Pramana, Vol. 23, No. 5, November 1984, pp. 651—664. © .Printed in India.

A hermitian open-shell many-body perturbation theory for treating
intruder states

Md. AZIZUL HAQUE* and DEBASHIS MUKHERJEE"

Department of Physical Chemistry, Indian Association for the Cultivation of Science,
Calcutta 700032, India
*Present address: Department of Chemistry, Tel Aviv University, Tel Aviv, Israel

MS received 5 July 1984 -

Abstract. In this paper we have formulated an open-shell many-body perturbation theory
(MBPT) that applies to an incomplete model space. The effective Hamiltonian H e generated in
our theory is hermitian. We follow the resolvent-operator based time-dependent formulation
of MBPT of Banerjee et al, and show quite generally that, by classifying the various
determinants spanning the Hilbert space as model valence space P, virtual valence space R and
virtual space Q, a diagrammatic MBPT satisfying size consistency can be developed. The chief
new features of the theory are (i) manifest hermiticity of H; (i) presence of disconnected
diagrams no part of which is a legitimate diagram (irreducible disconnected diagrams);
(iif) presence of folded diagrams with components that may be irreducible disconnected
diagrams; (iv) a consistent treatment of the various n-valence sectors of the Hilbert space that
may be interacting through H€! if valence-holes are present—in particular a modified
treatment of the core-valence separation. The generalisation afforded by the theory offers
useful conceptual as well as computational advantages because the convergence difficulty
encountered in a complete valence space formulation may be bypassed here by keeping the
offending valence space determinants out of the model space. A brief critique of the
development vis-g-vis the only other general model space development leading to a
nonhermitian H°% is also given.
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1. Introduction

Significant advances have been made over the last decade in the development of many-
fermion correlation theories. Spurred by the earlier spectacular success of the
Brueckner-Goldstone many-body perturbation theory (MBpT) for the closed-shells
(Brueckner 1955; Goldstone 1957, Hugenholtz 1957) as applied to atomic and
molecular correlation problems (Kelly 1964, 1969; Lee et al 1970; Kaldor 1973, 1975;
Robb 1973; Bartlett and Silver 1975; Wilson and Silver 1977; Bartlett et al 1977; Wilson
1978; Bartlett 1981), attempts have been made to extend the formalism to encompass
open-shell states as well. This requires a development of the open-shell analogue of the
Brueckner-Goldstone expansion starting with a combination of the zeroth order
determinants which are either degenerate or quasi-degenerate. Starting with the
pioneering work of Brandow (1967, 1977), various alternative formalisms have been
developed over the last decade (Oberlechner et al 1970; Kuo et al 1971; Lindgren 1974;
Kvasnicka 1975; Banerjee et al 1982a, b) the interrelations between which are not very
clear yet. The underlying basic idea of all these developments is the partitioning of the
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Hilbert space into a model space and a virtual space where the interaction between these
two spaces is calculated perturbatively and the modified or “effective” Hamiltonian in
the model space is diagonalised to generate the perturbed energies. All the formalisms
pursue a diagrammatic approach, and choose an appropriate closed shell determinant
as the physical vacuum. The zeroth order starting functions have additional valence
occupancies (valence holes or valence particles) in addition to those present in the
vacuum, but the valence occupancies are partial in the sense that out of M valence
orbitals only a subset N < M is filled in each determinant entering the zeroth order
functions. Each theory then goes on to prove a linked-diagram theorem by assuming
that the model space is complete with respect to valence orbitals in the sense that all the
MCy possible determinants corresponding to all possible valence occupancies have
“been included in the model space. While such an assumption lends an elegant property
to these open shell MBPT’s, viz the linked-diagram theorem, it has its operational
difficulty as well. For valence orbitals which are not degenerate, this necessitates
inclusion in the model space of determinants which lie considerably higher in energy
compared to the lower lying states for describing even the low lying states. This not only
implies handling a model space of large dimension, but also a potential convergence
difficulty due to near degeneracy and consequently strong mixing of virtual space
determinants with the higher lying model space determinants brought in solely for
obtaining the linked-diagram expansion. Such offending virtual space determinants are
called iniruder states in the many-body literature (Schucan and Weidenmuller 1972,
1973). The appearance of intruder states is a perennial problem in any practical
application of open-shell MBpT, and a proper handling of these states remains a major
active area of the current day research. Although extrapolation techniques like Pade
approximants (Wilson and Silver 1976) and related approaches have been extensively
used (Hoffman et al 1973; Hoffman 1978; Hegarty and Robb 1979; Baker et al 1981;
Shurpin et al 1977) to improve the convergence of the perturbation series that are beset
with the appearance of divergent terms due to intruder state mixing, this improvement
frequently occurs only if rather high order Pade or related approximants are calculated
(Hoffman 1978). More significantly, the extrapolation techniques bypass the real
physics of the situation: One should be able to formulate an open-shell Mspr in which
the intruder states in principle should not occur at all.

Hose and Kaldor (1979, 1980, 1981, 1982) made significant advance in solving the
intruder state problem by noting that if the model space determinants mixing strongly
with the intruder states are kept outside the model space, the convergence of the
perturbation series is dramatically improved. This of course implies that the model
space is not complete with respect to the valence orbitals, which leads to the appearance
of disconnected diagrams in the perturbation expansion of the effective Hamiltonian.
Hose and Kaldor, however, made the important observation that although the effective
Hamiltonian has disconnected diagrams, no disconnected components of these
diagrams are legitimate diagrams as such of the effective Hamiltonian, so that
appearance of disconnected diagrams do not spell a break down of the size-extensitivity
or size consistency (Primas 1965; Pople et al 1976; Bartlett 1981) of the theory. In their
formulation of the MspT in the incomplete model space, Hose and Kaldor follow the
time-independent approach of Brandow (1967) which is related to the works of
Lindgren (1974) and Kvasnicka (1975) as also the time-dependent developments of
Kuo et al (1971). All these formalisms lead to a nonhermitian effective Hamiltonian. The
nonhermiticity essentially stems from the fact that in the calculation of the matrix-
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elements H{Y = (¢,|HT|¢; > of H°T between model space determinants ¢; and ¢;, the
energy denominators appearing in the perturbation expansion of H?J‘f have as
unperturbed energies only that of the ket-function ¢;and not of ¢,. Consequently, the
matrix element HSF is unsymmetric with respect to the indices i and j and hence the
nonhermiticity of H?f. Hose and Kaldor, however, exploits the nonhermiticity to its
fullest advantage and chooses, in contrast to the works of Brandow (1967) and others,
each ket ¢; as the vacuum to simplify the calculation of the matrix-elements HeT
considerably. In so far as one likes to look upon the effective Hamiltonian asa bonafide
Hamiltonian per se—sharing all the properties of a true Hamiltonian—the nonbermi-
ticity of H*T appears as aesthetically unpleasing. From a more pragmatic viewpoint, the
nonhermiticity necessitates calculation of all the matrix elements of HeT in the model
space in contrast to only those in the upper triangle of a hermitian HE. The
diagrammatics of Hose and Kaldor is moreover quite cumbersome making its
. application somewhat errorprone (Hose and Kaldor 1982).

There is thus clearly a need to develop a hermitian effective Hamiltonian of open-
shell MBPT in an incomplete model space. This implies that we treat the ket and bra
functions ¢;and ¢;in H ¢Ton the same footing. In this paper we shall show it is possible
to develop such a theory by generalising the hermitian formulation of MBPT in complete
model space of Banerjee et al (1982a,b).

2. Theory

2.1 Resolvent-based mspr for complete valence space

Here we give a brief resumé of our resolvent-based open-shell merr leading to a
hermitian H°T in a complete valence model space (Banerjee et al 1982a, b). This will fix
the notations, introduce the basic formalism and also motivate the wanted generalis-
ation to tackle the intruder states.

We partition the Hamiltonian H into an unperturbed part Ho and a perturbation V:

H=H,+V, )

where H, is a sum of one-body operators hy. The orbitals entering the theory are taken
as eigenstates of hg, so that all the determinants built up from the orbital set are
eigenstates of Hy. We choose as the vacuum for our problem a suitable closed-shell
determinant ¢ which may have fewer, greater or equal number of particles than the set
of unperturbed functions y{ with unperturbed energies E? spanning the model space.
The model space is taken to be complete with respect to the valence occupancies. The
determinants ¢; comprising the unperturbed functions y? are obtained from ¢ through
a set of valence creation operator products Q;"(valence holes or valence particles):

O ¢ =i | (2)
We introduce Green function-like entities S;; defined as

Sy(6) =i <gi| exp [~ i(H —EJJ|W; >/ Y7 ¥, G)

where , is the exact eigenstate evolving from ¥7,and E_ is the correlated energy of the
vacuum ¢. The one-sided Fourier transform of S;;(t) is given by
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0
Sij(w) = f de Sy;(tlexp (iwr) = < i|(0 + E.~H) ™ [y, 5 /<Y ;> (&)
and has the structure of a matrix-element of a certain resolvent., The matrix S{w) has
poles at @ = E;—E_. Thus the energy differences between eigenstates ¥; and the
correlated vacuum may be found out from the poles of S(w). The resolvent-based open-
shell MBpT seeks to derive a perturbation expansion for S(t) and to obtain a Dyson-like
equation involving a self-energy matrix X (¢). The Fourier transform of this equation
then furnishes the equation for S(w) from which the desired poles are computed.
The key development of the formulation of Banerjee et al (1982a,b) is the
observation that the series implied by the Dyson equation for S (t) ordinarily involves a
time-delayed self-energy matrix X(t), and would thus produce an equation for S(w)
involving an energy-dependent X(w). The resulting pole-search would then be
analogous to the iterative solution strategy for an open-shell Brillouin-Wigner
perturbation theory. In fact Banerjee et al demonstrate that the series involving X (w) is
equivalent to the Bloch-Horowitz variant of the open-shell Brillouin-Wigner theory
(Bloch and Horowitz 1958). '
The Gellman-Low adiabatic theorem for open-shells can be expressed as

¥ _ U0~y | 5
NS ™ RO, = o) [UF”

where U, is the evolution operator in the interaction representation (Ratcliffe 1975).
Using (5), S;;(¢) can be expressed as

S,-J-(t) = iexp[i(Ec_E?)t] <¢iIU1(t’ - OO)I'//;)>

Ny
WITU,0, - )90y =D, ©)

As D; does not depend on ¢, it suffices to consider only the N;/s to study the pole

structure of S(z). Using the perturbation expansion of U 1(t, — o), N;; may be written as

© (_ am ot
Nij = ieXp [I(Ec_ELO)t] Z ( l) J‘ dtl . e dt”
n=0

nt J_,

XL |T[V,(ty) . . Vi) Is>. (7)-

Our motivation is to regroup the terms in the expansion of (7) to generate an implicit
equation for N;;(t). Noting that each term in the expansion of (7) involves calculation of
expectation values of the form (@|QT[ ]Qf |¢) it easily follows from Wick’s
theorem that the only non vanishing terms of the normal product expansion of T[ ]
will be those having valence to valence scatterin gs only, since only these will be capable
of finally contracting with valence destruction/creation operators Q; /Q;". In diagram-
matic language, the terms yielding non-zero contributions would correspond to a set of
disjoint diagrammatic components having open lines (corresponding to uncontracted
operators) labelled by valence lines only. We call such diagrams “valence G blocks”.
There may be valence G blocks having no open lines—they are thus closed blocks and
are numbers. For a given ordering of the open blocks, if we now collect all possible time
ordering of the closed blocks, then (7) can be factorised as

e e———
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t

N =i i exp [i(Ec——E?)t]j de, ... dt,
m=0 -0
CHINLV, () - - Vi (tm) D45 open
x l:liNclosed (t)], (8)

where N©osed (1) is given by

(=9)"
m!

Nelosed (1) = ikgo—(—g-!-l;)-f dty ... dg <¢‘N[V](t1) R I/I(tk)]!¢>

-
= i($|U,(t, — 0)|>. ©)
Using Gellman-Low theorem for the closed shells, N°los¢d can be written as
Nelosed (1) = fexp [ (Eq — EJE] < |¥, (10)

where ¥ is the correlated vacuum state with exact energy E, and E, is the unperturbed
energy of the vacuum ¢. Equation (10) allows us to eliminate the correlated vacuum
energy E, from (8) and obtain

(=9)"
m!

t
Nyt =i Z exp [i(Eo — ED)t] j dey ... dty,
m=0 - 00

X COINTV () - - Viltw) W] D open <HIYD
= NP @) <plyd. (11)

Again, as { ¢ |y ) does not contribute to the poles, it suffices to consider only N a4
Our next objective is to rewrite (11) in such a manner that the terms can be regrouped
into a Dyson-like equation.

To facilitate further analysis, Banerjee et al (1982a,b) mtroduced the concept of a
“box”. A box is a part of the diagram which cannot be further subdivided into two sub
boxes joined by valence lines only. Also, they introduced a “string” which is a connected
set of boxes joined by valence lines only. The open G boxes of (11) will thus
diagrammatically look like a set of disjoint strings having various numbers and types of
boxes embedded in each string. A typical term of N7P"(t) may be depicted as in figure 1.
In each such term, there is a topmost time ¢, at Wthh the interaction starts. If one scans
the time arguments of the beginnings and endings of the boxes by going down the
diagram for the term, one encounters an uppermost time level ¢, lying below £, such that

—— t

Figure 1. A typical term of N°Pe"(r) depicted in terms of boxes. The lines emanating from the
boxes are all valence. The top-most possible time of the diagrams is ¢. The top-most time at
which a box begins is t,; t; is the top most time at which a horizontal line drawn across the
vertical valence lines does not go through a box.
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Figure 2. Conversion of string of boxes to a string of points. ¢ is the top-most possible
time of the diagram. ¢, is the time of the top-most point. We have also indicated a few time
arguments of the succeeding points.
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Figure 3. The procedure by which one converts a box showing a time-delayed interaction to
a point. We choose the time-base ¢, midway between t, and ¢, and allow the valence lines to
converge to 1y, a. shows how the effect of the extra propagators are annulled by folding back
the “extra” propagators, b. depicts the internal disposition of the point.
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Figure 4. Emergence of folded diagrams as a result of iteration of a point,a. shows the time-
arguments of the actual boxes joined in a string, b. shows the converted points joined in a
string. The implied time-arguments are also displayed, ¢. shows the error incurred due to the
implied time ordering of b. The time range which is wrongly included is shown in ¢. The
diagram has a set of folded lines which are shown as encircled lines.

a b (P)
K S
¢ b

a P

Figure 5. Set of points on two strings connecting determinants |ab| and |ac|. These two
determinants are in the set P. The dotted lines cutting the valence lines indicate the
intermediate determinants. The figure displays that the intermediate determinants is | be]
which is a virtual valence determinant in the set R. The whole diagram itself must be regarded
as a part of Xps.
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a horizontal line drawn at ¢, cuts valence lines only (i.e. cut at t; doés not go through a
box). Calling the set of boxes above t, as a “top” part of the diagram and the rest as the
“bottom” part, it follows that the whole series for N{P" (t) will involve a factorisation of
terms involving all possible top parts and bottom parts, and as the latter has the highest
time as t; but has the same structure as N7P"(r), it will have a form N°Pe"(r) with
appropriate indices. ‘

Introducmg the resolution of identity in the model space as 1,,, = Zlqb,, > x|, we
may show in a straightforward manner that

NP () = NSF™ (0 + % j N () X~ Niy™" ()dt (12)

where NgP" and NJPF™ are given by
NG ) = i< | exp [i(Eo — ED)] Y7 D, (13a)
NG (e) = i ¢:|exp (Eo — ED)t] | @5 > 8y | (13b)

Equation (12) indicates clearly that a one-side Fourier transform on NPP*"(t) will yield
an w-dependent Z(w) from X (t — ¢;). Banerjee et al (1982a b), however, further showed
that by resorting to an alternative time-integration procedure it is possible to render
as instantaneous, so that the Fourier transform generates an w-independent £ and
hence an open-shell mepT of the Rayleigh-Schrodinger form. ‘

If a box is replaced by an equivalent point-like or instantaneous vertex in which the.
valence lines enter and leave at the same time, then a string of boxes can be represented
as a string of points. In such a situation, a typical term of NP (¢) will look like figure 2.
If one now calls the part of the diagram having the topmost interaction ¢, as the top part
and the rest as bottom, then it follows that NP*"(t) leads to a factorisation involving
two parts: one containing collection of all the points of various internal structure, and
the other containing just the collection of strings of points with highest time as ¢,
yielding NPt X.(¢) in this case is then the collection of top parts and each term in
Z(t) is connected, and is time-instantaneous.

Johnson and Baranger (1971) gave a procedure by which it is possible to convert a
time-delayed vertex into an instantaneous vertex. In this procedure, one chooses a
convenient time base tg, and propagators for the valence lines are allowed to converge
on that time base. The point is then the part of the vertex containing corrections (i.e.
additional propagators needed to bring the lines at t,). Thus, for a box with time of
entry and time of exit as ¢, and t; respectively, a point can be generated as shown in
figure 3. The dotted lines in figure 3b indicate that the valence propagator lines have
been “folded”, and the genesis is depicted in figure 3a. A closer analysis reveals that the
above procedure for replacing a box by an equivalent point does not simply convert a
string of boxes to a string of points within the allowable time ranges unless correction
terms are brought in. Johnson and Baranger (1971) as well as Benerjee et al (1982a, b),
discussed at great length the various correction terms that one might have to invoke,
and we refer to these works for these details. Here we simply demonstrate the
emergence of one kind of correction terms by taking a concrete example. For a string of
two boxes of the type shown in figure 3a, a simple replacement of the boxes by the
points as in figure 3b would entail a time range absent in the original series. Terms
having this time range are then subtracted. Figure 4a shows the string with two boxes
and figure 4b the string w1th two points. In figures 4a and b the actual and implied time

P—9




658 Md. Azizul Haque and Debashis Mukherjee

restrictions are also shown. Figure 4c shows the term that is wrongly brought in. This is
a situation in which the boxes overlap with ¢t > t, and the lines joining the two boxes
“fold back”. This term should therefore be subtracted. Finally, by choosing a time base
for this correction term, this again may be made instantaneous. Again a correction term
has to be invoked for this “correction” at a higher order. But the procedure is unique
and can be carried through at each order systematically. Thus Banerjee et al finally
obtain a X (¢) which is time-instantaneous so that the Fourier transform yields an w-
independent X. Following Johnson and Baranger (1971), they also demonstrate that if
to is chosen midway between the exit and entry points, then ¥ can be made to be
hermitian. With such a time base t,, N;P*"(w) may be written as

N (@) = N°”“(w)+ZN8?f“(w>Z‘*S Ngpen (), (14a)

k

0ij

or, in matrix-notation
NP (@) = NG () + NgPer Y RE NP (), (14b)

If we now expand the functions |9 ) in terms of the model space determinants |, >
using .

¥9> =¥ [ >Cis (15)
K ,
then it follows from the linear independence of the |9 )’s that
NoP™ (@) = NgPe™ (@) + NgPen () FRINCP () | (16)
where INOPeR — NOoPeRC, : a7

The poles of [N°P"]~! correspond to solutions of the following equation
[N (@)~ ~T]A =0, 18)

for nontrivial matrices 4. Using the Fourier transform' of (13b), we finally have the
hermitian eigenvalue equation

[(E) —Eg)1+ YRSTA; = wjA,; (19)

furnishing the energies w; = (E; — E,).

2.2 Resolvent-based open-shell MBPT for the incomplete valence space

The above development clearly demonstrates that the key requirement in the
factorisation leading to a product ZRSN°P" is that once the topmost point in a string is
- taken as the top part, the lines immediately under it joining with the bottom part must
all be valence and any possible set of labelling these lines must define a model space-
determinant for resolution of identity in the model space to hold good. The assumption
of a complete valence model space was thus instrumental in the factorisation. In
contrast, once we agree to deal with an incomplete model space, the valence lines
immediately under the top part may not define a model space-determinant. In this case,
we must always keep in mind the underlying determinantal states that characterise the
labels on the bunch of valence lines joining the boxes. In a complete model space, any
combination of the valence orbitals defines a model space determinant and any box is

g
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automatically a legitimate diagram of XS, For an incomplete model space, this is not
generally the case. ' :

The crux of the problem is best illustrated by taking as a concrete example a two-
valence problem with valence orbital labels @, b and c. The complete valence space
consists of determinants |ab|, lac| and |bc|. Now let us suppose that we have an
incomplete model space consisting of | ab| and | ac| and the determinant |be| is outside
the model space. A typical term of N°P" (¢) consisting of two strings is shown in figure 5.
If we identify the top point as the top part of the diagram, then it follows that, as
labelled, the bunch of valence lines immediately under the point define the determinant
|bc| which is outside the model space. In this case the top part has to be taken as the part
of the diagram under which there are only a bunch of valence lines labelled in such a
way that they define model space-determinants. Clearly in figure 5 the whole diagram
must be regarded as part of RS, This is disconnected. But a component of the diagram
is then not a legitimate diagram, because it is impossible for any of the single strings to
connect states |ab| with |ac| or |ab|. The appearance of disconnected diagrams thus
does not indicate size-inconsistency of the theory. We call such disconnected diagrams
- as “irreducible disconnected diagrams™.

The strategy that we advocate in this paper to generate HeT can now be concretely
-stated. We start from the string of boxes. We next define three sets of determinants. The
set of model space-determinants are called “model valence space” and is labelled as the
set P. The set of valence determinants left out of the model space are called “virtual
valence space” and is labelled as the set R. The set of virtual determinants are labelled as
Q. We now label the lines joining the boxes in all possible manner. Considering each box
to be a point, and scanning the diagram downwards we note whether the labels on the
lines between the top-most point and the one under it characterise a term in P or in R. If
the termis in P, the top vertex then is a legitimate top part. If the term is in R, we proceed
downwards still further till we reach a stage where the nth point and (n+ 1)th point have
for the first time a set of labels characterising a term in P. The points below this will
form the bottom part, and the set of disconnected points on the top constitute a
possible diagram in Z®S, For actual evaluation, we have to remember that the strings
contain boxes and not points, and we have to convert them into points by folding the
external lines onto a common time base ¢,, following our earlier method (Banerjee et al
1982a,b) for complete valence space. .

We have indicated in figure 5 the classification into P and Rsets of a typical term for
the incomplete model space with functions |ab| and |ac|.

To illustrate the methodology still further we take a concrete example. Suppose we
are interested to find out the low-lying states of He-like systems. The dominant
configuration of the ground state is the determinant |15, 15|, and those for the excited
singlet and triplet states are |1S,25,| and |2S,1S,|. For a complete model space, we
should also include the function |25, 2S,|, which lies however far higher in energy (in
the Auger continuum) and mixes strongly with virtual states like | 15,38,] etc., leading
to an intruder state problem. Our strategy then would be to leave out the function

|28,25;5| of the model space. The set of boxes labelled as in figure 6a are legitimate
candidates for H*', as they connect the states |1S,1S,|, |1S,28,], |28,1S,| with
|18, 18|, and indicate what kind of connected single boxes survive as bonafide terms.
The set of diagrams shown in figure 6b are disconnected irreducible diagrams. The
diagram on the left has a one-valence single box component with a passive valence line.
This kind of diagram appears in a complete valence space calculation as well. However,
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Figure 6. a. shows some typical single box diagrams for the two valence situations
b.- shows two diagrams. The one on the right is an irreducible disconnected diagram, ¢. isa set
of folded diagrams brought in to correct the error during the conversion:of boxes to points,
d. isa folded diagram where an irreducible disconnected component is joined by folded lines
to another single box, e. shows some typical diagrams for an incomplete model space
calculation with function [nS,nSy|, |nS.(n+1)Ss| and ](n+1)S,nS,|.

B h-p deferminant

______ __cb_

ﬁ h~p determinant

Figure 7. A typical disconnected diagram .in which the intermediate determinant is the
Hartree-Fock function ¢. This diagram spells a breakdown of the core-valence situation.

the diagram appearing on the right of figure 6b is a true disconnected irreducible
diagram which is characteristic of our present formulation. Let us note carefully, thata
horizontal line passing just under the topmost box cuts a bunch of R valence lines,
characterising the determinant |2S,2S;|, and thus the topmost box by itself cannot
form a legitimate diagram of H. The diagrams in figure 6c are the “correction terms”
brought in during the replacement of string of boxes by an equivalent string of points,
as discussed in §2.1. The lines that are folded are encircled to indicate that the associated
propagators run “backwards”. These folded diagrams are all connected because they
stem from the conversion of connected boxes to points. In our formulation there are,
however, disconnected irreducible boxes as well, as shown in figure 6b. Conversion of
such boxes into a point by folding onto a common time base will entail again errors in
diagrams containing two or more such points. The corresponding correction terms will

then appear as disconnected diagrams having boxes joined by folded lines. In this
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process of joining, a previously disconnected set of boxes might form a connected
diagram. This is illustrated in figure 6d. The set of boxes on the top joined by folded
lines are the irreducible. disconnected diagrams of figure 6b. Upon joining by folded
lines to the lower box, the composite diagram becomes connected. However it should
be borne in mind that in general there will also be disconnected irreducible diagrams
having folded lines joining the various components. We do not show such a term
explicitly here because it will appear ata pretty high order of perturbation theory. For
the formal point of view, however, their presence must be taken into account.

Toillustrate concretely the internal structure of the boxes, we depict in figure 6e a few
typical Hugenholtz diagrams for a model space consisting of nS? and ns(n+1)S
functions. The arrows on the internal lines indicate the associated hole or particle
orbitals participating in the internal part of the boxes. Starting from the left, the first
diagram of figure 6e is a legitimate connected single box diagram and is a correlation
term. Its general shape is that of a diagram of figure 6a. The second one is a single box
diagram with a spectator valence line. Its general structure is that of the left diagram of
figure 6b. The third diagram is a disconnected irreducible diagram of the general
structure of the right diagram of figure 6b. The last diagram of figure 6¢c is a folded
diagram. , ,

It should be clear from the foregoing discussions that, because of the underlying
book-keeping procedure for the determinants of the P and R space, no general rule for
drawing the diagrams can be given. However the general strategy is quite simple. The
new set of terms that we encounter are the disconnected irreducible diagrams which
have intermediate R space valence determinants and the folded diagrams in which one
or more components of the boxes joined by folding can be disconnected irreducible
boxes.

We have elaborated above on the formalism by taking as examples the cases where
the valence lines are valence particles. In these cases the H°T conserves the number of
valence lines before and after the interaction. This leads to a number of simplifications.
In particular, the various n-valence sectors of the Hilbert space become automatically
noninteracting with one another due to the particle conservation superselection rule:

Heff = @ Hﬁﬂ" (20)

where HST refers to the n-valence projection of H®T, Clearly this spells an “aufbau”
development of the H* starting from the n = 0 valence state (i.e. the vacuum). The very
fact that each He is noninteracting with respect to one another makes it possible to
calculate the vacuum exact energy E, first, the one valence energies by calculating H$T
next, and so on, so that the shift in energy upon addition of valence particles can be
easily evaluated, if desired. This simplicity of structure is, however, somewhat modified
if there are valence holes as well in the model space determinants. In that case the
number of valence lines entering into and leaving from the bottom and the top
respectively are not necessarily the same. As a result, various n-valence sectors of the
Hilbert space are coupled together. In particular, the following couplings are generally
present: .
Hg= @ HF, , (21a)
n = odd, even .
or

,3,5,..., for odd ~ (21b)
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which follows from the fact that determinants which are related by various hole-particle
excitations have the same number of electrons and thus can generally interact through
H°T, The most striking consequences of this observation is the breakdown of the so-
called “core-valence” separation (Brandow 1967). Let us suppose that we are interested
in finding out the low-lying excitation energies of a closed shell ground state. The
natural choice for the model space functions are the hole particle excited determinants
of the Hartree-Fock ground state ¢. If the model space contains no other functions, ¢
itself becomes a part of the virtual space functions Q! One thus has an awkward

situation where the vacuum itself interacts with the model space functions, and this

leads to certain disconnected diagrams involving the hole-particle determinants and ¢,
as shown in figure 7. As a result the core-exact energy E, cannot be calculated
independently, and the core-valence separation breaks down. In a recent article,
Brandow (1983) has pointed this out, which he regarded as a malady. In the light of our
- present development, this is no longer a major problem. For a general model space one
can leave out or bring in any determinant that is deemed as instrumental in smoothing
the convergence of the perturbation series. For determinants involving valence holes
and even number of electrons, (21a) generally holds true. Once we decide as to which
determinants are to be included in P, we add to P the determinant ¢ as well,
corresponding to the n = 0 valence problem. Then=4,6. .. ... virtual valence and
other virtual space determinants then form the complementary spaces R and Q. If
needed, one may leave out even some n = 2 hole-particle excited determinants out of P.
Particularly, the more highly excited hole-particle determinants mix very strongly with
2 hole-2 particle excited determinants and may cause convergence problems if included
in P. Once ¢ is included in the model space, the diagram of figure 7 cannot appear, for ¢
is a part of P now, and the final diagonalisation of H* would furnish us with both the
excited state energies and the ground state correlation energy. The core-valence
separation thus figures in this theory in a somewhat modified manner.

3. Concluding remarks

In this paper we have formulated an open-shell MBPT Which is not restricted for its
performance to complete valence model spaces. The effective Hamiltonian He¥ thus
generated is hermitian which results in considerable computational simplification and
offers stability to the calculated energies. The formalism relies on a resolvent operator
approach to mMepT put forward recently by Banerjee et al (1982a, b) and it has been
shown that by a simple modification of the concept of valence space a completely
general formalism may be developed in a transparent manner.

A brief comparison with the only other MBpT involving the general model space may
not be out of place here. The formalism of Hose and Kaldor (1979, 1980, 1981, 1982)
relies on the nonhermitian formulation of Brandow (1967) for its development. Hose
and Kaldor claim that, by choosing each ket ¢ ; as the vacuum for calculating
{$;|H*|¢,>, they eliminate many diagrams which would otherwise cancel among
each other. While this may have advantages in a nonhermitian formulation where there
isa manifest asymmetry between ¢, and ¢ ;» 1t becomes difficult to extend this formalism
to generate a hermitian HY. Operationally speaking, the choice of multiple vaccua for
the calculation makes the general diagrammatic classification in Hose-Kaldor forma-
lism quite cumbersome and generation of the diagrams error prone (Hose et al 1982). In

~




A hermitianA open-shell MBpT ‘ 663

the present formulation, one simply needs to classify the diagrams into various boxes
first and regroup them according to connected -single boxes and disconnected
irreducible boxes. In contrast, Hose and Kaldor classifies the diagrams as closed
diagrams, cut-reducible diagrams and so on, whose manipulations can be quite
complicated in practice. More significantly, Hose and Kaldor did not consider the
interacting nature of the H®T for hole-valence situations and did not discuss the
breakdown of the core-valence separation as a consequence.
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