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Abstract. In this paper we develop a simple method for adapting the closed-shell
many-body perturbation theory to an arbitrary point group symmetry taking account
of various classes of diagrams exactly to all orders. The method consists in deriving ,
a linear operator equation for the closed-shell wave-operator W which is then symme- ‘ S
try-adapted to the pertinent point group G. It is shown that the system of equations | £
thus derived enables one to include orbital-diagonal /-, p-p and h-p ladders to SR N
all orders in a perturbative framework. The way to generalise the method through S
inclusion of a larger classes of diagrams to all orders is also indicated. Finally, the o :
connection of the present mode of development with the non-perturbative coupled-
cluster formalisms is briefly indicated. ' o
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1. Iﬁtro;iuction

Recently we developed a method of incorporating spin-adapted configuration in the
framework of many-body perturbation theory (MBPT) for closed-shell systems
(Mukherjee et al 1977a; hereafter called I). The present paper serves to introduce
another method, which is more suitable for adapting MBPT to an arbitrary point
group symmetry.

The key-steps involved in the spin-adapted MBPT [1] may be summarised as
follows: ' S .

(i) The Hugenholtz matrix-elements were cast into ‘spin-free’ form through the i .
use of Wigner-Eckart theorem; : ~ o b
(ii) the hole-hole (h-h) and particle-particle (p-p) orbital-diagonal ladder inser-
tions are shown to form a geometric series;
(iif) a certain class of orbital-diagonal hole-particle (h-p) ladders were also shown
to form a geometric series; and .
(iv) the remaining (h-p) orbital-diagonal ladders were shown to be summable by
setting up two geometric series with, respectively, second, fourth, sixth...
~order and third, fifth, seventh. ..order perturbation terms (see e.g. equations
(40) and (42) of I).
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It appears that a similar procedure would not work out so neatly if we want t0
adapt MBPT to a general point group symmetry. The reason for this difference
ties in the structure of the spin-adapted MBPT: When we use the reduced Hugfellh()lltz
matrix-elements in the process of spin-adaptation, we couple the spins of the ingoing
and outgoing pair of electrons, respectively, to a given resultant spin § — which can
take on only two values 0 and 1. But in 2 general point group G, the orbitals would
be labelled by indices y whose total number would depend on the dimensionah'ty of
the particular irreducible representation (IR) of the point group — so that the index
I', analogous to §, for the coupled ingoing and outgoing electron pair states would .
take on more than two values in general. Moreover, for a particular IR, T' may
appear more than once from the coupling scheme (say, for example, for. the point
group K Griffith 1962). 1In that case, the step (iv), described above, leading to two
geometric series, cannot be attempted, and there does not seem to be any straight-
forward procedure to sum all the (h-p) orbital-diagonal ladders to all orders. We
would resolve this difficulty by replacing the MBPT series by an equivalent one —
written in terms of the associated symmetry-adapted wave-operation W (Lowdin
1966), and providing equations which determine the reduced matrix-elements of W.
§ 2 discusses this aspect. The equations for W derived by us are closely related to

the closed-shell coupled-cluster equation (éi\z/ek 1966, 1969; Paldus, 1977; Paldus and

Cizek 1975) and also the direct CI equations of the vector method (Roos and Siegbahn
1977) in the non-perturbative framework. Recently Kvasnicka and Laurinc (1977)
and Bartlett and Silver (1976) have used restrictive perturbative arguments to derive
approximate equations analogous to ours. We have, however, derived a comple.fely
general equation for W, from which Kvasnicka-Bartlett type of recursive equations
would follow as a special case. Because of the generality of our approach, we have
been able to explore the connection between the perturbative and the non-pertur-
bative approaches to the closed-shell problem®. This has been discussed in § 3.

2. Equation for the direct determination of W

Using the Hartree-Fock (HF) determined as the vacuum we may write the Hamil-
tonian H in normal order as follows:

. 1 .
M= Eurt 2 4 Ndyag + 5 S <4B|o| CDY N [ af ap acl
4 "4, B, D
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where T and y stand for the index of the IR and the particular component of the
IR corresponding to the orbital g, and the function o, is the associated spin function.
We also classify all the spin-orbitals into hole orbitals and particle orbitals in the usual
manner, and label holes by «, B, etc and particles p, g, etc. Specifically, any hole
spin-orbital, say, would have the form aF o,

We now partition H into the unpcrturbed and perturbed components H, and v
in the usual manner (Kelly 1968), with ¥ defined by the two- partlcle part of Hin (1),
and define the wave-operator W through the relation

14y =wo), - €)
with |4 as the exact ground state wave-function, satisfying the Schrédinger equation
H{|§y = E[¢). “)

Using the Gell Mann-Low-Goldstone theorem (Kelly 1968; Fetter and Walecka
1971), W can be factored out as

w0y = w,| 0> <01 W |0y, (5

where W is a collection of all operators which induces all the #-p excitations with

the restriction that there are no closed-diagrams (that is, no ¢ vacuum fluctuations”).
W, thus stands for all the linked diagrams in W. Let us emphasise that the linked

diagrams of W are not all ‘ connected ’, they are linked only in the sense of having
no vacuum fluctuations. From (4), it follows that

E = (0| HW,|0). ‘ (6)

W can be written as a formal power series in ¥ (Kelly 1968):

W, = }:fzo {[QV/(E, — H)I"} 1 o

where Q is the projector on to the virtual space and { [QV/(E, — H)]"}, stands for
the nth order term in the expansion of W;.

Now we show that, by a simple manipulation of (7), we may arrive at a linear
equationin W;. The derivation is analogous to, but simpler than, the one we follow-

ed in the open- -shell case (Mukherjee 1979), and we shall therefore describe the pro-

cedure rather briefly:
‘We break up (7) as

Wy =1+ 5% {1QVIE — H))"}p - ®)
and dissect one [QV/(E, — H,)] from the series in (8), then (7) can be rewritten as

Wy =1+ {[QVIE — H)l Wi} -
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W}J stands for classes of all diagrams left after dissecting the [QV/(E, — H})] term.

If we now note that (i) the class of diagrams obtained by dissecting one
[QVI(E, — H,)] term are all linked (as we cannot introduce vacuum fluctuations

by the dissection procedure) and (ii) the terms in the infinite series in W, contain

the same diagrams as would be obtained from Wy (ie. (8)), clearly then W, = W
and we have

Wy, =1+ [QVI(E, — H) W,];. (10)

we have, from (10)

Wy = QVI(E, — H)] + {[QVI(E, — Hy) Wi Y

Equation (10) or, equivalently (11), gives us a linear operator equation detenninir-xg
the wave-operator matrix-elements. Because of the presence of the projector Q, W,
can have matrix-elements only between virtual space states (¢} | and the unperturbed
ground state | 0%. From (11), we may easily derive

E, —H

%

#5 > I W0 >]L , 12)

14

@1 w10y = 4t

+ 2 <

where, again only those terms in the sum over states ¢
to diagrams with no vacuum fluctuations.

We shall briefly show in § 3 that the equation (10) generates the coupled-cluster
equations for W in the non-perturbative framework (éi\z’ek 1966, 1969). For the
present let us only remark that if one wants to include very many classes of diagrams,
then it is advantageous to 80 over to the non-linear representation of W, as an ex-
ponential operator (Coester 1958; Coester and Kummel 1960; 5i§ek 1966, 1969).
This is because we are lumping together in the p-body operator component W]Ep ) of
W} all the diagrams with P incoming and outgoing lines and are not explicitly keeping

track of whether they are all connected of not. As a result, in the joining of

QV/(E, — H,) and W in (11), we would not be sure that we are not introducing
vacuum fluctuations,

This difficulty would have been obviated in a coupled cluster
representation of W, where the Connected and disconnected components are clearly
diﬁ'ercntiaf;cd*_ For our present purpose, however, where we would really confine
our attention to only the two-body part of W}, and would keep only certain special

class of diagrams in (12), the linear Tepresentation suffices. We now invoke to the

|4
Eo“Ho
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usual approximation regarding the dominance of pair-correlations, and retain only
the two-body part of W,. The functions ¢} that would enter the equation (12)

would be of the form

F3 F4
. . YP,,a O3 9, °4
pr=¢ 1 1 ot

T

ayll oy Br:: 0y

We want to approximate (12) still further. For a given set of IR, characterising the
hole and particle orbitals

Lot o B ow )0 oy aptal,
we choose only those doubly excited states ¢, which are formed by lifting two elec-
trons-one from each of the degencrate components

{a)];il o-l} and lﬁr“ ij
and putting them—one in each again—into the degenerate components

{p,;;“ ak} and -‘Lq};‘ 011.

It just means that, if we expand W in (12), using (7), we would get a perturbation

series in which scattering takes place only between the states involving hole and
particle levels labelled by the same set of IRs T, I'y, I'; and T', respectively.
Diagram-wise this implies that all the diagrams which are orbital-diagonal (/-k),
(p-p) and (h-p) ladders in all orders are taken into account in the calculation of
E. An orbital-diagonal (A-p) insertion would, for example, involve a matrix-element

< vi O'tp,},k Ok ' v‘ 0‘117[‘3 0’1>a

with the same labels I'; and I'; on « and p respectively; the component indices y;,
v vy and y, and the spin-functions o;, etc would take on all possible values however.

Clearly the equation (12)—as approximated above—is equivalent to the perturba-
tion series analogous to the spin-adapted MBPT for an arbitrary point group. It
only now remains to adapt this series explicitly to the point-group symmetry by way
of introducing reduced Hugenholtz matrix-elements-analogous to what was done in I.
We have, corresponding to the spin-adapted matrix-elements [see e.g. equation (10)
of I], the defining relation

<aF1 oy b}I’;’ oy 0| c)I,:f oy d}l,:‘ O4Va

— s 1t Pl P2
= > {abllvllcd)g v

y,n

S, Mg

1 1

P4 <
< O3 MS> ]WS

I'n <1‘, n Ps F4>
Y > Y Y3 Vs

> (13)
0’3 0'4
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The supercript n appearing in (13) would take care of the fact that the direct produce

I'1®Ty, etc. for a general point group may not be simply reducible (Ko_ster 1958).

A similar equation also holds good for the reduced matrix-element for W,. Using
the phase-convention as in Griffith (1962), and using the reduction procedure as
outlined in I, through the graphical methods of spin-algebra (EI Baz and Castel
1972; Briggs 1971),

we end up with the following system of linear simultaneous equa-
tions:

k, n
{201 W o gyDen _ 122101 “Fs,
Sk

ea—}—eﬂ——el,———eq

L D[S {pg 1 ol « Y TH

k
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[{ealiohap}se ™ FSS 0y a1, 1y T T o, )
+ {pBllv| ﬁp}g:’ i F,f,’,SJ (T'gy Tas Tpy Ty, Ty Ty, My my)
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for all choices of (2, 9), (a, B), k, n, and S,.

The quantity (T,), etc. are the dimen-
sionality of the corresponding IR, The quan
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where the entries on the right hand side of (15) containing I's is a 9-J symbol appro-
priate to the point group (labelled by ‘extra’ indices m,, m, and n). Solution of

(14) would provide us with the matrix-elements of W‘Lg Y including all the (4-h), (p-p)

and (h-p) orbital diagonal ladders to all orders.
The expression for correlation energy would be given by

PE=1 S {oBllolipg}e" {pall Wo| af}5h" DA (S0 (16)
i3
Tk Ston

3. Connection with the coupled-cluster theory

Let us first note that, in (12), if we include in the summation over ¢, all the doubly
excited states for each ¢}, then the system of equations thus generated would embody
all the (h-k), (h-p) and (p-p) ladders (diagonal as well as off-diagonal) to all orders.
This is an obvious and straightforward extension of the scheme outlined in § 2 and
follows closely the spirit expressed in I. An analogous systems of non-perturbative
equations were derived recently by Paldus (1977) who has also discussed the relation
of his work with those of Roos and Siegbahn (1977).

We now briefly show the connection of equation (10) with the coupled-cluster

theory of Cizek (1966, 1969). Rewriting (10) as

(Ey — Hy) Wy, = (E, — Hy) + Q (VML) (17)

and pre-multiplying (17) with Q, post-multiplying by P, and using the idempotency
of O, we have

Q[E,—H] Wy P = 0 (VW) P. (18)
Using the relation .
E, = PH,P = PH, = H,P, (19)
we easily obtain from (18) |

Q [Hy, W;] P+ Q (VWL), P =0. (20)

Now we shall use the linked-cluster factorisation theorem in the spirit of Cizek’s
theory, but shall use the algebraically expressed factored-out version as developed
recently by Mukherjee et al (19752, b; to be henceforth called lla, and IIb res-
pectively) in the context of a general non-perturbative formalism. Using the Ursell-
Mayer representation of W :

Wy, = exp (1), ~ Q1)
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we have VI, = Vexp (T) = exp (T) U, (22)
| > 11
with U= > >  (=n 27 TV T Yo (23)
n=0 nm, n, 1= 72
m-+n,=n

(see, e.g. equation 25(b) of IIa)

The quantity {7 VI }onn Was denoted as {T™ VI™}, in 1la, but we have

changed this notation here to emphasise that they consist of connected diagrams
only—rthough they may be closed. Further, for closed shell, 7’s cannot be con-

tracted to H from left, hence n =0.
Now, using (22) with ¥ replaced by H,, we have
Ho Wy, = Hy exp (T) = exp (T) U, = W, U, (24)
where U, would be of the form (23) with H, replacing V. Writing U, as

6]
1 —
Up=Hy+ > S{H TV opn = Hy + U, (25)

n=1

we have, from (24),
O [Hy, Wl P =0 [W, T, P =

U, consists of all the connected diagrams obtained by joining H, with several Ts.
Now the T's always induce transition from the P space to the Q space, and the o‘peratc')l'
H), being diagonal, when acting after the T's would keep the resultant function still

in the QO space. Hence U acting on a P space lifts it onto the Q space. Hence

P Uy P =0 and we have no vacuum fluctuations. Equation (26) may thus be
written as

0 [H,, WL]P=Q(WLQ(70)LP=QWLQ(70P. (27)

Let us note that W does not have any line joining Q -170.

Dissecting U into closed-diagrams U, and the linked diagrams U. 1, we have
(HW) = exp (T)U, = W, U, (28)
Hence, QW) P=0w,u,p. 29
As UL’consistS on}y of open diagrams, P U ;P =0,and Q ULP = UL P, hence

QUW)LP=QW, Quy)P, (30)
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Hence equation (20) reduces to
QW QU P+QW, QU P=0, (31)
whence QU,P+ QU P =0. (32)
Now, from (23) and (25), we have

— © 1
Up+Up=V+ > n{HT}, (33)

n=1

where in U, only the linked part of (25) is retained. Calling U, + 5L as H, we have -
QHP =0, (34)

which is the non-perturbative coupled-cluster equation of CiYek in algebraic form.*

Recently Kvasnicka and Laurinc (1977) and Bartlett and Silver (1976) gave recur-
sive formulae which, in spirit, are related to the system of equations (11) derived by
us. It appears that their recursive relations emphasise the structure of (11) in a
limited sense in that disconnected diagrams are not considered at all, so that the
problem of avoiding vacuum fluctuations has not been discussed. Kvasnicka and
Laurinc (1977) however, observed that in general their procedure may lead to a pro-
blem of overcounting. We have shown in the present section how the problem of
disconnected diagrams can be handled through the exp (T) representation. Thus we
are on safer grounds—we know where we have to be careful while generalising the
present scheme beyond ladder insertion and how to do it.

Let us also mention that very recently Lindgren (1978a, b) has developed a coupled-
cluster formalism for open-shells starting from the open-shell perturbative theory of
Bloch (1958) and Brandow (1967) from which the corresponding closed-shell version
may be derived as a special case. This also leads to (34). The connection of Lind-
gren’s approach with the Goldstone-like expansion scheme—as used in the present
paper—has been discussed in detail in a recent paper (Mukherjee 1979) for open-
shells. For closed shell, we merely observe that Lindgren’s starting equation reduces
to

Q [W,, H|P = Q VW P —Q W, PVYW,P, (35)

(see equation (33) of Lindgren’s paper (1978b)).

Noting that PVW, P consists of all closed diagrams of ¥ and W connected
together, we may identify PVW; P with the closed part U, of Uin (23). Using
(22), (23), (25) and (29), we have '

OW, Uy P+ QW, U, P+ QW UcP — QW Uc P =0, (36)

from which (34) follows after cancellation of QW from the left.

«For a more extensive discussion on this point, see e.g. ITa and IIb,
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4. Concluding remarks

The development outlined in this paper may be generalised to incorporate many
other classes of diagrams to all orders. Furthermore, in the whole development,
nowhere it is necessary to use explicitly the actual point group involved in the process.
Thus, formal degeneracies, which are consequence of the special artifacts us_cd In the
calculations, may also be treated in the present formalism with equal facility. _For
example, in a PPP model benzene ground state calculation using localised HF orbitals,
one may formally ascribe the three-fold degeneracy in the localised HF orbital energy
of the bond orbitals as due to an abstract internal ¢ bond-space group’, and trez_lt
them as belonging to a convenient T-type of IR of any point group hgmomorphic
with this ‘ bond-space group’. We are currently utilising this interesting obserya-
tion in reducing the dimension of the coupled-cluster equations for systems sh0W1_ng
alternancy Symmetry. Systems for which the present formalism may be immedia-
tely useful are atoms, homonuclear diatomics, linear polyatomics and molecules
belonging to the highly symmetric point groups like Td, Oh, etc.
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