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Abstract. In this paper it is shown that (i) there exists an alternative definition of
the superoperator resolvent for calculation of difference energy satisfying linked cluster
theorem for a coupled-cluster choice of the ground-state function which may even be
approximate; (ii) the pole-structure of this propagator-like function in superoperator
form is shown to contain information similar to that contained in the conventional
propagator. (iii) It is demonstrated that suitable “Killer conditions” and complete-
ness of the “operator manifold”—essential for understanding the pole-structure of
the propagator—can be established both for an exact and an approximate ground
state function in a coupled-cluster form. (iv) It is also demonstrated that difference
energies calculated with these propagator-like functions are identical to those obtained
from a linear response theory in a coupled-cluster form put forward recently by
Mukherjee et al and Monkhorst.
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1. Introduction

Many quantities of chemical interest are differences of two large numbers. Examples
of such quantities are the excitation energies (EE), ionisation potentials (IP) and the
electron affinities (EA). The conventional method of computation of such quantities
is the configurational interaction (CI) method, in which the energies of both the
levels involved (such as the ground state, and the excited state or the ionic state) are
calculated to some degree of accuracy separately, and the difference is taken. This
procedure has a serious drawback in the sense that the quantity of interest is cal-
culated as the difference of two large quantities and the difference energies of interest
are of the same order of magnitude as the error involved in the calculation of the
original quantities.

An obvious way of overcoming this drawback is to calculate the difference quan-
tity directly. The essential philosophy behind this approach is the realisation that
the common correlation terms of both the parent ground state and the daughter state
energies cancel out exactly in such difference, and need not be calculated explicitly.
Only the difference terms which are by far the smaller of the two need be calculated.

A plethora of such theories have been developed over the past few years. These
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include (a) the Green’s function methods (Linderberg and Ohrn 1973; Jorgenson
1975; Pickup and Goscinski 1973; Cederbaum and Domcke 1977; Freed and Yeager
1977) and the related equations of motion (EOM) methods (Simons 1977; McCurdy
et al 1977), (b) Rayleigh-Schrodinger many-body perturbation theory (Kvasnicka
1977; Brandow 1967; Kaldor 1975), and (c) the cluster expansion methods
(Mukherjee et al 1977; Mukherjee and Mukherjee 1979; Mukhopadhyay et al
1979; Lindgren 1978; Monkhorst 1977; Reitz and Kutzelnigg 1979; Paldus et al
1979). ,

W%lile all these methods lead to similar results, attempts to study the structural
correspondence between them are sporadic in literature and include only (i) order by

- order comparison of the Greens functions approach to Rayleigh-Schrodinger theory

(Brandow 1967; Hernandez and Langhoff 1977, Freed and Yeager 1977) (ii) delinea-
tion of a procedure by which the propagator method in the superoperator formalism
may be mapped under certain approximations with the Green’s function methods
(Born and Ohrn 1980) and (i) a formal demonstration of the structural equivalence
of the open shell coupled cluster methods with that of the folded diagram perturba-
tion theory (Mukherjee 1979; Lindgren 1978).

In this paper we analyse the structural correspondence between two specific theo-
ries belonging to classes (a) and (c) above. These theories are the propagator method
in superoperator formalism and the linear response theory in CC-framework. We
show that the superoperator formalism can be generalised to satisfy the linked cluster
theorem. Such a superoperator formalism connects in a natural way with the cluster
expansion method in the framework of linear response theory (Mukherjee and
Mukherjee 1979). We also indicate that the alternative choice of superoperator offers
immediate advantage over the conventional one for a possible extension to multi-
configurational ground state. :

In § 2 we discuss the alternative choice of the superoperator resolvent and discuss
its properties vis-a-vis the conventional choice. In § 3 we rewrite the coupled cluster
linear response theory in an EOM form and show that the two theories are connected.
In § 4 we briefly indicate that there exist other possible choices of the superoperator
resolvent which have as yet no counterparts in CC-linear response theory.

2. Alternative choice of the propagator in the superoperator resolvent

In what follows, we use the definition of the propagator as introduced by Goscinski
et al 1980 (Goscinski and Lukman 1970). The n-electron propagator or G, in an
orbital representation is written in the form

n = O] [Cy(E—H)™ €1, |0, )

where Cr and C4' are respectively products of n-destruction and #n-creation
operators, H is the Hamiltonian superoperator acting on a manifold of creation and
annihilation operators {4} satisfying H Ap = [4g, A ] for Ag, and |0 is the
exact ground state of the system. Depending on whether # is odd or even, the
anticommutator (<) or the commutator (—)in (1) has.to be taken. Inserting the
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complete set of states in (1), it is a

_ 2 straightforward matter to show that (1) leads
to a spectral resolution of the form '

ﬂ H- S [<010}'|¢§‘§><¢¥w§"l0>

i E——E0+E£{'I

, <0l )| g ) <¢Z}f|0§|0>], @

M
E - E, —EY

where the sum runs over all the eigenstate gbKM of H belonging to various M
eIectron spaces that would have non-vanishing matrix-elements like

M nt M n

<¢ch_[ |0>01'<4'K ICI|O>
Clearly G; would have simple poles as
E =E, —EM or E¥ — E,

depending on which range of E we are scanning. .
The standard procedures for seeking the poles for practical calculgtlons have
mostly concentrated on choosing appropriately a suitable operator manifold {A K}

for explicitly representing the superoperator inverse (E—H Ylina n%atrix form, and
a recipe for choosing an approximate reference state | 0) for evaluating the expecta-
tion values (for a critical discussion, see e.g. Goscinski and Weiner 1980). Formally

speaking, the propagators G}J may be interpreted as IJ element of a whole matrix

G". It has been proved, using the completeness theorem for an operator man%folc%
(Manne 1977; Dalgaard 1979), that G* admits of a representation (see e.g. Goscinski
and Weiner 1980):

G — KI-1 M, ' (32)

where K = [{0][C, B'], |0, - O]16 B, [0))] (3b)

(E{0|1B, B, |0) —¢0|[B, H B, |0
L = —<0|[B, H B, |0)) Ol 25| (3¢)
(B0 B, Bl | 0)

—<0|[B"H, B, [0>  _ g (8, H B].|0)

o[ [B,C, 001 | | 6y
M "‘[20!1 (B, c“f1i|10> -
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where the operator manifold B = {B}{} is complete in the sense that {B}{ |0}
is complete, and is chosen to satisfy the so-called ‘Killer condition’ for the adjoints:
By |05 =0, |
for all K. )
The location of poles of G" thus reduces to finding zeros of the matrix L which can
be easily cast into an eigenvalue equation, For practical computation, one specifies
an approximate ground state P L€ [0) = |40y 2 truncated operator manifold
{B}Pf and finds the zeros of a truncated matrix L. However, it is important to
note that, for an arbitrary approximate ground state function ¢, choice of an

appropriate operator manifold satisfying ‘Killer condition’ (equation (4)) is far from
trivial. In fact, one can show that for an exact G", the off-diagonal blocks having

{0| B, 7 B, |0) and (0| [BY, A B'], | 0) should be exactly zero—a situation
never encountered in practice for the conventional choices {B}z} for which (4) is
not satisfied. This is the reason why the matrix eigenvalue problem L =0 for an
approximate ground state o and the set {B}{} has the dimension twice as large as

that in a corresponding CI problem. .
Clearly, then, for a practical calculation involving i, and an approximate set {B}g}

several inaccuracies and uncertainties creep in, whose extent is difficult to analyse
in close terms. Furthermore, except when iy is just the exact ground state | 0), or a
single determinant state | o the matrix L involves calculation of expectation values

like <) [B; A B, |4y, etc. This would lead to appearance of unlinked terms
as one would have in any CI calculation involving less than full CI. Thus, the
accepted recipe for an approximate calculation of the superoperator resolvent runs
afoul of two discrepancies: (i) Killer condition is not satisfied—uvitiating the accuracy
of the representation implied by (3); (i) generalisation of the theory to an multi-
configuration approximate ground state function ¥, leads to unlinked terms.
Although very recently attempts are being made to use multiconfiguration functions
in propagator methods in superoperator resolvents (Banerjee et al 1978; Albertson
and Jorgenson 1979; Chuljian and Simons 1980), the two difficulties. mentioned
above have not been touched upon. - D ‘ ,

We would now like to introduce an alternative choice of the superoperator pro-
pagator which has the same pole-structure as the conventional (e.g. equation (1)),
but which is amenable to calculation involving Killer condition to be satisfied for even
approximate choice of the ground state. The choice also leads to inclusion of
linked terms only for an approximate -provided it is chosen in a particular (e.g.
coupled cluster) form. It is now widely appreciated (Cizek 1966, 1969; Harris 1977)

that even an approximate function ¢0=eT¢0 with ¢, a single determinant and T are
hole-particle excitations leading to linked terms only for a transition formula like
(| 4 el |4y, where 4 is an arbitrary operator. The reason is simple: as
(by| T = 0, we may write (B | 4 €T oy = <ol ¢ T del| by and use Hausdorfl
expansion to show that T Ael consists of multiple commutators which are linked
(Mukherjee et al 1975 a, b). We take cue from this observations and would like to
construct an alternative G" which would have transition formulae like (| [ ] eT|qb0> '
cather than expectation values {0 | [ ] [ 0>
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Let us note that the choice G;f 7 in (1) could have been rewritten as

nt

Ghy =< 0|C(E—R) CJH0)F 0| Cf (~E—H)*Ch 0, (9)

where use has been made of the fact that |0) is an exact eigenstate of H. We
now introduce a G defined as

Gl = (| €y (E— A2 CI0) F (4o | CF E—B1ChO),  (©

where ( ¢, | is a single determinant and iO Y is the exact ground state, written as

[0 = el | 4o »; the choice (6) is clearly generalisation of (5). We have kept E rather
than —E in the second term of (6) in contrast to that in (5) as it would look more
symmetric and would merely change the sign of the poles without affecting the values.
We show that G* has the same pole-structure as G". For this we use the same kind
of spectral resolution as used in getting (2), and obtain

= z[<¢o{0}l¢%><¢%|0}*10>

U= M
Gl EoERTE

R
:F<¢0|CJ | ¥% > Uk lCz|°>] | @)

E—E, + EY

Thus (7) provides us with the same kinds of poles (apart from signs) as those given
by (2). The residues are, of course, different, but they do not affect the calculation
of difference energies at all. Following Goscinski and Lukman (1970), we now show
that there exists a vector space defined over an operator manifold which allows
scalar product, resolution of identity, etc, and derive a completeness relation within
the definition of the scalar product. This would lead to a representation of Gin a way
similar to (3a) and we would thus get an eigenvalue equation of the form L=0 for
the choice (6). In § 3 we show that this equation yields the same difference energies
as the ones provided by the linear response theory in a coupled cluster framework
(Mukherjee et al 1979). L U o
We define an identify superoperator 7 satisfying the relation I Ag=Ak for all ope-
rator manifolds {Ax}. If we now classify all the orbitals involved in the calculation
(assumed complete) as holes or particles depending on whether they are occupied or
not in ¢,, then we may induce a hole-particle transformation {ag} ={ba}, o holes

{a,} ={b,}, p particles such that
b, | ¢,» = 0; i =holes or particles.
Then all possible products of a number of bTwould generate a complete set of deter-

minants acting on |$,) (Manne 1977), and we may call it a manifold {g}} which
is complete. The adjoint set {g } satisfies the ‘Killer condition’ on ¢, )

ac|de) = O, | T ©)
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but not (4). Let us now introduce another set of operators defined through the rela-
tion

Qx = e” qu_T_ (10

Note that for a representation of | 0) as [0) = eT| > Qg satisfies the Killer condi-
tion on | 0)

Qi 10> =T gy eTel | gy =0 (11)

We show that both the set {g}| 0 )} and {Qf 4>} are complete, and together
they define a bi-orthogonal set.

We note that, by construction, {g| ¢>} is complete. Thus, any combination
satisfying : '

> axak |4 =0, (12)
K

would imply ax = 0, following from linear independence. From (12), we may write
> ageTqk | =0, : | (13a)
K

and, as both T"and g} consists only of excitation operators b', they commute, sothata
combination

S agake by = 3 ax k0> =0 | (13b)
. K K _ I

would imply aj =0. Thus {ql | 0 D} are linearly independent. As their number
coincides with those in {g} | o >} they must be complete.

For the set {Qk |$o D}, assume they are not linearly independent. Then there
exists a set of nonzero ag’s such that

S ag G (4> =0 (142)
K .
Using the relation (10), and the fact that 7| ¢, > = 0 we have

S ageT ak 10> =0 | : (14b)
K

premultiplying (14b) with €T, we have

S agdkl$> =0 | (14c)
X ' :
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with nonzero a’s, which is a contradiction. Thus, the assumption of linear depend-

~ence of the set {Q} | #, >} was wrong. Again, as the number of {0t [$o >} are
the same as in {g} | ¢, >}, they must be complete.

The scalar product < ¢, | Qg ¢} | 0> may be evalvated easily using (10), and
this leads to

ol Qg ah |0D = ol e apeTat e |6y
= <¢’o [‘IK e—TeTfI}z "/’0 >’
= 8gy. : : (135)

where commutability of 7' and ¢} and the relation { ¢, | T = 0 has been made use of.

The sets {g} | 0 >} and {Qk | ¢, >} are biorthogonal to each other.
Let us now introduce the following two definitions:
(A) Scalar product: ’

Qi1 ) = (N “l A)) = <¢0| [Ass A};]i | 0 > (16a)
(B) Scalar product involving a super operator other than’/l\:
(M1 A]A) = <ol AN F AAN]0). (16b)
Let us first establish that there exists a resolution of identity in the scalar product
space defined above. For (16a), we may rigorously use the sets {¢}| 0>} and
{ Q% | $o>} in the resolution of identity in the ordinary (Dirac-) scalar product sense
and get: ,
A ) = o | N )\HO> + <¢0lAin |0
= ZK%\ AiQ}'{IO><¢Ol QK)‘“O>i
K . . ..
<?’u| )‘; 9}( IO> <¢0[QK Ai‘o h3e - (17a)

As {¢y| gk =0 £ ] 0> = 0 we may rewrite (172) as

(] A) = > Ko | s gl 105 <o | [Qgs A1 [0

X

= (o | N, gl |05 <o | 1050 Ml | O

= > [ | g)) (@ | M) £ (N | QL) (g | A (18)
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Thus it appears that there is a resolution of identity

F= [lag) Qx|+ 2 (i [ 1 (19)
' K

Let us note that, just as in the conventional superoperator formalism, the dimen-
sion of the expansion (19) equals twice the number of independent functions {ak|0>}

etc.
Now, we show that the same resolution of identity may be inserted in the scalar

product (16b) provided 1 is or is a function of the Hamiltonian superoperator
A = F(H). We have,

(O | D | M) = (o | M ) A3 0 F < |2 F(H) )| 05,

_ (o | M (F(E) — FUD) X 0 F (o] A} (F (B9 —F(H) A, | 0.

(20)
If we insert resolution of identity in Dirac-sense after {¢, | A; and { ¢ ‘ AT in (20),
J
and use the same manipulation as in (18), we get

O FED |2 = 3 [ ax) (g | FED [ 1)
K

(] 01 (@] FED| )] 1)

Similarly, inserting resolution of identity in Dirac-sense after (F(Ey)— _F(ﬁ )) in (20),
we have

@ FED | W) = S (O FEDlag) € | A)
K

(| FED| 0L @ 1A 22)

Thus, when A is a function of fI, the resolution of identity (19) is generally valid for
both (162) and (16b). We would compactly write (19) as

1=y | X)) (X! | (23)
- v

Using the deﬁnitions (16), the superoperator propagator G takes the form
Gr = ((C"|(E1— H™) | ") (24)
Using the resolution of superoperator identity (23), we have

G — (€| X) (X | BT —H| X)) ((X] €. 25)
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Equation (25) is the analogue of (3) for the alternative choice G", and it shows
that poles of G" would be obtained if we solve for the zeros of the matrix
(x| EI-H | X)).

Let us now take a closer look at the structure of the matrix L, = (X [EI —H | X)):

L, =((X|EI-H| X))

((QIEI—HI q) (QIEI—HI Q"))
(¢"|EI—H | 9) (qTIEI—-HI ah

__(E(Q q)—A EQ]| Q?)—-B)

“\eq'l9—Cc  E@|Q)-D )

and try to simplify the expressions for the matrices 4, B, Cand D. We show one
such simplification explicitly and give results for the rest:

Agr = Qx| H|ap):

— (| Tag T Ia,, HICT |40 ()

Using ($y| ¢ = (do|, Qx | 0> =0, and the fact T' commutes with ¢' operators,
we have

gy =<dolaglah, €T HE [0
= ($olag [a}, HI |40 | (27b)

where we define a transformed Hamiltonian Has

H=e¢THC (276)

Similar to what is done in coupled cluster theory.
The matrix-elements of B, C and D are likewise given by

By, = (Qx | H| Q}) = { bo| ax [H, g1} | 0 >

T (o | ap [H, a] | o D (28)

Cyr =l | H|gp) = {$o|dk [H:g}1]0>
F (| a} [H, gid[0) =0 29)

Dy = gk | H| 0D = — (olag [Hakl |do) = — 4rp GO)
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Thus zeros of L, defined by (26) may be cast into an eigenvalue equation of the

form |
5 ) (0)-) o

This is the equation analogous to =0 as used in conventional superoperator
theory. Let us note that 4, B, C and Dall contains linked terms only as H is itself
linked.

3. Relation with the coupled-cluster linear response theory

There exist both a time-independent (Mukherjee et al 1979) time-dependent (Monk-
horst 1977) version of the coupled-cluster linear response theory for calculating differ-
ence energies. The time-dependent version suffers from the appearance of spurious
‘secular’ terms just like its perturbative counterparts, while the time-independent
version does not involve these terms at all. For our purpose, we would therefore
make use of the time-independent version. The theory (only formally) introduces an
external photon field and an interaction between this field and the electronic ground
state of the system and evaluates the linear response function of the system in the
presence of the photon field. The difference energies of interest are then obtained
by seeking the poles of the linear response function. The ground state as well as the
perturbed state in this theory is given a coupled-cluster representation. .

Tn ‘what follows, we shall recast the theory in a way analogous to EOM. For
this transcription, it suffices to note the structure of the eigenvalue equation gene-
rated by the C-C linear response theory (see, e.g. equations C. 1 of Mukherjee et al
1979). The matrix whose eigenvalues are sought contains matrix-element of a trans-
formed Hamilionian H=e7 H e’ between states like (¢ | and |y, where (] |’s
are the excited states obtained through action of an excitation operator actinfl; on
|y, Thus, at least in the linear response framework, we can cast the theory quite
akintoa Tamm-Dancoff theory as shown below. :

We write the ground state of the system in a coupled-cluster form

He [y = Ey " | $o: (32)

and T’s are solved from

(e H €| doy =<8l | H] o) =0 O ®
We write the excited states as
|ex) = €” S| o) (34)

and write the corresponding Schrédinger equation as in an EOM:

H|ex) = He" S|¢gy = (Ey+ AE) eT S|y (35)

leading to [H, S |¢op = A E S|y
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Now, we may easily show that the set {e” g7 | ¢,)} is complete. This is because,

had they not been linearly independent it would be possible to find non-zero a;’ s
satisfying

2 et ak| by =0. (36)
KX

Premultiplying by e-T7, (36) leads to

z ax g | o> = 0 for non zero ag’s. But{q} | #o>} is complete. So {e”gf |4}
K

are linearly independent. As their number equals that in {q} | $>} they must be
complete.
Thus, we write

S = z qix,, ' (37
L

and project (35b) on to all the excited states to get

EFIKLXL=§: (‘ﬁol%[iﬂ]l%} XL,
T T

= AEY Cbylaxai] dod X
L .
= AE Xg (38)

Now, the matrix H,, whose eigenvalues are the difference energies of interest is pre-
cisely the matrix— 4, as is evident on comparison of (27b) and (38)

H=—4.

Let us assume that the eigenvalues of (38) are the roots and the right and left eigen-
vectors are yX and ¥

H X? = W Xf’

Y H =, x& |  (40)

This indicates that from (39) |
At = — oy K | | (40)

But, (31) implies that o .
AU + BV = EU, L

— ATV = EV. | A C )
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But (41b) leads to
H'V=EV,
or VTH=EV" (42)

Thus, from (41b) roots E are the same roots w; and V7 ’s are xF. As the dimension
of the problem (31) is twice that of (40), half the roots of (31) are thus w;. We now
show by demonstration, that there exist an equal number of roots — w;.

) U\ _ [(xF
For a choice (V) ——(0)

right hand side of (412) and (41b) would look like 4 xR and O. The left hand sides
are correspondingly, Exf and 0. We know, that for xX, E=— o, from (40). Thus,
R
for eigenvalues — w;, the choice of ( g) as (X(i)) are consistent. The other possible
roots of (31) are thus — w;. This exhausts the total number of possible roots also.
Clearly the solution of 3 1), as in RPA, provides with both -+w, and —w, as differ-
ence energies, though as B=0, the problem could have been decoupled to yield only
, by solving (41b), but that would be doing just the C-C linear response theory
(eq. 40). Use of C-C linear response theory in & truncated space {gx} involving
single and double excitation for excitation energies (Mukherjee et al 1979, Adnan et
al 1980 a, b) have produced encouraging results, and applications to IP calculations
are under way (Ghosh et al, to be published).

4. Discussion

We have shown in §§ 2 and 3, how the definition of the superoperator as introduced
in (6) leads in a natural way to expressions containing linked terms only. This desira-
ble feature is retained for any practical calculation involving approximate ground
state ys,- Because in that case the form of the function | ¢,» = €7 ¢, is still retained,
and as a result, H = T H -7 remains still linked. Further, the Killer condi-
tions Q|0 =0 gets replaced by Ol o> =0, with O still defined as in (10),
and thus the of the matrix (31) remains the same. This indicates that, so long
as one sticks to (6) and (10), but uses a coupled-cluster representation for an
approximate function [a,bo), the simplifications inherent in Killer condition and
linked nature of H may be made use of. To date, satisfying Killer condition in
an approximate function has been considered to be quite awkward to be of any
practical utility.

We should mention that the scalar product (16b) containing the superoperator is
not mathematically analogous to the corresponding quantity as introduced by

A
Goscinski and Lukman. In (16b), H is not strictly a linear superoperator as it acts

both on A; and Al in (A, lﬁ | A7)). This does not introduce any mathematical prob-
lem so long as bounds to difference energies are not considered. In any case, bounds
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to difference energies is a topic about which very little is known and there does not
seem to be any theory which sheds light on this problem.

The choice (16b) is not the only possible choice for the scalar product ((A, | A | Aj))

however. It is possible to retain the linear nature of H—in the same spirit as in
Goscinski and Lukman (Mukherjee and Simons to be published)—and work in such
a direction is in progress.
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