Theoretical studies of the atomic transitions in boron-like ions: Mg VIII, Si X and S XII

${ }^{a}$ H. S. Nataraj ${ }^{\dagger},{ }^{b}$ B. K. Sahoo, ${ }^{a}$ B. P. Das, ${ }^{a}$ R. K. Chaudhuri and ${ }^{c}$ D. Mukherjee
${ }^{a}$ Non-Accelerator Particle Physics Group, Indian Institute of Astrophysics, Bangalore-34, India
${ }^{b}$ Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, D-01187 Dresden, Germany
${ }^{c}$ Department of Physical Chemistry, Indian Association for Cultivation of Science, Kolkata-700 032, India

(Dated: Received date; Accepted date)

Abstract

In this paper, we have carried out the calculations of the weighted oscillator strengths and the transition probabilities for a few low-lying transitions of boron-like ions: Mg VIII, Si X and S XII which are astrophysically important, particularly, in the atmospheres of the solar corona. We have employed an all-order relativistic many-body theory called the relativistic coupled-cluster theory to calculate very precisely these atomic quantities of astrophysical interest. We have reported for the first time the transition probabilities for some forbidden transitions which are unavailable in the literature; either theoretically or experimentally. We also discuss the physical effects associated with these transitions. Our data can be used for the identification of spectral lines arising from the coronal atmospheres of Sun and Sun-like stars having an extended corona.

PACS numbers: 31.15.Ar, 31.15.Dv, 32.30.Jc, 31.25.Jf, 32.10.Fn

I. INTRODUCTION

With the remarkable advances in the field of observational astronomy like the deployment of satellite probes for data acquisition, there is a considerable interest for accurate calculations of the oscillator strengths and the transition probabilities for highly stripped ions which are very important in astrophysics, mainly in the identification of spectral lines [1, 2, 3, 4, 5]. Various electro-magnetic transitions from the low-lying single valence excited states, $2 s^{2} 2 p_{3 / 2}\left({ }^{2} P_{3 / 2}\right), 2 s^{2} 3 s\left({ }^{2} S_{1 / 2}\right)$, $2 s^{2} 3 d_{3 / 2}\left({ }^{2} D_{3 / 2}\right)$, and $2 s^{2} 3 d_{5 / 2}\left({ }^{2} D_{5 / 2}\right)$ to the ground state in the highly ionized boron-like ions such as $M g^{7+}, S i^{9+}$ and S^{11+} are observed in the solar atmosphere [6, 7]. Most of the lines correspond to the soft X-ray waveband and have the potential to probe the chromosphere-corona transition region and possibly the coronal hole regions of the solar atmosphere [7, 8, 9], where the temperatures would be of the order of a million Kelvin. The relative line intensity ratios in Mg VIII and Si X line emission spectrum have been found to be density sensitive [10, 11]. The EUV line intensity ratios of these ions have been studied [12] to infer the electron density in different solar features such as active region, quiet sun and off-limb. Therefore, lines emitted from boron-like ions can be used as a powerful tool in the diagnostics of the electron density [13] and the temperature in the solar atmosphere. Interestingly, the soft X-ray coronal emission lines of S XII in the stellar binary Capella, which is one of the nearby Sun-like stars, have been observed by Audard et al. [14] using the high resolution RGS XMM-Newton satellite.

[^0]There are a few calculations of certain transition probabilities of the considered boron-like ions available in the literature; some of them are completely nonrelativistic and based on the multi-configuration HartreeFock (MCHF) method [15, 16, 17]; some others are based on MCHF calculations with Breit-Pauli corrections $(\mathrm{MCHF}+\mathrm{BP})[18,19,20]$ and there are a few calculations based on the relativistic many-body perturbation theory (MBPT) 21] and relativistic multi-reference configuration interaction (MRCI) method [22]. Often the theoretical calculations are scaled to match the observed transition energies [6, 20]. Given the increasing need for the accurate spectroscopic data in astrophysics, it is necessary to use the all-order relativistic many-body methods like the relativistic coupled-cluster (RCC) theory [23] to calculate the principal atomic quantities of astrophysical interest such as the energy levels, the oscillator strengths, the transition probabilities and the lifetimes of the excited states.

The study of boron-like ions is interesting from the point of view of the strong core-valence electron correlation effects and also because the transition energies are in the reach of current laboratory astrophysics experimental facilities like electron beam ion trap (eBIT) [24]. In this paper, we present both the allowed and forbidden transition amplitudes and the corresponding transition probabilities of a few low-lying states in the boron-like ions. We also discuss the behaviour of correlation effects associated with these calculations.

The organization of the paper is as follows: In section II, we give the working formulas for the transition probabilities and the oscillator strengths and briefly discuss the RCC method employed in calculating these quantities. In section III, we present the results and compare them with those available in the literature and the conclusions are drawn in the last section.

II. THEORY AND METHOD OF CALCULATION

The spontaneous transition probabilities due to E1, $\mathrm{E} 2, \mathrm{M} 1$, and M2 operators from a state $\left|J_{f} M_{f}\right\rangle$ to the state $\left|J_{i} M_{i}\right\rangle$ are given by [25],

$$
\begin{gathered}
A_{J_{f} J_{i}}^{E 1}=\frac{64 \pi^{4} e^{2} a_{0}^{2}}{3 h \lambda^{3}\left(2 J_{f}+1\right)} S^{E 1}=\frac{2.0261 \times 10^{-6}}{\lambda^{3}\left(2 J_{f}+1\right)} S^{E 1},(2.1) \\
A_{J_{f} J_{i}}^{E 2}=\frac{64 \pi^{6} e^{2} a_{0}^{4}}{15 h \lambda^{5}\left(2 J_{f}+1\right)} S^{E 2}=\frac{1.12 \times 10^{-22}}{\lambda^{5}\left(2 J_{f}+1\right)} S^{E 2},(2.2) \\
A_{J_{f} J_{i}}^{M 1}=\frac{64 \pi^{4} e^{2} a_{0}^{2}(\alpha / 2)^{2}}{3 h \lambda^{3}\left(2 J_{f}+1\right)} S^{M 1}=\frac{2.6971 \times 10^{-11}}{\lambda^{3}\left(2 J_{f}+1\right)} S^{M}(2.3)
\end{gathered}
$$

and

$$
A_{J_{f} J_{i}}^{M 2}=\frac{64 \pi^{6} e^{2} a_{0}^{4}(\alpha / 2)^{2}}{15 h \lambda^{5}\left(2 J_{f}+1\right)} S^{M 2}=\frac{1.491 \times 10^{-27}}{\lambda^{5}\left(2 J_{f}+1\right)} S^{M 2}(2.4)
$$

respectively, where, the numerical factor applies for the wavelength λ in cm and the transition line strength S^{O}, defined as the absolute square of the transition matrix element i.e.

$$
\begin{equation*}
S_{\left(J_{f} ; J_{i}\right)}^{O}=\left|\left\langle J_{f}\|O\| J_{i}\right\rangle\right|^{2} \tag{2.5}
\end{equation*}
$$

where, $\left\langle J_{f}\|O\| J_{i}\right\rangle$ is the reduced matrix element for the appropriate multipole operator O, in atomic units (au). Here, J is the total angular momentum quantum number.

The single particle reduced matrix elements for the E1 and E2 operators in length gauge and the gauge independent M1 and M2 operators are, respectively, given by 26],

$$
\begin{align*}
\left\langle\kappa_{f}\|e 1\| \kappa_{i}\right\rangle & =\frac{3}{k}\left\langle\kappa_{f}\left\|C_{q}^{(1)}\right\| \kappa_{i}\right\rangle \int_{0}^{\infty}\left\{j_{1}(k r)\left[P_{f}(r) P_{i}(r)+Q_{f}(r) Q_{i}(r)\right]\right. \\
& \left.+j_{2}(k r)\left[\frac{\kappa_{f}-\kappa_{i}}{2}\left[P_{f}(r) Q_{i}(r)+Q_{f}(r) P_{i}(r)\right]+\left[P_{f}(r) Q_{i}(r)-Q_{f}(r) P_{i}(r)\right]\right]\right\} d r \tag{2.6}\\
\left\langle\kappa_{f}\|e 2\| \kappa_{i}\right\rangle & =\frac{15}{k^{2}}\left\langle\kappa_{f}\left\|C^{(2)}\right\| \kappa_{i}\right\rangle \int_{0}^{\infty}\left\{j_{2}(k r)\left[P_{f}(r) P_{i}(r)+Q_{f}(r) Q_{i}(r)\right]\right. \\
& \left.+j_{3}(k r)\left[\frac{\kappa_{f}-\kappa_{i}}{3}\left[P_{f}(r) Q_{i}(r)+Q_{f}(r) P_{i}(r)\right]+\left[P_{f}(r) Q_{i}(r)-Q_{f}(r) P_{i}(r)\right]\right]\right\} d r \tag{2.7}\\
\left\langle\kappa_{f}\|m 1\| \kappa_{i}\right\rangle & =\frac{6}{\alpha k}\left\langle-\kappa_{f}\left\|C^{(1)}\right\| \kappa_{i}\right\rangle \int_{0}^{\infty} \frac{\kappa_{f}+\kappa_{i}}{2} j_{1}(k r)\left[P_{f}(r) Q_{i}(r)+Q_{f}(r) P_{i}(r)\right] d r \tag{2.8}
\end{align*}
$$

and

$$
\begin{equation*}
\left\langle\kappa_{f}\|m 2\| \kappa_{i}\right\rangle=\frac{30}{\alpha k^{2}}\left\langle-\kappa_{f}\left\|C^{(2)}\right\| \kappa_{i}\right\rangle \int_{0}^{\infty} \frac{\kappa_{f}+\kappa_{i}}{3} j_{2}(k r)\left[P_{f}(r) Q_{i}(r)+Q_{f}(r) P_{i}(r)\right] d r \tag{2.9}
\end{equation*}
$$

where, κ is the relativistic angular momentum quantum number. The radial functions, $P_{i}(r)$ and $Q_{i}(r)$ are the large and small components of the $i^{t h}$ single particle

Dirac orbital, respectively. The coefficients of the Racah tensor are given by,

$$
\left\langle\kappa_{f}\left\|C^{(\gamma)}\right\| \kappa_{i}\right\rangle=(-1)^{j_{f}+1 / 2} \sqrt{\left(2 j_{f}+1\right)\left(2 j_{i}+1\right)}\left(\begin{array}{ccc}
j_{f} & \gamma & j_{i} \tag{2.10}\\
1 / 2 & 0 & -1 / 2
\end{array}\right) \pi\left(l_{f}, \gamma, l_{i}\right)
$$

where j is the single particle angular momentum quantum number. The parity selection rule is given by,

$$
\pi(l 1, l 2, l 3)=\left\{\begin{array}{l}
1 \text { for } l 1+l 2+l 3=\text { even } \tag{2.11}\\
0 \text { otherwise }
\end{array}\right.
$$

In equations (2.6) through (2.9), we define the wave vector k as, $k=w \alpha$, where $w=\epsilon_{i}-\epsilon_{j}$ is the excitation energy at the single particle level, α is the fine structure constant, l is the orbital angular momentum quantum number and $j_{n}(k r)$ is a spherical Bessel function of order n. Since $k r$ is sufficiently small, we apply the following approximation to calculate the above matrix elements:

$$
\begin{equation*}
j_{n}(z) \approx \frac{z^{n}}{1.3 .5 \ldots(2 n+1)} \tag{2.12}
\end{equation*}
$$

The oscillator strength and the corresponding transition probability for a transition of any multipole type are related by the general formula,

$$
\begin{equation*}
f_{\left(J_{f} ; J_{i}\right)}=1.4992 \times 10^{-16} A_{\left(J_{f} ; J_{i}\right)} \frac{g_{f}}{g_{i}} \lambda^{2} \tag{2.13}
\end{equation*}
$$

where, g_{f} and g_{i} are the degeneracies associated with the final and initial states respectively, λ is the wavelength in \AA and $A_{\left(J_{f} ; J_{i}\right)}$ is the transition probability in s^{-1}.

Generally, in the astrophysical context, one uses the weighted oscillator strength which is the product of the degeneracy of the initial state and the oscillator strength and is symmetric with respect to the initial and final states; i.e.

$$
\begin{equation*}
g f=\left(2 J_{i}+1\right) f_{i f}=-\left(2 J_{f}+1\right) f_{f i} \tag{2.14}
\end{equation*}
$$

As it can be inferred from the above equations, there is a great need for precise values of the transition wavelengths and the transition line strengths for the accurate determination of the oscillator strengths and the transition probabilities. This demands for a highly powerful many-body method which would include fully relativistic effects and the electron correlation effects that are sufficiently large especially in many-electron systems. So we employ the RCC theory, which is briefly discussed below, to calculate these quantities of interest.

The starting point of our method is the relativistic generalization of the valence universal coupled-cluster (CC) theory introduced by Mukherjee et al [27, 28] which was put later in a more compact form by Lindgren [23, 29]. In this approach, first we obtain the closed-shell DiracFock (DF) wave function $\left(\left|\Phi_{0}\right\rangle\right)$ which corresponds to the electronic configuration $1 s^{2} 2 s^{2}$. This amounts to solving the DF equations for $N-1$ electrons where N is the total number of electrons in the system. These equations can be expressed as,
$\left.\left[c \vec{\alpha}_{i} \cdot \vec{p}_{i}+\left(\beta_{i}-1\right) c^{2}+V_{N u c}\left(r_{i}\right)+U_{D F}\left(r_{i}\right)\right]\left|\phi_{i}\right\rangle=\epsilon_{i} \mid\left\langle\left(2_{i}\right\rangle\right\rangle 15\right)$ where, c is the speed of light in vacuum, $\vec{\alpha}$ and β are the Dirac matrices, $V_{N u c}\left(r_{i}\right)$ is the nuclear potential and $U_{D F}\left(r_{i}\right)$ is the effective average potential called the Dirac-Fock potential, which is given by,
$\left.\left.U_{D F}\left(r_{i}\right)\left|\phi_{i}\right\rangle=\sum_{j=1}^{N-1}\left[\left.\left\langle\phi_{j}\right| \frac{1}{r_{12}}\left|\phi_{j}\right\rangle\left|\phi_{i}\right\rangle-\left\langle\phi_{j}\right| \frac{1}{r_{12}}\left|\phi_{i}\right\rangle \right\rvert\, \phi_{i} \dot{i}\right]\right] 16\right)$

The large and small radial components of the single particle relativistic wave functions are expanded in terms of the Gaussian type orbitals (GTOs) of the form 30, 31],

$$
\begin{equation*}
g_{\kappa_{i}}^{L}(r)=N^{L} r^{n_{\kappa_{i}}} e^{-\zeta_{i} r^{2}} \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\kappa_{i}}^{S}(r)=N^{S}\left[\frac{d}{d r}+\frac{k}{r}\right] g_{\kappa_{i}}^{L}(r) \tag{2.18}
\end{equation*}
$$

where, N^{L} and N^{S} are the normalization factors for the large and small radial components, respectively, of the one-electron orbitals, $n_{\kappa_{i}}$ varies for each relativistic symmetry and takes an integer value as 1 for $s_{1 / 2}, 2$ for $p_{1 / 2}$ and so on.

In equation (2.17) we have used the even tempering condition for the exponents, i.e,

$$
\begin{equation*}
\zeta_{i}=\zeta_{0} \eta^{i-1} \text { where } i=1,2,3, \ldots, n \tag{2.19}
\end{equation*}
$$

where ζ_{0} and η are the user-defined parameters and n is the size of the basis set. In equation (2.18), the kinetic balance condition is imposed on the small radial components to avoid the variational collapse of the wave functions into the negative energy continuum [30].
The differential equations (2.15) become matrix eigenvalue equations of the form 32],

$$
\begin{equation*}
F C=S C \epsilon \tag{2.20}
\end{equation*}
$$

where F, S, C and ϵ are the Fock matrix, overlap matrix, eigenvector and the eigenvalue matrix, respectively. This is then transformed to a true eigenvalue problem and it is diagonalized to get the energies (eigenvalues) and the mixing coefficients (eigenvectors) for both the occupied and the virtual orbitals. The virtual orbitals (including the $2 p_{1 / 2}$ valence orbital) obtained by this procedure are clearly generated in the V^{N-1} potential of the frozen core orbitals. The details of this method can be found else where [32, 33].

The exact wave function $\left(\left|\Psi_{0}\right\rangle\right)$ for the corresponding closed-shell system is calculated in the RCC theory using,

$$
\begin{equation*}
\left|\Psi_{0}\right\rangle=e^{T}\left|\Phi_{0}\right\rangle \tag{2.21}
\end{equation*}
$$

where, T is the excitation operator for the core orbitals. It is the sum of all single, double, triple, and higher order excitations of occupied electrons. The open-shell reference state for the desired valence electron, v can be written as, $\left|\Phi_{v}\right\rangle=a_{v}^{\dagger}\left|\Phi_{0}\right\rangle$; where, a_{v}^{\dagger} is the creation operator for the valence electron and $\left|\Phi_{0}\right\rangle$ is a closed-shell reference state which is the Slater determinant representing the $1 s^{2} 2 s^{2}$ configuration where as, $\left|\Phi_{v}\right\rangle$ is the Slater determinant representing, for example, the $1 s^{2} 2 s^{2} 2 p_{1 / 2}$ configuration.

The exact wave function for the open-shell atomic system can be expressed in the RCC theory as,

$$
\begin{equation*}
\left|\Psi_{v}\right\rangle=e^{T}\left\{e^{S_{v}}\right\}\left|\Phi_{v}\right\rangle \tag{2.22}
\end{equation*}
$$

where, S_{v} corresponds to the excitation operator for the valence and valence-core orbitals. Since the systems considered in the present case contain single valence electron in their electronic configurations, the non-linear terms in the expansion of exponential function of S_{v} will not exist and the above wave function ultimately reduces to the form,

$$
\begin{equation*}
\left|\Psi_{v}\right\rangle=e^{T}\left\{1+S_{v}\right\}\left|\Phi_{v}\right\rangle \tag{2.23}
\end{equation*}
$$

where, $\}$ indicates that the operator is normal ordered. Even in the few electron systems, it is not possible to
consider all correlated excitations due to huge requirement of the computer memory. In fact, it has been found that the CC theory with both single and double excitations (CCSD) is quite successful in incorporating the maximum correlation effects. However, we have considered the CCSD method along with the important triple excitations (CCSD(T) method). The electron affinity energy $\left(\Delta E_{v}\right)$ for the valence electron v and the RCC operator amplitudes are calculated self-consistently using the following coupled equations,

$$
\begin{align*}
\left\langle\Phi_{L}\right|\left\{\widehat{H e^{T}}\right\}\left|\Phi_{0}\right\rangle & =\Delta E_{0} \delta_{L, 0} \tag{2.24}\\
\left\langle\Phi_{K}\right|\left\{\widehat{H e^{T}}\right\} S_{v}\left|\Phi_{v}\right\rangle & =-\left\langle\Phi_{K}\right|\left\{\widehat{H e^{T}}\right\}\left|\Phi_{v}\right\rangle+\left[\left\langle\Phi_{K}\right| S_{v}\left|\Phi_{v}\right\rangle+\delta_{K, v}\right] \Delta E_{v} \tag{2.25}
\end{align*}
$$

where, $\left(\left|\Phi_{L}\right\rangle\right)$ with $L(=1,2)$ represents the singly or doubly excited state from the closed-shell reference (DF) wave function $(L=0)$ and ΔE_{0} is the correlation energy for the closed-shell system. And, $\left(\left|\Phi_{K}\right\rangle\right)$ with $K(=1,2)$ denotes the singly or doubly excited state from the single
valence reference state $(K=v)$. The excitation energies $(E E)$ between different states are calculated from the electron affinity energies.

We calculate the transition matrix elements of any physical operator O by using,

$$
\begin{align*}
\langle O\rangle_{i \rightarrow f} & =\frac{\left\langle\Psi_{f}\right| O\left|\Psi_{i}\right\rangle}{\sqrt{\left\langle\Psi_{f} \mid \Psi_{f}\right\rangle\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle}} \\
& =\frac{\left\langle\Phi_{f}\right|\left\{1+S_{f}^{\dagger}\right\} \bar{O}\left\{1+S_{i}\right\}\left|\Phi_{i}\right\rangle}{\sqrt{\left\langle\Phi_{f}\right|\left\{1+S_{f}^{\dagger}\right\} e^{T^{\dagger}} e^{T}\left\{1+S_{f}\right\}\left|\Phi_{f}\right\rangle\left\langle\Phi_{i}\right|\left\{1+S_{i}^{\dagger}\right\} e^{T^{\dagger}} e^{T}\left\{1+S_{i}\right\}\left|\Phi_{i}\right\rangle}} \tag{2.26}
\end{align*}
$$

where, $\bar{O}=e^{T^{\dagger}} O e^{T}$. First, we compute the operator \bar{O} as the effective one-body and two-body operators using the generalized Wick's theorem [23] and later sandwich this between the necessary S_{v} operators. It has to be noticed that the fully contracted \bar{O} does not contribute in the present calculations. The contribution from the normalization of the wave functions (Norm) is given by,

$$
\begin{equation*}
N o r m=\left\langle\Psi_{f}\right| O\left|\Psi_{i}\right\rangle\left\{\frac{1}{\sqrt{\mathcal{N}_{f} \mathcal{N}_{i}}}-1\right\} \tag{2.27}
\end{equation*}
$$

where, $\mathcal{N}_{v}=\left\langle\Phi_{v}\right| e^{T^{\dagger}} e^{T}\left|\Phi_{v}\right\rangle+\left\langle\Phi_{v}\right| S_{v}^{\dagger} e^{T^{\dagger}} e^{T} S_{v}\left|\Phi_{v}\right\rangle$ for the valence electron $v(=i, f)$.

III. RESULTS AND DISCUSSION

In Table I we present our calculated $E E$ s for the $2 s^{2} 2 p_{3 / 2}, 2 s^{2} 3 s_{1 / 2}, 2 s^{2} 3 p_{1 / 2}, 2 s^{2} 3 p_{3 / 2}, 2 s^{2} 3 d_{3 / 2}$ and $2 s^{2} 3 d_{5 / 2}$ states from the ground state $2 s^{2} 2 p_{1 / 2}$ for all
the considered systems and compared our results with the available National Institute of Standards and Technology (NIST) database 34]. Our results, in general, agree very well with the measured NIST energies except for the fine structure level of the ground states; i.e. $2 s^{2} 2 p_{3 / 2}$ states. This shows that the higher order relativistic effects are important for these states and also the quantum electrodynamics (QED) corrections may be required to match the observed results. In all the systems considered, EEs were not known for the $2 s^{2} 3 p_{3 / 2}$ and $2 s^{2} 3 p_{1 / 2}$ states and here we have presented them for the first time, that can be used in the astrophysical observations for the identification of spectral lines.

We have used the length gauge in the calculation of the transition properties of E1 and E2. In Table II, we have reported the weighted oscillator strengths and the transition probabilities of a few allowed electric dipole transitions obtained from the RCC calculations. We observe that the transition probabilities for $2 s^{2} 3 d_{3 / 2} \rightarrow 2 s^{2} 2 p_{1 / 2}$

TABLE I: Comparison of the calculated excitation energies with the tabulated NIST data. The ground state is $1 s^{2} 2 s^{2} 2 p_{1 / 2}$.

Atomic system	Upper states	$E E\left(\mathrm{~cm}^{-1}\right)$	
Mg VIII	$2 s^{2} 3 d_{5 / 2}$	1339798	1336030
	$2 s^{2} 3 d_{3 / 2}$	1339584	1335860
	$2 s^{2} 3 p_{3 / 2}$	1276642	
	$2 s^{2} 3 p_{1 / 2}$	1275753	
	$2 s^{2} 3 s_{1 / 2}$	1210608	1210690
	$2 s^{2} 2 p_{3 / 2}$	3433	3302
	$2 s^{2} 3 d_{5 / 2}$	1980585	1979730
	$2 s^{2} 3 d_{3 / 2}$	1980086	1979260
	$2 s^{2} 3 p_{3 / 2}$	1904870	
	$2 s^{2} 3 p_{1 / 2}$	1902937	1822000
	$2 s^{2} 3 s_{1 / 2}$	1821314	6990
	$2 s^{2} 2 p_{3 / 2}$	7261	
S XII	$2 s^{2} 3 d_{5 / 2}$	2753686	2748100
	$2 s^{2} 3 d_{3 / 2}$	2752714	2747400
	$2 s^{2} 3 p_{3 / 2}$	2659966	
	$2 s^{2} 3 p_{1 / 2}$	2656319	
	$2 s^{2} 3 s_{1 / 2}$	2559004	13135
	$2 s^{2} 2 p_{3 / 2}$	13465	

transitions are larger than that of $2 s^{2} 3 s \rightarrow 2 s^{2} 2 p_{1 / 2}$ transitions that may be because, the overlap of radial wave functions of the former two states is larger than that of the latter two states. We compare our results with the $\mathrm{MCHF}+\mathrm{BP}$ results of [20] in which the calculated energies are scaled to match the observed transition energies and with a few non-relativistic results available in the literature [15, 18]. Their methods are less powerful than the all-order RCC theory in incorporating the electron correlation effects and rigorous relativistic effects and also the RCC method has distinct advantages over the former two [23, 35, 36]. Here, we have used the unscaled computed wavelengths in calculating the transition probabilities.

In order to understand the correlation effects, we have given explicitly the individual contributions to the electric dipole transition amplitudes, in Table III, for the $2 s^{2} 3 s \rightarrow 2 s^{2} 2 p_{1 / 2}$ and $2 s^{2} 3 d_{3 / 2} \rightarrow 2 s^{2} 2 p_{1 / 2}$ transitions, from the following four terms; $\left\langle\Phi_{f}\right| \bar{O}\left|\Phi_{i}\right\rangle$, $\left\langle\Phi_{f}\right| \bar{O} S_{i}\left|\Phi_{i}\right\rangle,\left\langle\Phi_{f}\right| S_{f}^{\dagger} \bar{O}\left|\Phi_{i}\right\rangle,\left\langle\Phi_{f}\right| S_{f}^{\dagger} \bar{O} S_{i}\left|\Phi_{i}\right\rangle$ which are obtained on expanding equation (2.26) and the contributions from the normalization factor. As expected, the contribution from the term $\left\langle\Phi_{f}\right| \bar{O}\left|\Phi_{i}\right\rangle$ is large compared to the other three terms as it contains the DF term and a few core correlated terms, where as, $\left\langle\Phi_{f}\right| S_{f}^{\dagger} \bar{O} S_{i}\left|\Phi_{i}\right\rangle$ is smaller than the rest as it contains two orders in the

TABLE II: Weighted oscillator strengths and transition probabilities for the allowed E1 transitions to the ground state.

Atomic System	Upper State	Weighted oscillator strength (a.u.)		Transition probability $\left(10^{11} s^{-1}\right)$	
		This work	Others	This work	Others
Mg VIII	$2 s^{2} 3 s_{1 / 2}$ $2 s^{2} 3 d_{3 / 2}$	$\begin{aligned} & 0.051 \\ & 1.188 \end{aligned}$	$0.052[20]$ $1.205[20]$	0.251 3.555	$\begin{aligned} & 0.255[\underline{20]} \\ & 3.589[20] \end{aligned}$
Si X	$2 s^{2} 3 s_{1 / 2}$	0.048	0.049 [20]	0.529	0.541 [20]
			0.044 [18]		0.481 [18]
			0.051 [15]		0.585 [15]
	$2 s^{2} 3 d_{3 / 2}$	1.234	1.247 [20]	8.066	8.149 [20]
			1.232 [18]		8.010 [18]
			1.234 [15]		8.310 [15]
S XII	$2 s^{2} 3 s_{1 / 2}$	0.045	0.047 [15]	0.987	1.06 [15]
	$2 s^{2} 3 d_{3 / 2}$	1.260	1.256 [15]	15.932	16.2 [15]

S_{v} amplitude. The contribution from $\left\langle\Phi_{f}\right| S_{f}^{\dagger} \bar{O}\left|\Phi_{i}\right\rangle$ is larger compared to $\left\langle\Phi_{f}\right| \bar{O} S_{i}\left|\Phi_{i}\right\rangle$ in the $2 s^{2} 3 s$ state, where as, it is the other way round in the case of $2 s^{2} 3 d_{3 / 2}$ state. However, the trends for all the three ions are almost the same for any given transition. We have also presented the DF results in the bottom line of the table in order to emphasize the correlation contributions to the total results. The correlation effects for the electric dipole transition amplitudes are small compared to the DF values and they are negative, thereby reducing the contribution of DF values in both the cases.

In Table IV, we have given the DF and $\operatorname{CCSD}(\mathrm{T})$ results of the important forbidden transition amplitudes due to M1, E2 and M2 transitions, which are interesting in the astrophysical context. We have presented the percentage difference between these results (Δ) which represent the contribution due to electron correlation effects. In a recent calculation of M1 transition probabilities in Blike ions using MRCI method with QED corrections 37], it was shown that the contribution of the inter-electronic interaction correlation is small for the transition from $2 s^{2} 2 p_{3 / 2}$ to the ground state for S XII. However, we observe that the contribution from the electron correlation effects are non-negligible in many of the considered transitions. Interestingly, the M1 transition amplitude for the transition from $2 s^{2} 3 p_{3 / 2} \rightarrow 2 s^{2} 2 p_{1 / 2}$ has very large correlation effects which even change the sign of the $\operatorname{CCSD}(\mathrm{T})$ result from the DF result.

We have also presented, in Table IV the transition probabilities calculated using the transition amplitudes and wavelengths obtained using the $\operatorname{CCSD}(\mathrm{T})$ method. These results are compared with other calculated results available in the literature 20, 22]. As seen from the Table IV, our results are in good agreement with the coulomb-

TABLE III: Contribution from the individual terms for E1 transition amplitude (in a.u.) of $2 s^{2} 3 s \rightarrow 2 s^{2} 2 p_{1 / 2}$ and $2 s^{2} 3 d_{3 / 2} \rightarrow 2 s^{2} 2 p_{1 / 2}$ transitions.

RCC	$2 s^{2} 3 s \rightarrow 2 s^{2} 2 p_{1 / 2}$ transition amplitudes		
terms	Mg VIII	Si X	S XII
\bar{O}	$1.28 \mathrm{E}-1$	$9.84 \mathrm{E}-2$	$7.93 \mathrm{E}-2$
$\bar{O} S_{i}$	$-6.52 \mathrm{E}-3$	$-4.09 \mathrm{E}-3$	$-3.04 \mathrm{E}-3$
$S_{f}^{\dagger} \bar{O}$	$-5.38 \mathrm{E}-3$	$-2.68 \mathrm{E}-3$	$-1.10 \mathrm{E}-3$
$S_{f}^{\dagger} \bar{O} S_{i}$	$1.90 \mathrm{E}-3$	$1.27 \mathrm{E}-3$	$9.12 \mathrm{E}-4$
$N o r m$	$6.14 \mathrm{E}-5$	$1.04 \mathrm{E}-4$	$1.03 \mathrm{E}-4$
Total	$1.18 \mathrm{E}-1$	$9.30 \mathrm{E}-2$	$7.62 \mathrm{E}-2$
DF	$1.28 \mathrm{E}-1$	$9.89 \mathrm{E}-2$	$7.99 \mathrm{E}-2$
	$2 s^{2} 3 d_{3 / 2} \rightarrow 2 s^{2} 2 p_{1 / 2}$ transition amplitudes		
\bar{O}	$-5.21 \mathrm{E}-1$	$-4.36 \mathrm{E}-1$	$-3.75 \mathrm{E}-1$
$\bar{O} S_{i}$	$1.73 \mathrm{E}-2$	$1.20 \mathrm{E}-2$	$9.28 \mathrm{E}-3$
$S_{f}^{\dagger} \bar{O}$	$-3.03 \mathrm{E}-2$	$-2.36 \mathrm{E}-2$	$-1.87 \mathrm{E}-2$
$S_{f}^{\dagger} \bar{O} S_{i}$	$-3.66 \mathrm{E}-3$	$-3.06 \mathrm{E}-3$	$-1.51 \mathrm{E}-3$
Norm	$-2.54 \mathrm{E}-3$	$-2.34 \mathrm{E}-3$	$-2.09 \mathrm{E}-3$
Total	$-5.40 \mathrm{E}-1$	$-4.53 \mathrm{E}-1$	$-3.88 \mathrm{E}-1$
DF	$-5.32 \mathrm{E}-1$	$-4.45 \mathrm{E}-1$	$-3.83 \mathrm{E}-1$

guage results of [22]. We have presented the results for a few other transitions which have not been studied earlier. One can obtain the oscillator strengths using the general formula given in equation (2.13) for these transitions using the above results.

Our results on the transition probabilities and lifetimes of the low-lying transitions in the boron iso-electronic ions may be helpful in the near future for the identification of the spectral lines in the regions of extremely low density plasma such as those present in the coronal atmospheres of Sun and a few Sun-like stars. They also serve as bench mark results for the laboratory astrophysics experiments, using eBIT.

IV. CONCLUSION

We have calculated the weighted oscillator strengths for a few electric dipole transitions and the transition probabilities for some low-lying excited states of boronlike ions: Mg VIII, Si X, and S XII which are abundant in the solar atmosphere using the relativistic coupledcluster theory. It is shown that, the contributions of electron correlation effects to the transition amplitudes are non-negligible in some transitions. Our results in general are in good agreement with the calculated values available in the literature; thereby demonstrating the power of this theory to generate accurate and reliable atomic data for astrophysics.
[1] B. C. Fawcett, At. Data and Nucl. Data Tables 16, 135 (1975)
[2] B. C. Fawcett and R. W. Hayes, Phys. Scr. 36, 80 (1987)
[3] L. I. Podobedova, D. E. Kelleher, J. Reader and W. L. Wiese, J. Phys. Chem. Ref. Data 33, 495 (2004)
[4] M. Reconditi and E. Oliva, Astron. Astrophys. 662, 274 (1993)
[5] F. J. Murcray, A. Goldman, F. H. Murcray, C. M. Bradford, D. G. Murcray, M. T. Coffey and W. G. Mankin, Astrophys. J. 247, L97 (1981)
[6] G. Elwert and P. K. Raju, Astrophys. Solar Science 38, 369 (1975)
[7] C. Jordan, MNRAS, 142, 501 (1969)
[8] D. R. Flower and H. Nussbaumer, Astron. Astrophys. 45, 145 (1975)
[9] D. R. Flower and H. Nussbaumer, Astron. Astrophys. 45, 349 (1975)
[10] J. E. Vernazza and J. C. Raymond, Astrophys. J. 228, L89 (1979)
[11] B. N. Dwivedi and P. K. Raju, Solar Physics 68, 111 (1980)
[12] A. K. Bhatia and R. J. Thomas, 1998, Astrophys. J. 497, 483 (1998)
[13] J. E. Vernazza and H. E. Mason, Astrophys. J. 226, 720 (1978)
[14] M. Audard, E. Behar, M. Gudel, A. J. J. Raassen, D.

Porquet, R. Mewe, C. R. Foley and G. E. Bromage, Astron. Astrophys. 365, L329 (2001)
[15] L. J. Shamey, J. Opt. Soc. Am. 61, 942 (1971)
[16] R. H. Garstang, Ann. Astroph. 25, 109 (1962)
[17] W. Dankwort and E. Trefftz, Astron. Astrophys. 47, 365 (1976)
[18] W. Dankwort and E. Trefftz, Astron. Astrophys. 65, 93 (1978)
[19] C. F. Fischer, 1983, J. Phys. B 16, 157 (1983)
[20] G. Tachiev and C. F. Fischer, J. Phys. B 33, 2419 (2000)
[21] U. I. Safronova, W. R. Johnson and A. E. Livingston, Phys. Rev. A 60, 996 (1999)
[22] K. Koc, J. Phys. B 36, L93 (2003)
[23] I. Lindgren and J. Morrison, Atomic Many-Body Theory, ($2^{n} d$ edition, Berlin: Springer-Verlag) (1986)
[24] A. Lapierre et al., Phys. Rev. Lett. 95, 183001 (2005)
[25] B. W. Shore and D. H. Menzel, Principles of atomic spectra, (New York: John Wiley and Sons) (1968)
[26] W. R. Johnson, D. R. Plante and J. Sapirstein, Advances in At. Mol. and Optical Physics, 35, 255 (1995)
[27] D. Mukherjee, R. Moitra and A. Mukhopadhyay, Mol. Physics 33, 955 (1977)
[28] D. Mukherjee and S. Pal, Adv. Quant. Chem. 20, 281 (1989)
[29] I. Lindgren, A coupled-cluster approach to the manybody pertubation theory for open-shell systems, In Per-

Olov Lwdin and Yngve hrn, editors, Atomic, molecular, and solid-state theory, collision phenomena, and computational methods, International Journal of Quantum Chemistry, Quantum Chemistry Symposium 12, pages 33-58, John Wiley \& Sons, March 1978.
[30] Ajay K Mohanty and E. Clementi, Chem. Phys. Lett. 157, 348 (1989)
[31] Rajat K. Chaudhuri, Prafulla K. Panda and B. P. Das, Phys. Rev. A 59, 1187 (1999)
[32] Attila Szabo and Neil S. Ostlund, Modern quantum chemsitry,(New York: Dover Publications) (1996)
[33] Y. K. Kim, Phys. Rev. 154, 17 (1967); I. P. Grant, J. Phys. B 19, 3187 (1986); H. M. Quiney, I. P. Grant and
S. Wilson, ibid. 20, 1413 (1987); I. P. Grant and H.M. Quiney, Adv. At. Mol. Phys. 23, 37 (1998)
[34] http://physics.nist.gov/PhysRefData/ASD/index.html
[35] B. K. Sahoo, S. Majumder, H. Merlitz, R. K. Chaudhuri, B. P. Das and D. Mukherjee, J. Phys. B 39, 355 (2006)
[36] S. Majumder, G. Gopakumar, R. K. Chaudhuri, B. P. Das, H. Merlitz, U. S. Mahapatra and D. Mukherjee, Euro. Phys. J. D 28, 3 (2004)
[37] I. I. Tupitsyn, A. V. Volotka, D. A. Glazov, V. M. Shabaev, G. Plunien, J. R. Crespo Lopez Urrutia, A. Lapierre and J. Ullrich, Phys. Rev. A 72, 062503 (2005)

TABLE IV: Computed transition amplitudes and transition probabilities for a selected forbidden transitions.

Atomic System	Upper State	Multipole	Transition amplitude (in au)			Transition probability in $\left(s^{-1}\right)$		
			DF	CCSD(T)	$\Delta(i n \%)$	Present	20]	$\underline{22}$
Mg VIII	$2 s^{2} 3 d_{5 / 2}$	M2	1.34 E 0	1.33 E0	-1.13	$1.90 \mathrm{E}+3$		
	$2 s^{2} 3 d_{3 / 2}$	M2	-4.12 E-1	-4.01 E-1	-2.76	$2.58 \mathrm{E}+2$		
	$2 s^{2} 3 p_{3 / 2}$	E2	-2.54 E-1	-2.67 E-1	4.98	$6.78 \mathrm{E}+6$		
	$2 s^{2} 3 p_{3 / 2}$	M1	$1.24 \mathrm{E}-3$	$-2.86 \mathrm{E}-3$	143.21	$1.15 \mathrm{E}+2$		
	$2 s^{2} 3 p_{1 / 2}$	M1	2.62 E-4	$5.76 \mathrm{E}-4$	54.44	$9.28 \mathrm{E}+0$		
	$2 s^{2} 2 p_{3 / 2}$	E2	-2.96 E-1	-2.70 E-1	-9.96	$9.85 \mathrm{E}-7$	$8.8804 \mathrm{E}-7$	9.61 E-7
	$2 s^{2} 2 p_{3 / 2}$	M1	-1.15 E0	-1.12 E0	-2.7	$3.48 \mathrm{E}-1$	$3.2905 \mathrm{E}-1$	$3.21 \mathrm{E}-1$
Si X	$2 s^{2} 3 d_{5 / 2}$	M2	1.13 E 0	1.13 E 0	0.33	$9.65 \mathrm{E}+3$		
	$2 s^{2} 3 d_{3 / 2}$	M2	-3.38 E-1	-3.34 E-1	-2.77	$1.27 \mathrm{E}+3$		
	$2 s^{2} 3 p_{3 / 2}$	E2	-1.71 E-1	-1.79 E-1	4.89	$2.27 \mathrm{E}+7$		
	$2 s^{2} 3 p_{3 / 2}$	M1	$1.74 \mathrm{E}-3$	$-1.49 \mathrm{E}-3$	217.08	$1.06 \mathrm{E}+2$		
	$2 s^{2} 3 p_{1 / 2}$	M1	$3.80 \mathrm{E}-4$	$5.91 \mathrm{E}-4$	57.37	$7.24 \mathrm{E}+1$		
	$2 s^{2} 2 p_{3 / 2}$	E2	-2.01 E-1	-1.84 E-1	-9.15	$1.92 \mathrm{E}-5$	$1.7837 \mathrm{E}-5$	$1.91 \mathrm{E}-5$
	$2 s^{2} 2 p_{3 / 2}$	M1	-1.15 E0	-1.12 E0	-2.54	$3.27 \mathrm{E}+0$	$3.1475 \mathrm{E}+0$	$3.06 \mathrm{E}+0$
S XII	$2 s^{2} 3 d_{5 / 2}$	M2	$9.67 \mathrm{E}-1$	$9.79 \mathrm{E}-1$	1.14	$3.77 \mathrm{E}+4$		
	$2 s^{2} 3 d_{3 / 2}$	M2	-2.96 E-1	$-2.86 \mathrm{E}-1$	-3.68	$4.80 \mathrm{E}+3$		
	$2 s^{2} 3 p_{3 / 2}$	E2	-1.24 E-1	-1.30 E-1	4.78	$6.28 \mathrm{E}+7$		
	$2 s^{2} 3 p_{3 / 2}$	M1	$2.33 \mathrm{E}-3$	-3.29 E-4	808.1	$1.37 \mathrm{E}+1$		
	$2 s^{2} 3 p_{1 / 2}$	M1	$5.24 \mathrm{E}-4$	$6.58 \mathrm{E}-4$	20.4	$1.10 \mathrm{E}+2$		
	$2 s^{2} 2 p_{3 / 2}$	E2	-1.46 E-1	$-1.34 \mathrm{E}-1$	-8.63	$2.23 \mathrm{E}-4$		$2.29 \mathrm{E}-4$
	$2 s^{2} 2 p_{3 / 2}$	M1	-1.15 E0	-1.13 E0	-2.38	$2.09 \mathrm{E}+1$		$2.03 \mathrm{E}+1$

[^0]: ${ }^{\dagger}$ Electronic address: nataraj@iiap.res.in

