al 1971; Oberle-
chner et al 1970) would imply for us essentially the same thmg The pertinent point
for us is the following factorisation,

Wi = [We | 451 <y | W[4 )
J

where Wy, has no singular energy denominators. Wy is a collection of all opera-
tors which in diagrammatic parlance consists of all the excitations from core-to-
valence/particle, valence-to-particle and mixed core-valence-to-particle/valence levels,
excluding the ones containing vacuum fluctuations (i.e. pure core-correlation dia-
grams) and also the diagrams with a dlsconnected pure valence-valence scattering
components. Furthermore, if any two vertices of the interaction ¥V are connected
by valence-lines only in such a way that a vanishing energy denominator is implied
then the lines would appear as ‘ folded * through suitable juggling of the interaction
vertices (Brandow 1967; Oberlechner et al 1970; Kuo et al 1971). (There are other
subtle features which we shall discuss later). Wy, is thus an acronym for ¢ folded
linked * expansion of W. Let us emphasise here that various terms of Wg; may be
disconnected, and thus the term ‘linked * merely qualifies that diagrams do not
contain vacuum fluctuations and valence-valence scattering components.

It may be shown (Brandow 1967; Kuo et al 1971 ; Oberlechner et al 1970) that
the exact energies EX may be obtained from solution of a model-space secular
equation '

2 PP HW s | 47> by = EX by o )

"The combmmg coefﬁclents bm may be shown to be such that the functions zﬁK,
deﬁned through : : :

2% buo | | O

have the significance that they are projections to the model space of the exact eigen-
functions of H having respective eigenvalues EX. The quantity HWy would con-
sist of all connected diagrams having various valence lines as the only ingoing and
outgoing lines. A completely closed part of HWy, would give the exact energy of
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the core, and is constant for all the states. The rest is .the vaIe.t;we {?neri}r and the
core-valence interaction. We may call H W.FL as an effegt{ve haml_‘.tomkaln L eg.of -

Let us now try to convert Wy, into a series expansion in I'/', Lfsm-g t e:; _ ;11;) of rea
soning one follows to derive an algebraic-cum-diagrammatic representa tl‘ceg .
for closed-shells (Goldstone 1957). Noting the fact that (1) vgr19us verd1 s or Y
in Wy, may in general be connected (excludm.g vacuum ﬁucftgatl(;)% a? | yatence
valence scattering components) and (2) the vertw.es .would be joine by fo  line
when the * stretched > diagram would entail a vanishing energy denominator, we m y
write Wy as

= 32,

where Q is defined through (3), and

E=l

is the nth order term in the expansion of Wy, with a rule of joining of the vertices
as dictated by the properties (1) and (2) of Wy noted above.

Now we shall show that by using a rather simple manipulation of (7), we may
derive an operator equation in We. Writing Wy as

[e¢] .
Wo=1+5 PR =14 , (8
p=1

where W‘F"L) is the p-body part of Wi, we have

=25 ©

A typical term of w would have the
structure would be such that it would h
are ingoing valence lines and the cor
connected with another having ingoi
having core-excitations only. This
¢ompare the perturbative and non-perturbative theories.

If we now dissect each term nw diagrammatically in such a way that the lines

joining the extreme left vertex ¥ to the rest are severed, and call the rest as w’, then
symbolically we may write :

[(E‘%‘%)‘”]: | o o)

g€
Il
s

n=]

following characteristics: the diagrammatic
ave two kinds of blocks—one in which there
e lines, if any, appear only in a subdiagram
ng valence lines, and another kind of block
structure of w would be useful later when we
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- The dissection procedure is really using Wick’s theorem backwards—i.e. ‘Wwriting
a normal product of operators with all possible contractions into a product of two
disjoint terms. Let us note that the mode of joining [QV/ (E°—Hy)] and w' in
(10) must then follow the same restrictions in joining as are there in WgL. From

the mode of construction w' must consist of linked terms only, and it follows from
(10) that : .

(e o]

" memt Umem) 2l 2] ‘
“ E°—H, " E°— H, A El—H, FL}FL (1)
n==
-2 (5 25)). '
R R AL AV oy o MR (o)
The equation for Wiy then takes the form
W =1+ (52 ) ] : (2)

Let us first observe that, although (12) is derived from a perturbative expansion
of Wy, the equation is basically non-perturbative as the infinite sum in ¥ has been
explicitly summed up in (12). One might thus imagine that (12) must in some way
be related to non-perturbative theories which do not use the expansion (7). How-
ever this analysis is rather involved which may not be apparent from the rather
deceptive simplicity of (12). The difficulty arises because we lump together in a
Wé’}? all the diagrams with p incoming and outgoing lines, and are not explicitly
keeping track of whether the diagrams are all connected or disconnected. As a
result, when we join the lines of V with W in

(=L

we would no longer be sure that we are not introducing vacuum fluctuations or
valence-valence scattering diagrams. This is best illustrated in figure 1, where we
join V with a WP to get a two-body term. Now W} consists of both connected
and disconnected diagrams, and a blanket diagram as in figure 1a does not tell
us whether it is really a linked term like that in figure 1b, or an unlinked term

Wi

7/

(a) (b) (c)

Figure 1. (a) A blanket four body term of We,. (b) A linked four body term of
WrL. () An unlinked counterpar. s
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as in figure lc. Consequently, from the block structure alone, we cannot extract only
the linked diagrams of the: block shown in figure 1b, and put it as a component of

®)  This clearly shows:that for a proper treatment of (12) in general, one must
separate the connected and disconnected parts of Wy and thus keep away from
introducing spurious diagrams in the process of joining [@V/(E°—H,) with Wy, An
Ursell-Mayer type or coupled-cluster representation of Wy, would have the advantage
of explicitly keeping track of the connected and disconnected components and we

make use of this to convert (12) into a more tractable expression.

3. Coupled-cluster representation of Wy, and hierarchy equations for W%’f

Let us now exploit the observation that all the terms of Wy contain connected and
disconnected components inducing transitions from core-to-valence/particle, valence-
to-particle and mixed core-valence-to-particle-valence tramsitions without vacuum
fluctuations and valence-valence transitions. Clearly, a p-body operator W
would be of the form Lo , o

® (i) " " ‘

(pi) .
where each W;I?C is the connected part of the pi-body operator of Wy, and only

those pi-body operators appear in the product which make it a real p-body operator.
Thus, W< would consist of W}(,’;_)C and a product of lower rank Wlffg’s‘. The Coster-
Kummel ansatz of representing the wave-operator as an exponential (Coester 1958;
gcoelstfrtr and Kummel 1960) satisfies the form (13) for each WI?L), and this we try to
ploit.
. Equation (5) implies that there is a constant energy * shift > in each EX represent-
ing the exact energy .of the * core ’ as it would have in the absence of * valence * elec-
trons, If we call this Ec, then the diagrams for this would be the closed-shell type
Ggldstone diagrams and the calculation of E, should be uncoupled from the calcu-
lation of the rest of the energy. We have shown that such a core-valence separation

may be effected in a coupled-cluster non i i i
: ‘ -perturbative theory if we write Wy, as
(Mukherjee et al 1977a; Mukhopadhyay et al 1978) g ' "

Wy = exp (T) exp(Tv)- - ‘ .‘ - - (14)

vali ‘I’x czoztagns excitation operators inducing excitations from the core to all the
¢ and particle levels, quite regardless of whether some of the valence levels

p
va qu a P q
P

o (b) (c)

Figure 2. i . ’ - -
(8) Te vertices. (b) Ty vertices. (c) T+ vertex with a passive P —p scattering.
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would ultimately be occupied in the actual system. Ty contains excitations from
the valence to particles and mixed excitations like hole-valence to particle/valence-
particles. In order to incorporate the effect of core-relaxation effect, we have to
include in Ty excitation from holes to valence/particle in the presence of ‘ passive ’
valence levels present as spectator (for details, see e.g. Mukherjee et al 1977a, 1977b;

. Mukhopadhyay er al 1978). The essential point for us is the observation that Ty
always contains incoming valence-lines. A set of typical T; and Ty, vertices is shown
in figure 2, :

In what follows we shall somewhat change the notations of our earlier non-per-
turbative papers to make the ensuing derivations more transparent and the termi-
nology more uniform. We define a ¢ connected term ° (called a linked term in our
earlier work) like {7 HT™}¢ as a collection of connected diagrams containing
nT(T; or Ty) vertices to the left of H, m T vertices to its right. The connection fol-
lows a rule that we start out from A and begin connecting the H vertex with T ver-
tices on its immediate left or right and move out systematically connecting the next
neighbours and proceed without skipping any intermediate 7 during the process.
Using this notation, we would rewrite (12) in a compact fashion. Using the repre-
sentation (14), we have /

exp (T exp (1) = 1+ | (27 Yexp (7 exp (73) 15)
| E°—H, FL

Let us now analyse the quantity

[ (EO?—I;IO) exp (Tc) e%P (Tv)]

FL

This consists of two kinds of blocks. The first contains products of the follow-
ing two sets of diagrams. (a) A set containing all the connected diagrams contain-
ing the V-vertex and a string of T¢ and T vertices such that the lines connecting
the T vertex joined to the V-vertex are not folded. In the string, the T¢’s appear
next to ¥, and next there would be Ti’s. By the very mode of construction the
Tc-vertices cannot be mutually connected, -but Ty-vertices can be so. This is
somewhat awkward but this can be circumvented as discussed later. (b) Another
set containing products of 7, and Ty operators with all possible contractions
forming a cluster. We introduce diagrammatic representations as shown in figures

Figure 3. | The various blocks appearing in (1>5)'. (sc'e text for details)
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3a and 3b for these two sets. The double arrowed doublc line entering the shaded
block from below signifying the string of 7¢ and Ty vertices in figure 3a are a
collection of valence lines. The vertex ¥ and the block are joined by valence/
particle/hole lines in all possible ways. (The block may even be empty with respect
to T). The outgoing lines are not all valence lines. The ladder-like double lines,
emanating from the top of the block and joining ¥ and the block, are a collection
of all possible allowed sets of valence/particle/hole lines. In case the open-lines
emanating from the block are absent, the lines joining V' and the block cannot be all
valence. There may not be valence lines entering the block from the bottcm at
all. This occurs when there is no 7Ty vertex present in the string of T-vertices
connected to ¥. The set (b) is designated by the diagram cf figure 3b. They are
the collection of connected as well as disconnected clusters of 7 and Ty operators.
The set of ingoing and outgoing bunches of hole, valence and particle lines arc
shown as in the figure. : ‘

Now we consider the second kind of block. This consists again of two kinds of
sets of diagrams. (a) A set containing all the connected diagrams having two strings
of T-operators joined to V. One string contains the ¥ and a set of T-operators
which is connected to the other string containing Ty-operators only through * folded’
valence lines. The ‘folded string’ when °stretched ’ is such that from the pertur-
bation theoretic standpoint it would have implied a vanishing denominator. Let us
note that it is not necessary that the vertex V itself has to be joined by the folded
lines to the string of Ty-vertices; rather the whole connected cluster of ¥V and T
and Ty would be joined by folded lines emanating from anywhere in the cluster.
A typical diagram where V itself does not have folded lines is shown in figure 4.
This subtle feature is a reflection of what is called ‘ reduction of projected core exci-
tation’ (Brandow 1967). This indicates that the block would have the general
structure as in figure 3c. The shaded block with blackened top indicates the con-
fxect‘ed clu§ter of ¥, T; and Ty. The stretched form shows that in the perturbative
Interpretation a possible energy denominator in the position of the encircled part
would h'fwe been vanishing. There would be an added (—1) sign factor arising from
the folding operation (Brandow 1967). The block which is folded cannot be empty,
though the other block may contain only the V vertex. Moreover, from the string

stru'cture it is clear that the folded block cannot contain T, vertices. (b) The other
set is of the same type as shown in figure 3b.

Figare 4. .
(see text), A term of figure 3(c) having a Tt and a Ty vertex joined by folded line
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Using the above considerations, we can now write (15) as follows:

o ,
i1
exp (Tc)exp(Tv)=1+QN[ z — ——|{VTC"',TV"}CQPexP(Tc)CXp(Tv)J
m, =20
[o'e} [ve]
11 1
o o QN[ z m|niz?{TVI{VTCMTﬂPP}QPeXP(TC)eXP(TV)]
m, n=0 I=1

, (16)
where { }97 stands for connected terms implying Q < P scattering and { }*

implies valence-valence scattering. The sum over 1 in (16) starts from unity, show-
ing that the block folded in 3(c) is not empty. The symbol N[ ] stands for normal
ordering.

- Now we use the concept of core-valence separation and introduce the generah-
sation thereof—to be henceforth called ‘sub-system embedding condition ’. This
concept is inherently present in the many-body perturbative theories (Brandow
1967) but needs a careful treatment and explanation in the context of the non-per-
turbative theory. The concept implies that the total system energy for an Ny
valence problem consists of contributions from varicus p-body parts of H,g:

H.q = Z HE 17

with the added feature that the energies of any sub-system containing Ny < Ny
valence electrons would merely come from the corresponding terms:

H ¢ for Ny valence problém Z H(p) ' (18)

There is thus an ‘ anfbau principle * for bulldmg up the Ny valence problem from
the core problem by successive addition of valence electrons. The p=0 contribu-
tion signifies the total core energy. We shall now show that (16) may be simplified
still further. '

Premultiplying (16) with Q (E°—H,), post multiplying by P, and using the com-
mutativity of Q with H,, we have

. 1 1
Q (E'—H,) exp (T¢) exp (Ty) P = QN[ Z = = {VIT, "}QP
‘ ' m, n= .
Cw ©w
‘ | S U N |
X exp (Tc)exp (Tv) |P — @ N 1l I
‘ - myn=0 [=1
x {Ty {V Te" Ty Yo 327 exp (Te) exp (Tv):l p. (19)

Let us now note that the E? and H, terms of the left side of (19) may also be ab-
sorbed respeciively with the second and first terms of the right side with proper
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signs if we use Wick’s theorem on each of the term of the left side and write
EY exp (T¢) exp (Ty) P as exp (Tc) exp (7y) H, P:

o | | “ )
. ' 1 .
0= gN [ z L T T2 e (1 exp (Tv)] P
m! n!
m, n=0

I 1 1 m 7\ PPy QP
“QN[ EEHETI{TVI{HTC TV}c c
I=1

m, n=0
X exp (Te) exp (TV)] P | o (20)

. Let us now consider the core problem. The core-energy would be contributed
by Hc(gf) only coming from the core part of Wg. Hence only the terms containing
T only would contribute non-trivially if we take in the O space excited determinants
obtained by lifting electrons from the core-to-valence particles and P space to be

the core function only. Further exp (Ty) acting on the core gives zero, so that we
have . : a '

0=0N| > {HT exp (T)]P, | (21)

m=0

for the core-problem. Now using the linked cluster theorem derived previously

(Mukherjee et ! 1975a, b) and noting the fact that Tt has no lines to the right, we
find | " o |

QN[ ’20 i—,{H Tc"'} f”]P =0 -"‘ (2;2)

This is thus an equation for the core containing connected diagrams only.

* For the one-valence problem, we choose the one-valence functions in the P

space and the set of (Ne + 1)-excited determinants for the Q space. The non-
trivial contribution in (20) would then come from the 1-valence parts of

- AH T T, (T fH T 1 T

and the corresponding zero-valence part. Using an additional superscript to
indicate valence-rank of these operators, we have S o

Q0
ov[ 3 L i QT 720 exp (1) exp | P

m, n=

o © .
ol 2 D e e ny e
=1 R .

!
. my, n=0 14

X exp (T¢) exp (Tv)] P

e —



Qi s e i i N R S e e e S
AR

Wave-operator for open-shell systems 213
" QN[ 2 — {H TN exp (T exp (Tv)]; P=0. (23)
m=0

Clearly the valence rank here refers to incoming valence lmes in the operators of
{ ¥

Now, due to core-valence separation, the last term in (23) is zero from (22). For
the rest of the terms in (23), exp (T¢) exp (7v) may be trivially factored out because
except the unit term of its expansion, the rest increases the number of incoming
valence line from more than one and they are trivially zero (there are not more than
one valence electron to be destroyed from the P space). Thus, we have =~

e o]

o 3 bk rapn]

m, n=0

_ QN[ z ;i_%i;_ (T {H T V"}fP}fQ)‘D]P=O, 24)
=1

m, n=0

for the one-valence problem. : ' A
For the two-valence problem the one-valence and zero-valence problem are hke-
wise embedded, and we have thus quite generally,
: . : o
ON [ z ! _1 {H T Ty }QP)(IJ)]
m!

m, n=0

;IH

1 °°1   ‘ 1,
- QN[ > ZT({TVI (HTo Ty)PT) )m]p —0 25

m, n=0

for the p-valence problem. The set of equations (25) for p =0 to Ny are equivalent
to the perturbative expansion for Wy, as they are derived from (7), but contain only
the connected terms. This has been possible through a clear book-keeping of the
connected and disconnected parts of Wy, Our task now is to show that they
are entirely equivalent to the non-perturbative equations derived through the use of
linked cluster theorem in our earlier work (Mukherjee et al 1975a, b; 1977a, 1978).

The non-perturbative theory using core-valence separation was derived in the
following manner. ~ For the core problem, we solved a set of equations

W | He | hoprey =0 forall |, (26)
where H is giVeﬁ by (Muklierjee et al 1977a)

. |
He = z ~ {HTY. | | (27

m=0



214 Debashis Mukherjee

But only the { 250 term of H. would however contribute in a non-trivial
manner, and hence we have -

[ved

WiE | ) QT g s o S ®

m=0

This is clearly equiva[ent to the equation (22) obtained from the perturbative

development, and shows that the core-problem is equivalent in the non-perturbative
and the perturbative theories.

For the N,-valence problem, we solved a set 'of equations |
Gl | Hoy | 430> =0 for all Jand . - (29)

The operator H_y is given By

. | .
11 ‘
Hey 2‘2 (— 1) T {T' He T}, - (30)
B Al o R

The non-trivial contribution of (30) to (20) would come from

@0 Nv ’
Wy =k 0 AT B Ty | ey —o,
L,n=0 : | .p=0 . )

Of this, the p = 0 body contribution is zero from (28); (p = 0 body contribution
cannot come from terms containing 7y). If we assume now the ‘subsystem embed-
ding condition’ in the Same spirit as in the perturbative theory (Mukherjee et al
1975¢c, 1977a, b; Mukhopadhyay er 47 1978 s particularly the last article demonstrates
this concept in a Separate section, though it is not mentioned by this name), then

We have to assume that the corresponding (Ny—1)-valence problem has also a
similar set of equations, ‘

O | Heoy | vy =, (32)

whence it fqllows that
AN DS (R BT @nm g o
I, n=0 S "

By considerin g the

successive hierarchy of other (Ny—2), (Ny—3). problem, we can
generally say that a Lo S

0

V| > (—y Xl 5 0P | P = 0 for all y—0, N, (34)
7 c :
{, n==0
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Thus, the corresponding non-perturbative equation derived by the use of linked
cluster theorem has the structure as implied by (34) for the p-valence problem, and
unlike the core problem, has no immediate resemblance to (25) obtained from per-
turbation theory. We shall now show in two steps that they are equivalent.

In the first step, we shall demonstrate that (25) follows as an identity from the
non-perturbative development, and in the second step, we shall use this identity to
convert (34) to (25)! (The demonstration of the equivalence of the identity with
(25) shows that a purely non-perturbative derivation of the equivalence of (34) with

‘(25) has been possible).
For the Ny-valence state with energy EX, we define the Schrédinger equation as
HW §§v = EX Wiy v, | (35)

where Egv is written as a linear combination
- N,
PR =D Y C 3 R (36)

Using (14), we have |

H exp (Tc) exp (Tv) $§v = EX exp (T¢) eXPVI(T v) gR | (37
Using the definition of H (Mukherjee ef af 19772) we have

H; exp (Tv) yx' = EX exp.(Ty) 2 - _ (38)
After a second use of the liﬁked-clt1‘3ter theorem, we have

Hey ggv = EXygv. R S €9)]
Multiplying by the model space left eigenvector{iﬁv |‘, we have |

BX = G | How | G55, CLvL (402)

or, equivalently,
= 1 - S B )
EK = <(/,1?¥v‘ Z — { H, Tvm}é’P l z/:%"_)a | (40b)
m=0

In (40b), there are no Ty-operators to the lefi of H,, because then the total term
{ ¢ cannot remain in the P space (T has free particle hole lines to its left which
would annihilate (y&v | if Ty sits on the left of He). :

The left and right model space eigenvectors are biorthogonal, satisfying the
completeness relation '

DR G = ay
Kep o
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where 1, is the unit operator in the model space. Moreover

G\ B | Ty = BB @
From (29), we have further ’

| Hev | 9% =0, @)
Then, projecting (38) on to ((/;;Z." |, and using the definition of EX from (40a), we have
<¢'1!Y:v | He exp (T v)l Ry = <¢’1 | exp (Tv) I ‘/’K"> <¢ v HC"" \ ¢KV>

(44)
Using (29) and (42), we deduce

e | He exp (T3) | 32+
= (¥ | exp () 2 %,{Hc TR gy (45)
n=0 ’

Using Wick’s theorem, we have
. 60,

WA L {HT)gr e (T ||

n=0

m N @ 5 5 D o 8 (T2 13
B (46)

Using the core-valence separation and the subsystem éinbedding condition in the
same way as was done in deriving (25) from (20) we have

."_Ms

e}

on [ZO;}, (7.7
=QN[Z%Z_I_'({TV {Ho Ty }PP}QP)(p)] | @
Using (27), we have
QN[mi I (T Ty }QP)(p)]

I
L\
=
s &
3=
RIH

2 (T (H T T, }PP}QP)@] (48)
m, n==0 1=1 o
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showing that (25) is implied by the non-perturbative theory as a consequence of the
core-valence separation and the subsystem embedding conditions.
Now, we manipulate (34) as follows:

o=on| > -1 1 Ldnim, T/3en]
1, n=0 ’

= QN[ z (—1) ;7 ,;I‘!({T_Vl {Hc T"','}gé}gp)m

~ hn=0 S |
+ (T {He Ty }2r}yen® ] P . O (49)
We now usé (47) for each g-body component of {Hc " g” , and thus find
’ 1 .
R.H.S. of (49) = ON [ 2 = ({HC—TV"}gP )“”JP
. n=0 :
(o0} 0]
(—1)! 1 .
rov| > G D dn e
I=1 n=0

., w . m N ) * . .
| GRILE S N PP, )
rov| DGR g D e el
(50)
In (50), we have separated the /=0 term from the first term of r.h.s. of (49), and
made use of the fact that /==0 form is by definition zero for the second term of the
r.h.s. of (49). We now collect together all the terms having identical powers of Ty

that appear on the left of H for the last two terms of (50). For such total power
M=2, we can rewrite these two terms as _

QNlii i i ,f:___l_)_r_l 1 {Ty {TYr {Hc T‘;n}gr}gp}gp)(p)] P

(M—A"r! nl

I
I
©

(32 dnm e enramer]n o

M=2 n=0

The M=1 term is left out, and simply read as -

1
— o QT LB )Y
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So, finally, (49) yields, through (50) and (51)

0 .
0= QN [ z _1.' {He Tvv}gf’)m] P
ni
n=0
ey @ ' -
1 1 :
— QN[ = ) = (T {He Ty gP}gP)MJ P. (52)
n=0 m=1

Substitution of H from (27) completes the equivalence of (52) with (25), and it
thus follows that the perturbative and the non-perturbative approaches are struc-
turally equivalent. The derivation, moreover, brings out the lineage of the non-
perturbative theory in an explicit manner. The above equivalence essentially carries
tarough with very little modification where valence-orbitals contain ° active hole
levels * as well.  We consider this explicitly elsewhere.

The representation (14) for Wy is an ansatz, however, and is by no means the
only representation possible. In the following we consider several alternative

forms, all of which might not lead equally easily to the equivalence of the pertur-
bative and non-perturbative approaches. e

4. Alternative expansions for Wgy,

Brandow (1975) and Kuo ef al (1971) have discussed how Wg, can be factored into
a pure cors-excitation component and one containing core-valence interaction com-
ponent. Instead of the explicitly factored out representation for Wy, we might
use the historically oldest representation (Coester and Kummel 1958; Cizek 1966):

Wr = exp (Te + T). (53)

Using the Baker-Hausdorff exp

ansion, we can rewrite this as (For more rigorous
forms, see, e.g. Buzano 1978)

We =exp (Te + Ty) ~ exp (To) exp (Ty) exp [— 3 (Te, T)I. (54

Lzt us note that the presence of the commutator [T, 7‘\,] ensures that

exp [—}(T¢, Ty)] is also linked. The alternative ansatz is equally capable of exciting

o . : . X
#,%'s to various excited determinants, but is less compact. The ansatz (14) is such

Fhat‘ the combined effect of exp (Tv) and exp [—3(T¢, Ty) are all lumped together
t0 Bive a compast representation exp (7y). Each T, thus contains many contracted
Cohmizl'in‘{m of T and T, coming through the commutator (T., Ty). One wondeis
ngfltii:i}r ;; n;i};;f: n;arc cconomical to have a representation of W which avoids
In the ansagze (i OC; ( ch)nz;;r;:tators between jche V.arious components of T, and Ty.
of the type ¢ commutators.invariably appear through contractions

Po——

) 7 oA
Ty Te® or Ty® T
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etc. and makes the expression of H,g rather complex at higher orders. We may
easily verify that a representation of Wy as Wy = normal ordered part of

T | T3 -
[1+T+§_!—l—§_!+...]? - (55)

with T=T,+Ty, is also perfectly general, but being in normal order, avoids con-
tractions between various components of T. We may compactly write

W, = M [exp (Tc + Tv)] “ (56)

where M may be called a * block normal ordering operator ’, which keeps nor-
mally ordered part of a given operator-algebraic expression:

M lexp (T + T = z ni N - (57a)

The operator M is frequently used in the operator solutions appearing in Quan-
tum Field Theory (see, e.g., Coleman et al 1975; Coleman 1975), and is also called

* Mandelstam ordering ’ (Mandelstam 1975). For (57), we have

M [exp (To + To)] = M [exp (Ts) exp (T¥)]
— exp (To) M [exp (V)] ' (57b)

and the complexity of the Baker-Hausdorff expansion is bypassed. Very recently,
Ey (1978) has used this form of Wy to generate non-perturbative equations for
open-shell systems. This is a generalisation of an earlier work (Offermann ez al
1976). After the submission of the first draft of this paper, we have come to know
that Lindgren also has used the same representation to derive a set of non-pertur-
bative equations similar to those derived by Ey (Lindgren 1978). Before discussing
their equations, let us first indicate how .the earlier. developed non-perturbative
theory gets modified in this new representation of Wgr.

As we have proved in the appendix, the linked cluster theorem gets modified as
follows

H M [exp (T)] = M [exp (T)] He—y (582)
| Y
with  Hey = 2 z (_1)n1 - {Tvl{Hc Ty }c}c, (58b)

n=0 ny, ny :

n1+n2=n
. oo .

with H, = z 1 mTe. - T (580)

- m! o ‘

m=0 T : '
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where all the operators on the left and right of { }c are contracted with H and
there is no contraction between the various I’s on the same side of H. We may re-
mark here that, due to the presence of at most two-body terms in H, the series in (5 8a}
terminates after the fourth power. This parallels the situation in closed-shells. In
contrast, the expression (30) for Hc.y remains essentially infinite, as there may be
terms with arbitrary power of T having contractions connecting the various 7°°S-
By virtue of (58a), the equivalence of the perturbative and non-perturbative equa~
tions derived above remain virtually the same, with the only difference that quantities
{ }c have to be interpreted as ones containing contractions with H only. Thus, the
block introduced in figure 3a and 3c contain contractions of T°s with H and not if

a string like TTT;}V, etc. The cluster shown in figure 3b similarly contains dis-
connected 7°s and no contracted components. : :

Ey (1978) has used the representation (56) and showed that a relation like (25}
may be derived from an equation analogous to (38) through a rather laborious
Wick algebra. He did not make use of the simplification afforded by connected
components and diagrams and kept the use of bi-orthogonal completeness relaticn
implicit. The relation with the perturbative approach was not explicitly demo¥i-
strated, though an order by order expansion analysis was indicated showing the
emergence of folded-diagrams from their equations. This is very similar to @
method used earlier by us to indicate that certain folded diagrams also emerge frors
our non-perturbative equations (Mukherjee et al 1975b). After the submissiorr ©f
the first draft of the paper for publication, we came to know about the very recent
work of Lindgren (1978) and Brandow (1978) where he has explicitly derived (23}
from the many-body open-shell perturbative theory put forward earlier (Lindgren
1974). Lindgren also used the representation (56) for Wy but did not demonstritte
how the seemingly quite different expression (34) obtained by a straightforward use
of the linked cluster theorem (Mukherjee et al 1975a, b) is related to (25). The pre-
sent work uses Brandow representation of Wiy in the perturbative context and uses
a different route to arrive at (25) first and then shows how the expression (34) frovrs
the non-perturbative theory is related to (25). This probably thus conflates borths
sides of the problem. Let us note that equivalence of our work with that of Ew
and Lindgren (i.e. equivalence of (34) and (25)) is valid only at infinite order «f
expansion; their structures are inequivalent for truncated expressions.

5. Calculation of difference energies in the Mandelstam-ordered representation of W,

In this section we shall indicate how the use of the representation (36) leads to @
rather compact expression of H_y leading to a very convenient theory for the diret
calculation of difference energies in a non-perturbative manner. This is a generauli.
sation of the work done recently by us (Mukhopadhyay et al 1978).

Let us assume that we have a HF representation Yy as the first approximaticin
of a closed-shell ground state, and we have a similar set of approximations ¥ for
either an excited or an ionised state. We would like to find the differences in the
exact energies for the corresponding exact states. '

In this formulation, we define the HF state itself as the vacuum, and thus
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redefine our hole orbitals accordingly. We first solve for
the ground state
by defining the exact ground state function g as problem

‘/‘gr = €Xp (Tc) Pirp. (59)

Starting With the _ground state Schradinger equation and using the relation (57b)
we have, using the linked cluster theorem proved in the appendix, the relation: ’

He Yur = Egy fhyr, (60)
where = Z — {H Tcn}c (61)

H, is really the expression derived by Cizek in the development of the correspond-
ing closed-shell non-perturbative theory (Cizek 1966). We now separate the com-
pletely closed component H, from H, and write it as

= H; + Hp, | (622)
so that He = Egr. | | (62b)
Projecting (60) on to appropriate excited states we have

Y HEP | gy =0, (63)

as the defining equation for T¢. Let us now use the following ansatz for the states 32

Hexp (Tc) M [exp (Tv)] sbk = Ek exp (Tc) M [exp (Tv)] e (64)
Usnng (61) and (62b), we have
H.oeM [eXP () Sl‘o = AEk M [eXP (TV)] ‘l’k s (65)

where A EK’s are the difference energies of interest He may be mterpreted as the
¢ dressed * hamiltonian for the system (Mukherjee et al 1977a) Using the linked-
cluster theorem (58) once again, we have

Hey ¥ = AEX Y} o | (66)
with  Hoy = z > %Tvnx{ﬂcov T} @)
n=0 771,M,
ry+-n;=n

The series terminates after n =4. Writing §/3 in terms of model space functions,

we have

S | By 192G = AE* Coe — (68)
j ' .
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The equations determining Ty are given by

W | Hoe | 425 =0 ®

In (69) N- or (N—Il)-electron excited states have to be considered depending on
whether we are calculating transition energy or ionisation potential. It is clear that
just as in the closed-shell case there would be only a few diagrams contributing to
the matrix-elements (69) because of the rather compact nature of (67), and this has
come about due to the Mandelstam-ordered product representation of Wyy.

6. Summary of the main results

Inthis paper the following things are shown.

(a) Using the Gell Mann-Low analogue of the linked part of the Wy, open-shell
wave operator, a non-perturbative linear operator equation in Wy, may be
derived. . o ‘

(b) For a consistent treatment of the above equation, one must keep track of the
connected and disconnected components of Wy, and this is achieved if one uses a
coupled cluster ansatz for Weg.

(c) Using a factorisation theorem, which we call the linked cluster theorem, it is
possible to convert the equation in Wy to a set of coupled equations which contain
only connected components if one uses the ansatz Wy, = exp (Iv) exp (T¢) and the
‘corevalence separation® and the more general ‘ subsystem embedding’® condition.
This set may be further shown to be equivalent to the equations previously derived
by us during the development of a purely non-perturbative many body theory.
Thus a connection is established between the ‘non-perturbative and perturbative
approaches to the open-shell problem.

(d) By an analysis of the terms contained in the perturbative expression for W,
it is shown that several alternative exponential representation of Wy, is possible and
they correspond to different ways of writing the corevalence interaction terms of
Wer.  Using the concept of Mandelstam or block-normal ordering, it is shown that
a rather compact form for Wg may be found. The equations derived for the
exp (T¢) eXP (Ty) are converted to the appropriate forms for the Mandelstam-ordered
representation, and the relation of these equations with the recent non-perturbative

equations of Ey (1978) and Lindgren (1978) is indicated. It is shown that the
present work conflates these two approaches. |

- (e) The M{mdelstam ordering is exploited to develop a purely non-perturbative
theory for difference ener )

gy—which parallels closel ) .
for open-shells. , parallels closely th? non ‘pcrturbatlve theory
Appendix

We shall show here that, for the representation Wy =
HM [exp (T)] = M [exp (TN A,

M [exp (T)], we have
o (A1)

ith 1 1 |
wil 1_-{ = 2 2 —1ym . rf'—'ln 4 .

n My, Ny==p
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Expanding M [exp (T)], we have
B [exp (7)) = z %HM @ (43)

where M [(T™)] is the normally ordered part of T". Using Generalised Wick
Theorem (GWT), we have

=)

0 ‘ o |

z ']:THM [Tn] — z z M [H Tny Tn—ng]ncnz, (A4)
nl

n=0

n=0 ny=0

- where all the T7s in M [H I" T"m] shown under contraction are joined
exclusively to H, and never among themselves. As all the T operators contain even
number of creation/destruction operators, we have '

’__1 r-—.l . .‘ . ' . ) o N
M [H T Tr ) = M [Trn H ). (A3)

C—_
Let us write the operator HT" as B and try to use GWT backwards to write
M [T"™ B] in (A5) as a product of two disjoint terms:

M [T"% Bl = M [T"™] M [B]

n—n,
— z nmsC, M [T"-m* T* B], (A6)
k=1

Continuing the operation of splitting up terms of the type M(7T"B) into two parts
we finally have

n—mn,
M (T"_"Z .B) z (n_nZ)' n—nz—nl 2 ( l)P M [T"l _B] . (A7)
(”’“”2'—”1)' 1 k‘!
‘ f=
( 2 kl =n,) P
i=1,p

Now, the sum

- IR
1 .
) —1)? Y

is the coefficient of the term x™ in the expanswn of [1 —Xx— xz ...]™ and may be
shown to be just (—1)», We thus have :
n—ng

n-ny — (n+n2)! —1\ . r’-':—,-‘B. A8
MIT B];.z (n__nz-_nl)}!(,l) M [T B (A3)

. 'n1=0
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Thus, (A4) becomes
n“'nz
(n = ny)!
— T = — A
z HM[ ] z n'z (n—nz)'nz (n'—‘nz'—'nl)!
n=0 ng— ny= =0

"

X (—1ys M [T (HT™)]

n  n—ny e

_ z z 2 (T7"ma) __1_ __1__ (— 1), M [T [ﬁm,]]
(n — ny —ny! nylny!

n=0 ny,=0 ny=Q
(A9)

Changing variables in the sum, and using the fact that 1/(n—n;—ny)! is zero for
n < n;-+n,, we have

0 [

Samw-5 B 5 Amcrua ity

n1—0 nz—o

(A10)
In order to emphasise that all the terms of the form

| —

M [T [H Tn]]

for a fixed (1, 4-n,) should be lumped together, we formally keep a sum over n. Thus

HM [exp (T)] = M [exp (T)1H (A1D)
w ey R . o .
where B — z z (_—1)n11_'_1_M T (BT (Al2)
n=0 m,n, nl ,
m-t+ny=n
1 -
Clearly, the quantities M[T™ [H T",]] ate all connected and linked, and we call

| o |
them as connected terms {T"xg HT"l% % .
v : ‘ clc

Thus,

-

-3 S codarRy e

n=0 n+n=
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