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Abstract. Although the structural similarity between the properties of a thermal trace and
the zero-temperature expectation values for quantum systems has been known for quite
some time, not all the practical computational methods in the thermal field theories exploit
this correspondence explicitly. Using a thermal field theory derived by us, which introduces
the thermal analogues of normal ordering and Wick’s expansion, a very close resemblance
- between zero-temperature and finite-temperature field theories can be established. We use
this apparatus in this paper to derive optimal conditions of mean-field and correlated
descriptions of thermally averaged quantities. It is shown that the optimal mean-field
conditions for the free energy is equivalent to the minimum value for the average energy.
The optimality conditions turn out to be exact thermal analogues of the Brillouin conditions.
The optimal mean-field condition to generate the minimum value of the ratio Z/Z,, where
Z and Z, are the exact and the mean-field partition functions, yields the exact thermal
analogue of the Briickner condition. In a similar vein, we generalize the thermal Brillouin
condition to include correlated functions used in the evaluation of the thermal trace. The
optimal choice of the correlated ground states leads to many-particle generalizations of the
thermal Brillouin conditions. In the context of the path-integral methods for determining
Z, we envisage use of a local optimal mean field that depends on each point on the
path - leading to local thermal analogues of Brillouin and Briickner conditions. To derive
these conditions, we have used another apparatus of field theory derived recently by us that
uses concepts of normal ordering and Wick expansion with respect to a path-integral measure
(rather than the measure implied by thermal trace). We hope to demonstrate in our discussions
-y that this way of formulating thermal many-body problems enables us to exploit deep
similarities between thermal and zero-temperature situations which are difficult to discern
in the traditional methods. Illustrative examples by way of deriving thermal Brillouin and
Bruckner conditions for typical Fermionic and Bosonic problems are presented.

Keywords. Optimal mean-field description; finite-temperature many-body theory; thermal
Brillouin condition; Briickner conditions.

1. Introduction

Quantum many-body systems in equilibrium at a finite temperature display complex
and fascinating behaviour that seems inexhaustible in its richness and variety. It is
no wonder therefore that there exist in the literature several general methodologies
for computing equilibrium thermal properties of quantum systems. We may mention
here just a few among them as being of direct relevance to us: the finite-temperature
perturbation theories (Bloch and de Dominicis 1958; Balian and de Dominicis 1960;
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Balian et al 1960), the temperature Green’s function method (Matsubara 1955), the
complex time-path formalisms (Martin and Schwinger 1957; Niemi and Semenoff
1984), the path-integral methods (Feynman and Kleinert 1986; Giachetti and Tognetti
1986; Lee et al 1991), and the recently emerging developments of thermofield dynamics
(Arimitsu and Umezawa 1985, 1987, Umezawa and Yamanaka 1988). Although a
close correspondence between the properties of thermal traces of the finite-temperature
statistical mechanics with those of the zero-temperature expectation values in
quantum mechanics has been known for quite some time (Araki and Woods 1963),

not all the finite-temperature formalisms mentioned above exhibit this feature in a

manifest and transparent manner. To keep this correspondence explicit is, however,
highly desirable since this would encourage very fruitful reciprocal fertilization of
both finite-temperature statistical-mechanical methodologies and zero-temperature
quantum mechanical formulations.

The path-integral methods (Feynman and Kleinert 1986; Giachetti and Tognetti
1986; Lee et al 1991) and the formalisms of thermofield dynamics (Arimitsu and
Umezawa 1985, 1987; Umezawa and Yamanaka 1988) are rather special in the sense
of bringing out the correspondence mentioned above. The path-integral methods
employ integration over the paths with a suitable measure to perform the thermal
traces which has a correspondence with the ordinary integration over co-ordinates
(or other suitable degrees of freedom) for computing the expectation values. The
manipulations in the path-integral methods can thus, with appropriate notational
innovations, be mapped onto a zero-temperature formalism. Likewise, in the thermo-
field dynamic formulations, one replaces the thermal trace as an expectation value
over a properly defined “thermal vacuum”. To establish a complete correspondence,
it then becomes necessary to “double” all the degrees of freedom. In the occupation
number representation, as befitting a finite-temperature field theory, one replaces the
system Hamiltonian H(a,a’) by a modified Hamiltonian H = H (a,a’)— H(@3,3a"),
where the set of tilde variables d/a" are exact replicas of the system variables a/a.

Despite the possibility of discerning the kinship of both path-integral and thermo-
field dynamical methods to zero-temperature formalisms, their operational details
are sufficiently different compared with the zero-temperature- field theoretic
treatments, so that it seems worth formulating finite-temperature many-body theories
involving the physical variables onl y - using manipulations that are structurally closer
in spirit to those invoked in zero-temperature many-body theories.

We have proposed very recently a finite-temperature many-body theory, called the
thermal cluster cumulant theory by us (Sanyal et al 1992, 1993) which may be looked
‘upon as a finite-temperature generalization of the zero-temperature time-dependent
coupled cluster theory. It should be mentioned that there are both closed shell
(Monkhorst 1977, Hoodbhoy and Negele 1978; Arponen 1983; Sebastian 1985;
Arponen et al 1987; Prasad 1988) and open shell (Mukherjee 1986; Guha et al 1989;
Guha and Mukherjee 1991) formalisms. Qur normal-ordered thermal generalizations
are akin to the open shell formalisms mentioned above. The formalism combines the
advantages of both finite-temperature perturbation theories (Bloch and de Dominicis
1958; Balian and de Dominicis 1960; Balian et al 1960) and formalisms of thermofield
dynamics (Feynman and Kleinert 1986; Giachetti and Tognetti 1986; Lee et al 1991)
but has the simplicity of using only the physical variables in the manipulations. It
can also be applied in situations where the use of a path-integral method seems
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Finite-temperature many-body theories 409

the more convenient (Mandal et al, to be published). This development offers the
possibility of exploiting a much more direct algebraic homomorphy between the
finite-temperature and zero-temperature formalisms. In fact, by invoking the
finite-temperature analogues of normal ordering, contractions and Wick’s expansion,
the correspondence can be made very close —as has been recently illustrated by
applying the formalism for computing partition functions of interacting quantum
systems (Sanyal et al 1992, 1993). The apparatus of this new thermal field theory is,
however, of quite general utility which allows us to treat thermal traces at par with
expectation values for a much wider range of situations. The purpose of the present
paper is to indicate and explore several such possibilities. Just as one invokes optimal
mean-field functions in the zero-temperature formalisms — either in the sense of best
energy (Hartree or Hartree-Fock descriptions), or in the sense of best overlap with
the exact functions (maximal overlap or Briickner function) — one may analogously
envisage finding the conditions for optimal mean-field descriptions for generating
best thermally averaged energies (thermal Hartree or Hartree~Fock conditions) and
the best mean-field description of the free energies (which may be deemed as thermal
Briickner conditions) from our thermal field theory. It is even possible to go beyond
the mean-field descriptions and formulate general thermal Brillouin conditions for
correlated models, which are the natural finite-temperature analogues of the so-called
k-particle Brillouin conditions formulated more than a decade ago (Kutzelnigg 1979,
1980). In the path-integral methods for partition functions, one often invokes a
“smearing procedure” (Feynman and Kleinert 1986; Giachetti and Tognetti 1986;
Lee et al 1991), amounting to the choice of a “local” mean-field potential on each
point on the path, which finds its natural use in our thermal field theory as generating
“local” thermal Brillouin and Briickner conditions. These relations, in our opinion,
offer useful insight as regards the various optimal choices in a variety of situations
that would have been pretty hard to discern with the other formalisms currently in
use.

The paper is organized as follows. In §2, we delineate the appropriate thermal
analogues of the normal ordering and Wick’s theorem and summarize the contents
of our formulation of the thermal field theory. This section will also serve to introduce
the terminology and notations to be used later in the paper. In § 3, we derive the
thermal Brillouin and Briickner conditions as alternative optimal defining relations
for the mean-field descriptions. In §4, we discuss the appropriate generalizations of
the thermal Brillouin conditions for models beyond the mean fields. In §5, we
introduce the concept of “local” mean fields in the context of path-integral formalisms
and derive the “local” thermal Brillouin and Briickner conditions in the framework
of path integrals. Section 6 contains our concluding remarks.

2. Thermal normal ordering and thermal wick expansion in a finite-temperature
many-body theory

2.1 Matsubara formula for thermal traces as the analogue of Wick’s reduction for
expectation values

To provide the basis for the development to follow, we start out with the well-known
formula for computing the thermal trace of a time-ordered product of Bose/Fermi
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operators:
< T[A(t,)A5(5)... A,(1,)] >
Trexp[— B(Ho— uN)] T[A (1) A;y(t5)... A,(1,)1/Z,

=] (-1« TLA(t:)Aj(z;)] >, (1)

all pairs
(€8]

I

where each pair involves one creation and one annihilation operator of each type
and #,; is the parity of permutation needed to bring two Fermi-type operators A4;
and 4; side by side in evaluating the pair average « T[Ai(r;)Aj(t;)]1>». Z, is the
partition function of the “unperturbed” system, characterized by a one-electron
Hamiltonian H,, :

Ho=) glaia], )
k
‘N is the number operator,
N=2 [ga], 3
k N

and u is the chemical potential of the interacting system. The operators A;(t;) are
either defined in the ordinary interaction picture, ‘

Ai(t) = exp(iH, ;) A;exp(— iH,t;), 4)

or in the “interaction picture” involving “imaginary time”,
A;(t;) =exp(H,1;)A;exp(— Ho 7)) ' (5)

Expression (1) was derived by many authors in the context of finite-temperature
perturbation theory (Matsubara 1955; Bloch and de Dominicis 1958; Balian and
de Dominicis 1960; Balian et al 1960) and is generally known as the Matsubara
formula. It bears a striking resemblance to the familiar zero-temperature Wick
reduction formula of the vacuum expectation value of a T-ordered product of
operators as a sum of product of T-ordered pairs. In analogy with the notion of
contractions, we may define « T[A;(r;)Aj(x;]>» as a thermal contraction

‘
Dot « TLA ) A;(1)15 = {Ax) A,(c))}, ©)

2.2 Notion of thermal normal ordering and thermal Wick expansion

Unlike in the path-integral method where a suitable measure takes care of the thermal
trace, or in the method of thermofield dynamics where a doubling of the degrees of
freedom achieves the correspondence with the zero-temperature situations, we shall
envisage a procedure where a T-product of operators admits of an expansion involving
suitably defined thermal normal products and multiple thermal contractions — a

perfect finite-temperature analogue of Wick’s theorem. The thermal normal products -

should have the property of (i) commuting (anticommuting) under the thermal normal
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Finite-temperature many-body theories 411

ordering symbol for Bose (Fermi) operators, and (it) having vanishing thermal
averages. Such an expansion, if it exists, would automatically generate the Matsubara
formula, (1), since only the completely contracted terms in the expansion will survive
on taking the thermal trace. We have shown recently, while formulating our thermal
cluster cumulant theory (Sanyal et al 1992, 1993), that such a thermal Wick’s expansion
is indeed possible. It should be obvious that the thermal normal ordering is not a
normal ordering in the usual sense, since the thermal trace of Af(t;)4,(z;) with 7, > T
and A; a destruction is non-zero.

We shall illustrate the theorem by taking up concrete examples. For the general
proof we refer to our more elaborate papers (Sanyal et al 1992, 1993). Let us consider
first the bosonic systems. Wc define the thermal normal product {4,(t,)A4,(t,)}; as
follows:

Def: {4, (1;)A5(12)} g = TLA (1) A5(t2)] — « T[4, (1;)45(1,)]»
f"”“‘”’"'l
= T[A, (1) 45(7)] — {4: () A5(12)} (7)

We note that our development follows a path complementary to what is done in
the zero-temperature many-body theory: we define the thermal normal order as the
difference of the T-ordered product and the thermal contraction —to ensure the
vanishing of {{A4,(r,)A4,(t;)};>»; the zero-temperature theories define normal
ordering first and introduce the contraction as the difference between the T-ordered
product and the normal order. For three operators, we can construct the thermal
normal product in terms of T-product of these operators and {---}; products of two
operators, keeping a manifest symmetry in the expression with respect to all the three
variables. We thus write:

{Al(ﬁ)Az(Tz)Aa(Ts)}ﬁ: Cy T[A(t1)As(12)As(t3)]
| —— | A
+ Co{A;(t1)As(t;) }gAs(t3) + C3{A;(1,)As5(13)} pAs(T5)
v .
+ CyA (t1){As(r5)A5(t3)},- (8)

Since we want the functional definition of {--}, to be independent of the number
of variables, (8) should reduce to the definition, (7), if one of the variables is deleted.
Thus, for example, if we delete 4,(z,), we get

{A1(T1)A2(72)A3(73)}ﬂ = C1 T[A(t1)A(t2)A435(13)]

1

+ Cy Ay (1) {As(15) A3(T3) }4s 9)
which shows that C, = — C, = 1. From symmetry, it follows therefore that
{A1(71)A2(’52)A3(Ts)}p= T[A1(t1)Ax(t2)As(T3)]
1 1
- {A (t1)A5(15) A3 } {A T1)A2(Tz) 3(T )}ﬂ
1

- {Al(rl)Az(fz)As(Ts)}p> _ (10)

— I
where {4, (t,)A4;(1;)A;3(t3)}, etc. are compact symbols for {4, (t,)As(t;)A,(13)},.
It is easily verified that the thermal trace of {A,(7,)A,(t;)A3(13)}, is zero.
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This procedure can be followed for any number of operators, and we may write

(Sanyal et al 1992, 1993)

{Al(rl)Az(TZ)“'Ari(Tn)}ﬁ = T[Al(fl)A2(T2)"'An(Tn)]
[
- [{Al(TI)AZ(Tz)A3(73)---An('f,.)}ﬁ + all other

single contractions]
— [{Al(rl)Az(rz)As(t3)A,,(r,,)...},,+ all other

double contractions] — all possible
. other multiple contractions. .  (11)

Equation (11) is the thermal Wick expansion for n boson operators.

For proving the analogous theorem for fermion operators (denoted by C,), we first
show that the anticommuting property of fermion variables under the T-symbol may
be simulated faithfully by the following mapping:

Ci(t) oy 4,(ty) . (12a)
Cl(r)=yF Al (o), (12b)

where Ai/AI are boson operators and y; and y* are the Grassmann numbers which
are taken from a set of even number of Grassmann numbers. All Grassmann numbers
anticommute (Berezin 1966) among themselves and we take them to commute with
the bosonic operators in (12): ‘

ViVi= =YV (13)

We have arbitrarily assigned one particular y,(j # i) for each i as the conjugate vE;
this is possible since by choice the total number of Grassmann numbers is even.

<K T[Ci(z)Cy(r))] » < 8(x; — )77 4:(t:) A;(z))
=3(z;— Ti))’j?iAj(Tj)Ai(Ti)
=YV T[Ai('fi)Aj(Tj)]- (14)
* From the anticommuting properties of C;s under a T-symbol and ¥;S, we then find
TLC,(e) Cue) 1>y TLA (e) Ai(z)]
= —17; T[A(r) 4j(x)] ‘
=~ T[C(w)Cylz))]. (15)
Hence, we may write for T[C,(t,)...C,(z,)], the mapped expression

TICi(ty) . Co(ta)] =717 T[4 (zy)... 4,(1,)]. (16)

- N
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If we now write the T-product of the bosons in terms of thermal normal products
and introduce the symbols

1 T
{Ci(r, )Cz(fz)ca(l's)}ﬁ =7Y1Y273 {A1(T1)A2(72)A3(T3)}p (17)

and the analogous ones for multiple contractions, then it follows that
{Cl(fx)cz(fz)---Cn(fn)}ﬂ= T[Cy(1,)C3(15)... Colta)]

' . .
— l:{C 1 (11)C;(15)Cs(t3)} 4 + all other single contractxons-}
"[{61(T1)C2(T2)C3(Ta)cn(%)-~-}ﬂ + all other

double contractions] — all the rest of other multiple

contractions. (18)

Clearly, the Matsubara formula for fermions with the correct phases follows from
(18), since the only nonvanishing terms in the thermal trace of a T-product would be
the set of completely contracted terms. The phases are taken care of by signs generated
by the Grassmann numbers used in the definitions (17), above and the like. A zero-
temperature analogue of the thermal Wick expansion may be obtained by setting
the variables t,,...,7, as 7,=0, T, =¢, T,_, = 2, etc, and let ¢ >0,

{D,D,---D,}3=D,D,---D,—all posible contractions, (19)

where the Ds are either Bose or Fermi operators. The contractions {D;D;}, are
defined as

1

Equations (11), (18) and (19) are the central building blocks of our thermal field
theory, and they would replace the zero-temperature Wick’s expansion in all of our
subsequent developments.

3. Optimal thermal mean-field formulations: Thermal Brillouin and Briickner
conditions
3.1 Preliminaries

The grand partition function Z for any interacting many-particle system is central
to any statistical mechanical description at a finite temperature 1/:

Z =Trexp[— B(H — uN)] = Trexp(— fK), (21)

where u is the chemical potential for the system.
Z is a multiplicatively separable quantity since the operator exp(— BK) is a
multiplicatively separable operator. Two important extensive (i.e. additively separable)
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properties of the system are thermally averaged energy E = «H > and the free energy
F, defined by

LN > ——ag;Z=E (22)
- %E ~F. (23)

In actual applications, it is seldlom possible to exactly compute the trace of
exp(— BK). What is feasible (and what is usually done) is to partition H into H, (of
the type shown in (2)) and a “perturbation” V, and compute Z in terms of thermal
traces with respect to the unperturbed Hamiltonian H o- Thus, for example, we may
write exp(— K) as (Matsubara 1955)

exp(— BK) = exp(— fK,) T[exp (Jw - Vl(r)dr):l‘, - (24)
where °
Ko=Hq—uN , (25)
Vi(t) =exp(rK,) Vexp(— 1K) (25b)
and get

Z/Zo=Tr[expt—ﬁK0] T[exp(fﬁ - V,(-r)dr)i,/Trexp[—-BKo]:]
0

=« Tliexp(fﬁ - Vl(r)dr>] >, (26)
. ,

Using our thermal Wick’s expansion, It is possible in principle to compute the
right-hand side of (26) to any desired order in perturbation theory. However, just as
in the Dyson expansion of a unitary operator where the unitarity is lost under a
truncation of the series, the multiplicative separability of Z/Z, is lost under a
truncation of the series in (26). To obviate this difficulty, one introduces the extensive
quantity called the cumulant (Kubo 1957, 1962) in the thermodynamic perturbation

theories (Bloch and de Dominicis 1958; Balian and de Dominicis 1960; Balian et al
1960) '

2/Zo = exp(C), @
where the cumulant C is written as a perturbation series
C=C,+Cy+Cy+... | (28)

By expanding Z/Z,, orderwise in both (26) and (28), and comparing like-powers in
"1, C,s can be recursively generated. A nonperturbative access to C is achieved in
our thermal cluster cumulant theory (Sanyal et al 1992, 1993). In either case, the
strategy is to truncate the T-ordered exponential in (26) in an appropriate manner —
but perform the thermal trace exactly, involving the Boltzmann factor exp(— pK,).
The latter is most easily achieved in terms of the eigenfunctions of H,. The lowest
energy eigenfunction |¢) of H,, defines the mean-field function. The optimal choice
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of H, is not unique: we may, e.g., demand H,, to be so chosen that E = «H>» has
the lowest value. Or, alternatively, one may impose some optimal conditions on Z/Z,
in the sense of providing the ratio of minimum magnitude. ,

We should mention here that there was an earlier coupled cluster inspired formulation
for the calculation of partition function (Altenbokum et al 1987), which required an

* explicit knowledge of the spectra of H. Our method is more natural and more compact,

and is direct in the sense of not requiring an explicit knowledge of the spectrum of H.

3.2 The thermal Brillouin condition: Optimal choice for average energy

We shall derive now the conditions for generating the optimal |¢) for providing the
lowest value of « H >. This will lead to the thermal Hartree (Hartree-Fock) function
|¢> for bosons (fermions). The interesting aspect of our derivation is the demonstration
that if we minimize the mean-field value F, for the free energy, it follows automatically
that « H > is minimized with respect to the parameters of variation, for fixed average
orbital occupancies.

Let us take a/a’ to be the set of destruction/creation operators for the system. To
find out the optimal |¢), we start out with a trial | ¢, > — defined with respect to a/a’
and some trial parameters — and induce a unitary transformation on the set a/a’:

a—b =u'ay (29a)
af bl =ulaly, . ‘ (29b)
¢ >—>ul|d, ). - (30

u! induces a transformation on |¢,> which keeps its form unchanged but changes
its parameters and transforms a/a’ to b/bT. H(a,a') can be explicitly written in terms
of b/b’; using (29),

H(a,a’) = H(b,b"). @)

Let us now assume that we take as our new unperturbed ground state the function
ut|@,>, with an unperturbed K}, and rewrite H(b, b') in thermal normal order with
respect to this unperturbed description. The general form of this transcription is given
by

Hb,b) = «<H» + Y & {blb}s+ Vs (32)
k

where « H> is computed as

Trexp(— BK,)H
Trexp(— BK})

«<H>» =

| (33)
with
K: ={Ho};+ «H>» —uN. (34)

.
The values of the contractions m, = {b b, }, are given by

me= [exp(Blex —p) £ 1177 \ (35)
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for fermions (bosons). 4 should be determined from the condition that «N > has a
fixed assigned value N.
We now define the mean-field free energy F, by

1
Fo= _BIH(ZO)" (36)

where Z, is given by |
Zy = Trexp(— BK}). (37)

It can be shown by straightforward computation that F o is explicitly given by
1 — -
Fo=«<H>» + E[Z mInn, +(1Fn)Iin(1 F nk):l —uyn (38)
k ' k

with upper (lower) signs for fermions (bosons).

The variation in F, is induced by the variations induced by u' in u'|¢,), and
affects (38) in two ways: (i) the parameters describing |¢, change, thus affecting the
expression of H; (i) the values of ¢,s change as a result of the variations and this
changes the contributions from n,. We shall take account of both these types of
changes below while varying F,.

The precise form for u" depends on the form of the function |¢,>. For fermions,
|¢,) is a single Slater determinant, so that u! ~ exp [Z,,t,,ala, —ala,)], where {o}
and {p} are the holes and particles defined with respect to |¢,>. This is Thouless’s
way of parametrizing a Slater determinant (Thouless 1960). For bosons, |¢,)> is
generally a product of displaced Gaussians, so that u is of the form

t
ut ~ expl:; se(al —ap) + 5"(a;£2 — af)].

Generically, we may write u' ~ exp[ Zt;(e] — e;)], where t;s are real and e;s are those

products of creation/annihilation operators which are needed to parametrize | ¢, >.
The variation of F, can now be written as :

oF “

ot + Y, —26n,. (39)

n x Om,

The first term of the right of (39) indicates the variation of F o keeping the sets {1, } fixed.
Using (35) and (38), we find

5F0=Za<<H>>

i i

Sti+ ),

n i

[6 «<H>

n,

- “]5nk - ;(&c — Won,. (40)

When rewriting H(b,b") in thermal normal order, we generate thermal contractions
involving n,s. «H> is the fully contracted term; {H,}, has one contraction less
than in «H >, since {H,}, is a one-body operator, containing &, {b b, },.

From (32), it then follows that

0« H>»

on,,

=&. (41)

uﬁ £
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We thus obtain from (41) the important relation

5F0=26<<H>>

ot;. 42
TN i (42)

The minimizing condition for F, with respect to the parameters ¢; then take the form

JI<H>»

O0F,=0=
0 ot

n (43)

i

We have thus shown that the best mean-field description of F, leads to the best
mean-field description of « H >, keeping n fixed at values defined for these ¢;s.

Let us now find out the explicit minimizing condition for «H>. For this, let us
assume that the nth unperturbed state |n,) is generated from |¢,) by the action of
suitable excitation operator Y!:

Iny = Y., (44)

«H> is given by
exp(— BE° | ¢ i’,,ubluJr Yi|o,
Trexp(— BKy)H ; Pl 282 ol @n2

Trexp(— pKy) Zexp BE){¢.| Y, Y1 ¢,> |

«<H>» =

(45)

where E® = E° — u{n,| N|n,), with E? as the unperturbed energy for |n,>. For optimal
choice of the parameters, a=h, |¢,> is the desired |¢), and the first-order variation
of (45) should be zero with respect to the parameters. We find

Y. exp(— BEQ)K&,| Y, Y. oti(e;— e[ )H Y11d0>
Sty= - : : +he.
Y exp(— BEX)K ¢l ¥, Yilo,D

J<H>»
2.

«<H>» Y exp(— BED{@i| Y, L otile;—ey) Y114,
- - : : +he.
Zexp(— ﬂES)((ﬁJ Yn Y11¢z>

=Y [«(e;— e}‘)‘H > 6t; + h.c.]

- [ <H>»Y, «e;—el)»6t; + h.c.]. (46)

The elements e;/e] are products of suitable creation/annihilation operators and have
no common indices in the products. They may thus be takeri to be in thermal normal
order. Thus «e; >» etc. are all zero. We thus find that the thermal mean-field conditions
are equivalent to

. «gH»=«Hel» =0 | Y
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for all e; needed to parameterize |¢,>. For this to be satisfied, H obviously cannot
have terms in it having e;/e].
If we write H in thermal normal order in long hand as

H=«H>»+ Y g{blb.}s+ 2 he;, (48)
. k j
where e;s are the various generators contributing to Vj, then we infer from (47) that
the best mean-field condition (in the sense of energy) is given by
h,=h! =0,V all i needed to parameterize |§, ). (49)

This is the abstract form for the thermal Brillouin conditions.

As concrete illustrations, let us work out the thermal Brillouin conditions for the
thermal Hartree—Fock function for fermions and for the thermal Gaussian Hartree
function for bosons. :

Let us assume that for fermions H is given by

H=Z<Ilk|]>b}b,+-12— Y J|w|KLYbIbb bg), (50)
I I

J.K,L

where b, /b} are defined with respect to the optimal orbitals. I is a generic index.
Writing H in thermal normal order, we have

H=«H» + Y kI {b}b}p+ Y [IKIIKD — IK[o|KI>m{b] T 1}
J LK

1
+‘2“IJZI‘CLUJIUIKLXb;b}bLbK}p, (51)

where n, = «blb,>». Defining a one-body mean-field Hermitian operator f by the
relation 4

ATy = kT Y+ L IUIK|olJK) — KIK[v| KT In, (52)
k
we may write H in thermal normal order as

| 1
H=«H>+ Y AIfII>{blbs}s+5 ¥ <ITI10|KL){bjblbLby},:
11 v ‘ 217KL :
(53)

The products {b}b,}, and {bIblb, by}, are the elements of the type {e;}, introduced
in (40). The parameters {¢;}, needed to parametrize |¢) are of the form {b';ba} g With

« holes and p particles. Hence the thermal Brillouin condition for Fermions is
equivalent to

(BIf 1> = Calf1p) = 0,Yo, p. | (54)

One may impose somewhat more general variational conditions on | ¢ in the finite-
temperature case. For the zero-temperature case, operators of the form b},‘,bql or b} b,

s
S g ;
AN, N
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for p=g, a = f give zero contributions when appearing in Su'|¢>. In contrast, for
the finite-temperature case, 5uTEYI |¢> is generally non-zero for the above operators
appearing in éu’. We have exclude the p=g or a= B choice, since they are not
variations in the proper sense. The associated thermal Brillouin conditions then
demand ‘

(plflgy=<qlflp>=0,Yp#gq, (55)
Cal f1B) = <Blfla> = 0, ha 5 B. © (56)

These conditions essentially imply that the thermal Hartree~Fock orbitals dia-
gonalize the operator f. This feature is used in the temperature Green’s function
formalisms (Feter and Walecka 1971); our derivations provide an alternative rationale
for its use from variational arguments.

For the bosonic systems with non-number-conserving interactions, we may induce
a Bogolyubov transformation on the creation/annihilation operators to generate the
optimal orbitals. As a concrete case, let us take the case of an anharmonic oscillator,
with cubic and quartic perturbation:

H=ata+1/2) + 2732y + a)® + }/4@Et + a)*. (57)

The unperturbed frequency is scaled to the value 1. With respect to the vacuum
|0 as the ground state of (a'a+ 1), we introduce a transformation

| ~ exp(sal +Ltal?)|0> (58)

to generate a new Gaussian, and introduce new boson operators b/b' for which |¢)
is vacuum: :

b=(1 —t")'”%a-—ta*—s), (59a)
bt =(1—-1?)"?(a'~ta—ys), (59b)

where we restrict ourseives only to the real parametrizations of s,z. We note that s
and t are, respectively, related to the shift and width parameter of the Gaussian.
To determine the optimal s and ¢ parameters, we rewrite H in terms of boson
variables b/b" and bring H in thermal normal order. H in this new thermal normal
order is given by:
H= «H>» + (2w) [0? + (1 + 6/2y0 + 24400 + (64/w)(2n + 1)1{b" b},
+ 0™ 32[(Blw) o + (3y/2y0)w” + (@ + 6A2n + 1))’ + (3y/2/2)@n + 1)1{b! + b},
— Qw) "2 [0 — (1 + 6,/2y0’ + 2440 )0 — 64(2n + 1)] {b" +b%},
+[(/Qw)*?) + (4\/ 2210 /2w)*?)1{b"* + b3 +3b"*b + 3bTh?},
+ (A/Qw)*){b!* + b* + 4b"°b + 4bTh3 + 6bT*b? 4, ' (60)

where

o=(1—1)(1+1) and o =s/(1— 1)
n=«b'b>» = 1/[exp(Bw) — 1].
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«H> is given by

«H>» =1+ ((1+ 0*)20)n + [(y0'/\/20) + (640" /w)(2n + 1)

+ B w?)nm + 1) + (34/40%) + (1 — 0l /dw + ©* +2,/290° + 440
| ‘ (61)

From (61), the minimizing conditions for « H> with respect to o and o' (equivalently
s and t), for fixed n, are:

w3 — (1 + 6,/270' + 240" )0 — 6420 + 1) =0, | (622)

BAw)” + (3/2y0)0” + [w + 64(2n + 1)]o' + (34/2,/2)2n+1)=0
(62b)

Using these conditions, H gets simplified to

H= «H>» +o{b'b}, +n{b"/31 + b3/31 + b*™2! + bTb?/2!},
+ o {bt/4l+ Y4l + BUB/3! 4 BTBY3 + BRI, (63)

where = [y + 4\/ 2Aw'] ((6/2w)*>?) and a = 61/w? (Sanyal et al 1993).

We note that we have no terms containing b', b, b'* and b? in the thermally normal
ordered expression with respect to the thermal Hartree function |¢). This is the
boson equivalent of (49). Also, the same Hamiltonian is obtained if we equate the
coefficients of b',b,b™ and b? of H in (60) to zero, since b' and b'* are needed to
parametrize the shifted Gaussians. The consistency of the thermal Brillouin condition
is thus verified.

3.3 The thermal Bruckner condition

- We recall from §2'1 that Z/Z,, is given by

B
Z|Z,=<« T[exp—f

0

Vl(r)dr:] >

Let us now try to find out an optimal |¢) in such a way that Z, is closest to the
value Z. From Gibbs’ Bogolyubov inequality (Feynman 1972), we know that

Z> Trexp(— BHy)exp(— B < V>). (64)

Since in our formulation of thermal field theory, V is in thermal normal order,
« V>» =0. Hence

Z/Zy>1 , (65)

Thus if we minimize Z/Z , for describing an optimal | ¢, we would obtain a function
which is optimal in the sense of providing the mean-field free energy that is closest
to the exact free energy. .

We may write a compact non-perturbatwe representation of Z/Z, using our cluster
cumulant theory (Sanyal et al 1992, 1993). If we expand T[exp(— [5 Vi(r)d7)] in
thermal normal order and collect all the connected operators together, then the entire
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expression can be regrouped again as a thermally normal-ordered product of a
connected entity (Sanyal et al 1992, 1993)

g
T[CXP - j Vx(f)df] = {exp(Si(B) + X1(B)} s, (66)
0

where $;(8) contains operators which excite or de-excite and X,(f) contains diagonal

operators. Differential equations for directly determining Sy(f) and X () can be

written down; they are the working equations for the thermal cluster cumulant theory.
Z/Z, is given by the zero-body component X? of X:

Z/Zo = exp(X?) (67)

since only the zero-body part of the T-ordered exponential survives in Z/Z,.
For our purpose, it is sufficient to note that S;(8) and X,(f) can be expressed as

Si(B) = Zd Sj{ej}ﬁ : (68)
Xi(B)= _de,-{e,-}ﬁ, | (68b)

where nd and d denote non-diagonal and diagonal components of a Lie algebra,
generated by the elements of Lie algebra of H.
The first-order variation of Z/Z, is given by

8(Z/Zo) =Y. 0t:[ < (e;—e])p{exp(Si(B) + X:(B)) }5 >

—(Z/Zo) «(e;—€)y>]. (69)

Using (68), and noting that e;/e] are non-diagonal by construction, we have
8(Z/Zy)=Y. o[« {eir-é} b sl — «{ele;}p> ] (70)

The minimizing condition for Z/Z, is hence given by
0(Z/Z,)=0mps! =5,=0. ' (71)

In analogy with the zero-temperature formalism, we may call this relation a thermal
Briickner condition.
For fermions, the thermal Briickner conditions can be expressed as

Ulsy|J> =0,YI#J, \ (72)

where (I|s,|J) is the coefficient of {b]b;}; appearing in Sy(8). For the bosonic
Hamiltonian with cubic plus quartic perturbation, we can write S,(8) as

Si(B) = Z Sk,z{bfkbl}ﬁ (73)
k#1
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and the thermal Briickner conditions take the form
$1.0=50.1 =520 %0.2 =0 (74)

The maximal overlap condition (Kiimmel et al 1978) of the zero temperature
formalism is replaced here by the minimum ratio condition of Z/Z, for the thermal
Briickner orbitals. We note that, analogous to the zero-temperature Briickner condition,
we cannot determine the Briickner function |¢) directly. We may, however, find an
approximation to it for Z of a given form (ie. a given choice of S(B) and X (B)).

4. Generalization of thermal Brillouin conditions for models beyond mean-field
description

4.1 Preliminaries

As we have emphasized in § 3, our approach to evaluate Z/Z, has been to truncate
the T-ordered exponential T [exp(— 8 Vi(r)dr)]. followed by the exact evaluation of
. the thermal trace involving the eigenfunctions of Hy. In the next step of the hierarchy,
we may envisage using correlated functions for evaluating the trace. This will
presumably rectify the defects in the description of Z entailed in the truncation of
the T-ordered exponential. Use of optimal parameters in the correlated description
of the ground state would lead to higher-body thermal Brillouin conditions —in a
way analogous to the zero-temperature conditions (Kutzelnigg 1979, 1980).

We shall generate correlated functions using the unitary cluster ansatz of the
coupled-cluster theory (Kutzelnigg 1977, 1992; Bartlett-and Noga 1988). Denoting
the functions |¢,> and YT|¢,> generically as |n,» (10,> =|¢,>), we may introduce
correlated functions e”|n,> for the evaluation of the thermal trace. e’ is a unitary
cluster operator. The ground-state function [y, > is parametrized by e”*|¢,). For a
general function |y >, the operators defining the g, (the various m—hole,_m-particle
excitations) do not form a closed Lie-algebra of finite dimension, unlike for the
mean-field parametrization. As a result, a straightforward generalization for the
correlated trace is not very illuminating. We instead use an alternative strategy where
we use a transformed mean field (correlated mean field is more picturesque though
slightly misnomeric) to establish the group closure property.

42 Modified trace formula with correlated basis and the associated variational
conditions

The partition function Z using the correlated basis is given by
Z =Y {n|exp(—a,)exp(— BK)exp(ar) n.). ‘ (75)

Introducing the dressed Hamiltonian L, and the operator L, via

L,=exp(—o)Hexp(a,; L =exp(—a,)H exp(a,), | (76)
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we may rewrite Z as
Z =7 {nJexp(— BL)In,>. | (77)

If we.now partition L, into a zero-body plus a one-body part, denoted L?, and the
rest as V,, then we can rewrite Z as

Z =Y (n|exp(— BL;) T[CXP{— r vx(f)df}]lnz) (78)
n 0

If we introduce a correlated mean field-value ZY defined as

Zi =Y (nlexp(— BLY)|n, : (79)

n

then: we have
Z)Z8 =

.
{Z(nrlexp(—ﬁL?)T[exp—J K(T)df]lnr>}/{z<nt16XP(—BL?)|n,>}

0

_ << Tl:exp - f " V,(r)dr]>>a,. (80)

Equation (80) indicates that it is fruitful to introduce thermal traces «A>,, with
correlated basis as

«A =Y, (nlexp(— BLY) Al /T (mlexp(— BLY)In.). 81)

The unknown parameters in evaluating (81) are the orbitals and the parameters
of ,. Since in (80) and (81) we still have uncorrelated basis |n, >, the group property
of the generators defining | ¢, can still be properly utilized.

For choosing the optimal |¢,) as well as g, in the sense of generating the best
average energy < H > leads to the generalization of the mean-field thermal Brillouin
conditions. We have

«H>» =Y (n|exp(— o,)exp(— BH)H exp(a,)|n.)
= Z (n,|exp(— ﬂLz) Lt ‘nt>

=Y. In,|exp(— BL?) T[CXP - r i71(T)<i‘C] Li|n). (82)

0

In analogy with the mean-field thermal trace, we define « L,>»,, as

& Ly» o, =Y. <l exp(— BLY) Lilnc). (83)
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Since by choice L] is a constant plus a sum of one-body operators, the Matsubara
formula for the trace would hold good even in (83). Thus it would be convenient to
rewrite L as well as L, in thermal normal order. In exact analogy with the optimal
mean-field description, the variation of « L,>» with respect to the orbitals for fixed
n,s leads to (cf (36))

S Ly, =y, «(ei—e)[L]»dt— <L » Y (e;—el)» dt;+ hc.

(34)
We now express lL, in thermal normal order as
L=Yliels (85)
Then the optimality of |¢> leads to the following condition (cf (62)),
S«<L»,=0= Z [« {éie:f}, » I — «{efe}p> 1] (86)

leading to the thermal Brillouin condition for the matrix elements of the effective
operator L;:

I'=1,=0, Vineeded to parametrize |¢). 87

Obviously, we cannot use (87) above the obtain Il or [;, since they involve cluster
amplitudes o. If we write « L,>,, as

« L! P = {Z (n,lexp(—— 582) L:l"z>}/{z <"t‘exp(_ 582)|":>} (88)

with &2 as the eigenvalues of the operator L? for the functions |n, >, then the variation
of « L, > ,, with respect to o, for fixed m,s.can be written as

O, %< L>»,= {; {n,|exp(— Bel)d[exp(— o,)H exp(a,)] ln,)}/i’o
| = <nlexp(~ )de, Liny/Z,. (89)
If we write the variation ég, as
o, =-Zj:6r 1(e;— el), then the optimality of o léads to
=1 = 0’. Vj used to define o. (90)

These are the analogues of the thermal Brillouin conditions going beyond the
mean-field description.
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5. “Local” thermal Brillouin and Briickner conditions in the path-integral-based
thermal many-body theories

5.1 Basic preliminaries

In the path-integral approach to the evaluation of the partition function, a very
widely adopted strategy is to use an auxiliary potential which depends on each point
on the path and choose it in some optimal sense to expedite the convergence of the
perturbative expansion of the partition function (Feynman and Kleinert 1986;
Giachetti and Tognetti 1986; Lee et al 1991). We have recently extended this method
(Mandal et dal, to be published) to formulate a non-perturbative theory via a generalized
version of the thermal cluster cumulant methodology. This method requires for its
performance the concept of new forms of normal ordering and Wick’s expansion that

_depend on the choice of the-measure used in the path-integral description. This concept

is, however, of quite general validity and may be used to advantage for defining
optimal local potentials defined by certain local analogues of thermal Brillouin and
Briickner conditions.

In the next subsection, we give a succinct summary of the basic expressions of the
path-integral approach to partition function — emphasizing only those aspects which
are of direct relevance to us.

5.2 Path-integral formulation of Z: A brief resume

We shall specialize our discussion to bosons only, and for the sake of simplicity we
present expressions for the one-dimensional case only. The many-dimensional
generalization is straightforward, but computationally demanding.

Following the classic derivation of Feynman (Feynman and Hibbs 1965), the
partition function Z for interacting Bosonic system is given by

Z=§D[x]exp(—— jﬂ [(1/2)x*() + V(x)]dt), 91)
, 0

where we have taken u be zero. D(x) is the measure for the path-integral and the

possible paths are taken to be periodic, with period Q = 2n/B. Moreover, the cyclical

path-integral symbol denotes that all the cyclical periodic paths have to be considered.
Expanding x(z) as a Fourier series with period Q, '

x(0)=xo+ 3, (x,exp(inQ7)+h.c)=xo+, 92)
n#0’ ‘

we may rewrite Z as

+
Z= j dxoexp(— BV (x,))/(2np)'*$ DY]

-‘0‘

CXP(- r [(1/2)9* + ¥ (xo+ ) — V(xo)]dT)- 93)

0
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Expanding V(x, +y) as a Taylor series around x,, We have
+ o ) B
Z= j dxoexp(— BV (xo0))/(2nB8)!* §Dy] exp(— j )J'/z
- oC 0
| o
+[/2 W)y + X — Vymlds, O
) m=3 . .

2 *v
where V™ denotes —a—-‘u/\ and W(xo)=——
X" o 0x

. Since y is periodic in the integral
X0 . N
over 1, the linear term in the Taylor expansion gives zero contribution and is hence

omitted in (94) above. The Hamiltonian in the integral over 7 is that of a harmonic
oscillator with an x,-dependent frequency W(x,), plus an anharmonicity correction.
Taking the latter part as a perturbation, a series expansion of Z can be determined.
Defining &(x,) and £°(x,) as

B
5(xo)=§1>[y]exp(_— j

0

)[(1/2)y'2+(1/2) Wiy + Y ;11-,1/<'"’y'"1dr
. m=3 .

8
§§D[y]exp(— j‘ >on(y)dt, (95)
0
8
0

€°(XO)=§DD’JCXP(— J )[(1/2))"2 +(1/2) W?(xo)y*]dt

_=_§D[y]exp(— ~]‘ﬁ)Hgo(y)d'E, (96)

0

we can find out &(x,) as a perturbation series involving £°(x,). We first note that

E(xo)/E%(xo) involves a path-integral involving the following normalized Gaussian
weight factor D[y]: :

B

Dlyl=DD] exp<- j )E1/2])"2 + (1/2) W?(x0)y*1d7/C(xo) (97a)

. 0
with

§D[yl=1 (97b)

thce, using the property of the Gaussian integrals, any integral of the form
$D[y]1y(ty)..- y(t,) may be written as a sum over products of pair averages:

«y(ty)...yE)>5=$PDy@). .y = LIl «y@y@m)»5. O8)
. ’ LJ

s
pairs

Using (98), one may expand the X _L(1/m!) ymymdr in the expression for '
E(x0)/E%(xo) and get the perturbation expansion in terms of the pair averages
«y(t;)y(t;)» 5. To expedite the convergence of the expansion, one often adds and
substracts another quadratic potential (1/2)@’ y* and demands that @’ be determined

from the condition that «ZX_,(1/m!) Y™ ymdr>> be zero. This in a way determines
an optimal x,-dependent potential. -
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In our path-integral-based cluster cumulant theory (Mandal et al 1994), we posit
a cluster ansatz for the exponential in &(x,) and define suitable normal ordering and
Wick’s expansion. We shall show now that we can use these concepts to define
intuitively optimal local potential by imposing local thermal Brillouin and Briickner
conditions.

53 Normal ordering and Wick's expansion relative to a measure D

We start out by noting the striking resemblance of (98) with the Matsubara formula,
(1). The measure D[y] in (98) replaces the thermal trace in (1). Since no explicit
property of thermal trace was ever required in our thermal cluster cumulant theory,
except at the end where the values of thermal contractions are needed to evaluate
the relevant quantity, we may define in a perfectly analogous manner the following
quantities defined with respect to the measure D:

e e))s = « ThE)yE)1 5 99)
Gyl s= TOvE )y — ple)dE)s: (100)

In (99) and (100) we have exploited the well-known fact that in the expression for
path integrals the products y(t,)y(t,) automatically remain time-ordered (Feynman
and Hibbs 1965). Equation (99) defines a contraction with respect to the measure D,
and (100) defines an analogous normal ordering to be called D normal ordering by
us (Mandal et al 1994). It can then be shown that the following Wick’s expansion
holds good:

(). yE) 5= TD(1)-.- y(@a)}
- —[{J(t))y(x;). .. y(z,)} 5+ all other single contractions]

—[{ ¥(z,) yl (Tz);(f3) yl('c4). ..}5+ all other double contractions]

— all other multiple contractions. ' » (101) |

=]
In (101), we have used the symbol {y(rl)y('cz)y(r3)y('c4)...y(t,,)},s to denote

{y(tl)i‘z(%)}ﬁ{y(rz)... y(z,)}5 and its obvious generalizations. Using (101), we can
perform not only perturbative expansions of £(x)/¢%(x,) but also formulate non-
perturbative generalizations. Moreover, we can use improved descriptions by defining
optimal local potentials. ‘

5.4 Choice of optimal local potentials: Local thermal Brillouin and thermal Briickner
conditions

Let us define creatioh annihilation operators a/a’ in (95) and (96) defined via

Y st |
y'2W[(xo)]1/2[a+a 1, | (102)
g W)y gy, (103)

i21/2
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We should note carefully that a/a’ depend on x,. Hence all the descriptions that
follow now are valid locally. viz. at the point x, on the path. To get an improved
description, we induce a Bogolyubov transformation

b=(1—?)"*(a—ta") | (104a)
bt = (1 — 2)~Y%(a" —ta). , (104b)

This is very similar to what was done in §3 (viz. (59)), except that we do not need
to introduce the shift parameters s for the cyclical variables y. Rewriting the Hamiltonian
H,, in &(x,) in D normal order, the resultant expression for H,, would define an
optimal “local” thermal Hartree choice if the quadratic coefficients of b and bt are
equated to zero. This will lead to the best mean-field descriptions at the point x,,
where the mean-field model is assumed to be a harmonic one. These conditions would
determine t. The process of finding them has to be iterative, since the contractions

{b'}5 etc. would depend on the frequency of the optimized harmonic oscillator.
This would then be equivalent of a local thermal Brillouin condition. We shall give
“an illustrative example of this condition by taking the case of the cubic plus quartic
oscillator in § 5-5. ‘
Making use of the Gibbs-Bogolyubov inequality (Feynman 1972), we find in a
manner exactly analogous to what was done in arriving at (60) that

€(xo) = £%(xo)- (105)

Hence it is possible to define local thermal Briickner condition by demanding that

we take as optimal that mean-field description which minimizes the ratio &(x,)/E°(x)-

This condition requires for its actual implementation a cluster expansion representation
of £(xo)/E°(xo).

Suppose we have expressed H,, in terms of operators b/b" with ¢ unspecified yet
By expanding the perturbative part of H,, as polynomials in y, writing them in L
normal order and regrouping them in terms of connected quantities, exactly analogout
to what was done leading to (34), we may rewrite E(%x0)/E%(xy) as

B
E(x0)/E%(x0) = << T[GXP - J [E,O:=3_1; V(m)ym]df]>>
0 m. / D

= «{S(B) + X (B)1}5> 5. (10€

where {exp(---)}5 is a symbol for D normal-ordered exponential. S(B) and X () ca:
* be found out from a set of path-integral-based thermal cluster cumulant equation
(Mandal et al 1994) S(B) is a non-diagonal operator and X (f) is a diagonal operato:
For an optimal choice of the mean field leading to the minimum value of £(xo)/ E%(xo
we can proceed in a manner exactly analogous to what was done to obtain (64) or (69).
To induce a variation in b and b' involved in H,,, needed to define the mean fiels

we write the associated transformation as

boutbu; bt—utblu | (10:
ut =e(a2), (b7 —b?) (10

with a as the parameter of the variation. This is the unitary transformation analogo
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to (104). The weight D[y] used in &(xq)/E%(x,) up to the first-order variation gets
modified then to ‘

5[y]—+5[y]%(b*’—b2), (109)

where o is a first-order infinitesimal.
Hence the average gets modified as

«A» 5 <<A>>5+§<<b“—b2)A>>5. (110)

For an interacting bosonic Hamiltonian, we may then write, using (106),

SLE(xo)/E(%0)] =i'2‘-<<(bf’—b2){exp(s+ X)}5> 5. (111)

It then follows that, at the minimum of E(x0)/E%(x0), the components of § with the
quadratic powers of b and bt should be vanishing. Writing the components of S as
5,,.,b"™b"(m #n), we then derive

S3.0="502=0. | (112)

These are the local analogues of the thermal Briickner condition for the path-
integral-based theories of partition function for interacting bosons. We should
remember that this relation would be valid for each point on the path, and S(f) and
X () are dependent on X. ‘

For the sake of completeness, let us mention that both the local Brillouin and
Briickner conditions generate a potential dependent on x,, which is to be used to
generate &(x,) and eventually Z:

8
E(xo) = €°(xo)<< T[CXP - '( V(y)df]>> 3
0 : D

= exp[ — Bu(x0)]; (113)
which leads to
+
Z= J dxoexp(— BLV(xo) + u(xo)1)/(2n) 2. . (114)

55 Illustrative application of the local Brillouin condition: Cubic plus quartic
oscillator

Using the expression for the anharmonic oscillator of §3 (51), we generate the
Hamiltonian H,, '

Hy, =107 + W2(xo)y* 1+ [y +4x015° + 4%, (115)

where W(x,)=1+ 6x,7 + 124x2. Introducing the operators a/at via‘(102) and (103),
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.we rewrite H,  as

H, = W(xo)[a'a+3+ 7(x0)/2¥*(a + a')® + A(xo)/4(a + a')*], (116)
where |
Y(xo) = (7 + 4x0)/ W2 (x,), | (117a)

A(xo) = (A/W>(xo). | (117b)

This has the same form as (57) except for the scaling factor W(x,). By inducing
the Bogolyubov transformation, (104), we can get an exact analogue of (60). The only
difference is the explicit x, dependence of y(x,), A(x,) and hence also of w = w(xg),
defined as (1 — t)/(1 + ). Also, n would have a different value.

Our discussion will be complete if we now compute the contraction « b'b>» 5. To
achieve this we first compute the value of &%(xo). We note that

$D[y] eXP(— jﬁ(1/2)[y2+ W2y2]d1'>=(1/2)ﬂW/Sinh(1/2)ﬂW, (118)
) 0

which is obtained by using the Fourier representation of y, (94), and Euler’s formulae
of hyperbolic functions. We can then find by a straightforward computation the value
«y(t,)y(t,)» 5 by again expanding each y as a Fourier series:

«y(t;)y(ty) » 5= Cosh[ Wlt, — 1, — B/2]/2WSinh(1/2) BW — 1/8W>.
(119)

We then derivé, using (103), the relation
«a'a» 5= (1/2)coth(1/2) W — 1/BW — 1/2. (120)

Since the transformation aspb changes the form of H, only up to an additive
constant <« H >, the value of «b!b>» , remains unchanged in form; the only change
is the replacement of the unperturbed frequency W by the normalized frequency o:

n= «b'b> 5= (1/2)coth(1/2) f(xo) — 1/eo(xo) — 1/2. (121)

\

6. Concluding remarks

We have discussed in this paper ways to define certain optimal choices of mean-
field and correlated descriptions of many-body systems at a fixed temperature. For
this purpose, we have utilized our recently developed apparatus of thermal field
theory involving concepts of thermal normal ordering and thermal Wick’s expansion.
The thermal normal ordering of the operators makes the attendant algebra of our
thermal field theory an exact finite-temperature analgoue of the corresponding zero-
temperature field theories. This algebraic homomorphy leads us to discern relations
that would be hard to derive in other formulations. We have derived thermal analogues
of Brillouin and Briickner conditions as conditions for a mean-field description leading
respectively to the best thermally averaged energy and to the minimum value of Z/Z,
where Z and Z, are exact and mean-field values of the partition function. Clearly,
the latter condition leads to the best mean-field model for the free energy, in the
sense of being closest to the exact free energy.
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Since in the evaluating the thermal trace in the equilibrium statistical mechanics
we may use correlated functions constructed from the mean-field, it is possible to use
thermal Brillouin-like conditions as defining optimal descriptions of the average
energy with respect to both the mean-field (i.e. the mean-field ground state) and the
correlation effects superposed on the uncorrelated ground state. We have derived
such conditions in our paper. .

In the context of path-integral formulation of the partition function Z, it is possible
to choose an auxillary potential which depends on each point on the path to enhance
the performance of a perturbative or non-perturbative construction of Z. Using an
appropriate generalization of the concept of normal ordering defined with respect to
the measure used in the evaluation of the partition function (called D normal ordering
by us) we can derive conditions for the optimal mean-field descriptions in terms of
potentials leading to the best average energy ot best free energy at each point on the
path. We have termed these local thermal Brillouin and Briickner conditions,
respectively. :

Acknowledgements

The authors thank the Department of Science and Technology, New Delhi, the
Council of Scientific and Industrial Research, New Delhi and University Grants
Commission, New Delhi for providing research support.

References

Altenbokum M, Emrich K and Kiimmel H 1987 In Condensed matter theories (ed.) P Vashishta, R Kalia
and R F Bishop, (New York: Plenum) vol. 2

Araki H and Woods E J 1963 J. Math. Phys. 4 437

Arimitsu T and Umezawa H 1965 Prog. Theor. Phys. 74 429

Arimitsu T and Umezawa H 1987 Prog. Theor. Phys. 71 32

Arponen J 1983 Ann. Phys. 151 311 ‘

Arponen J, Bishop R F and Pajanne E 1987 Phys. Rev. A36 2519, 2539

Balian R, Bloch C and de Dominicis C 1960 C. R. Acad. Sc. 250 2850

Balian R and de Dominicis C 1960 Nucl. Phys. 16 502

Bartlett R J and Noga J 1988 Chem. Phys. Lett. 150 29

Berezin F A 1966 The method of second quantization (New York: Academic Press)

Bloch C and de Dominicis C 1958a Nucl. Phys. 7 458

Bloch C and de Dominicis C 1958b Nucl. Phys. 10 181

Feynman R 1972 Statistical mechanics (New York: Benjamin) ‘

Feynman R P and Hibbs A R 1965 Quantum mechanics and path-integrals New York: McGraw Hill)

Feynman R P and Kleinert H 1986 Phys. Rev. A34 5080

Feter A L and Walecka J D 1971 Quantum many-particle systems (McGraw-Hill: New York)

Giachetti R and Tognetti V 1986 Phys. Rev. B33 7647

Guha S, Chaudhuri R and Mukherjee D 1989 In Condensed matter theories (ed.) J Keller (New York: .
Plenum) vol. 4 ’

Guba S and Mukherjee D 1991 Chem. Phys. Lett. 186 84

Hoodbhoy P and Negele J W 1978 Phys. Rev. C18 2380

_ Kubo R 1957 J. Phys. Soc. Jpn. 12 570

Kubo R 1962 J. Phys. Soc. Jpn. 17 1100 '
Kiimmel H, Lihrmann K H and Zabolitzky J G 1978 Phys. Rep. C36'1
Kutzelnigg W 1977 In Modern theoretical chemistry (ed.) H F Schaeffer (New York: Plenum)



432 G Sanyal et al

Kutzelnigg W 1979 Chem. Phys. Lett. 64 383

Kutzelnigg W 1980 Int. J. Quantum Chem. 183

Kutzelnigg W 1992 Theor. Chim. Acta (Rudenberg Dedicatory special issue for an analogous discussion
of the zero-temperature situation)

Lee S K, Liu K L and Young K 1991 Phys. Rev. Ad4 7951

Mandal S H, Sanyal G and Mukherjee D 1994 (to be published)

Martin R and Schwinger J 1957 Phys. Rev. 115 1342

Matsubara T 1955 Prog. Theor. Phys. 14 351

Monkhorst H J 1977 Int. J. Quantum Chem. S11 421

Mukherjee D 1986 Int. J. Quantum Chem. S20 409

Niemi A J and Semenoff G W 1984a Nucl. Phys. B230 181

Niemi A J and Semenoff G W 1984b Ann. Phys. 152 105

Prasad M D 1988 J. Chem. Phys. 88 7005

Sanyal G, Mandal $ H, Guha S and Mukherjee D 1993 Phys. Rev. E48 3373

Sanyal G, Mandal S H and Mukherjee D 1992 Chem. Phys. Lett. 192 55

Sebastian K L 1985 Phys. Rev. B31 6976

Thouless D J 1960 Nucl. Phys. 21 225

Umezawa H and Yamanaka Y 1988 Adv. Phys. 37 531



