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In this paper, we have carried out the calculations of the weighted oscillator strengths and the
transition probabilities for a few low-lying transitions of boron-like ions: Mg VIII, Si X and S XII
which are astrophysically important, particularly, in the atmospheres of the solar corona. We have
employed an all-order relativistic many-body theory called the relativistic coupled-cluster theory
to calculate very precisely these atomic quantities of astrophysical interest. We have reported for
the first time the transition probabilities for some forbidden transitions which are unavailable in
the literature; either theoretically or experimentally. We also discuss the physical effects associated
with these transitions. Our data can be used for the identification of spectral lines arising from the
coronal atmospheres of Sun and Sun-like stars having an extended corona.

PACS numbers: 31.15.Ar, 31.15.Dv, 32.30.Jc, 31.25.Jf, 32.10.Fn

I. INTRODUCTION

With the remarkable advances in the field of observa-
tional astronomy like the deployment of satellite probes
for data acquisition, there is a considerable interest
for accurate calculations of the oscillator strengths and
the transition probabilities for highly stripped ions
which are very important in astrophysics, mainly in the
identification of spectral lines [1, 2, 3, 4, 5]. Various
electro-magnetic transitions from the low-lying single
valence excited states, 2s2 2p3/2 (2P3/2), 2s2 3s (2S1/2),

2s2 3d3/2 (2D3/2), and 2s2 3d5/2 (2D5/2) to the ground
state in the highly ionized boron-like ions such as
Mg7+, Si9+ and S11+ are observed in the solar atmo-
sphere [6, 7]. Most of the lines correspond to the soft
X-ray waveband and have the potential to probe the
chromosphere-corona transition region and possibly the
coronal hole regions of the solar atmosphere [7, 8, 9],
where the temperatures would be of the order of a
million Kelvin. The relative line intensity ratios in Mg
VIII and Si X line emission spectrum have been found
to be density sensitive [10, 11]. The EUV line intensity
ratios of these ions have been studied [12] to infer the
electron density in different solar features such as active
region, quiet sun and off-limb. Therefore, lines emitted
from boron-like ions can be used as a powerful tool
in the diagnostics of the electron density [13] and the
temperature in the solar atmosphere. Interestingly, the
soft X-ray coronal emission lines of S XII in the stellar
binary Capella, which is one of the nearby Sun-like stars,
have been observed by Audard et al. [14] using the high
resolution RGS XMM-Newton satellite.

†Electronic address: nataraj@iiap.res.in

There are a few calculations of certain transition
probabilities of the considered boron-like ions available
in the literature; some of them are completely non-
relativistic and based on the multi-configuration Hartree-
Fock (MCHF) method [15, 16, 17]; some others are
based on MCHF calculations with Breit-Pauli corrections
(MCHF+BP) [18, 19, 20] and there are a few calculations
based on the relativistic many-body perturbation theory
(MBPT) [21] and relativistic multi-reference configura-
tion interaction (MRCI) method [22]. Often the theoret-
ical calculations are scaled to match the observed tran-
sition energies [6, 20]. Given the increasing need for the
accurate spectroscopic data in astrophysics, it is neces-
sary to use the all-order relativistic many-body methods
like the relativistic coupled-cluster (RCC) theory [23] to
calculate the principal atomic quantities of astrophysical
interest such as the energy levels, the oscillator strengths,
the transition probabilities and the lifetimes of the ex-
cited states.

The study of boron-like ions is interesting from the
point of view of the strong core-valence electron correla-
tion effects and also because the transition energies are in
the reach of current laboratory astrophysics experimen-
tal facilities like electron beam ion trap (eBIT) [24]. In
this paper, we present both the allowed and forbidden
transition amplitudes and the corresponding transition
probabilities of a few low-lying states in the boron-like
ions. We also discuss the behaviour of correlation effects
associated with these calculations.

The organization of the paper is as follows: In section
II, we give the working formulas for the transition prob-
abilities and the oscillator strengths and briefly discuss
the RCC method employed in calculating these quanti-
ties. In section III, we present the results and compare
them with those available in the literature and the con-
clusions are drawn in the last section.

http://arXiv.org/abs/physics/0609249v3
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II. THEORY AND METHOD OF

CALCULATION

The spontaneous transition probabilities due to E1,
E2, M1, and M2 operators from a state |JfMf〉 to the
state |JiMi〉 are given by [25],

AE1
Jf Ji

=
64π4e2a2

0

3hλ3(2Jf + 1)
SE1 =

2.0261× 10−6

λ3(2Jf + 1)
SE1,(2.1)

AE2
Jf Ji

=
64π6e2a4

0

15hλ5(2Jf + 1)
SE2 =

1.12 × 10−22

λ5(2Jf + 1)
SE2,(2.2)

AM1
Jf Ji

=
64π4e2a2

0(α/2)2

3hλ3(2Jf + 1)
SM1 =

2.6971× 10−11

λ3(2Jf + 1)
SM1,(2.3)

and

AM2
Jf Ji

=
64π6e2a4

0(α/2)2

15hλ5(2Jf + 1)
SM2 =

1.491 × 10−27

λ5(2Jf + 1)
SM2,(2.4)

respectively, where, the numerical factor applies for the
wavelength λ in cm and the transition line strength SO,
defined as the absolute square of the transition matrix
element i.e.

S O
(Jf ;Ji)

= | 〈Jf ||O || Ji〉 |
2 (2.5)

where, 〈Jf ||O || Ji〉 is the reduced matrix element for the
appropriate multipole operator O, in atomic units (au).
Here, J is the total angular momentum quantum number.

The single particle reduced matrix elements for the E1
and E2 operators in length gauge and the gauge inde-
pendent M1 and M2 operators are, respectively, given by
[26],

〈κf || e1 ||κi〉 =
3

k
〈κf ||C(1)

q ||κi〉

∫ ∞

0

{j1(kr) [Pf (r)Pi(r) + Qf(r)Qi(r)]

+ j2(kr)

[

κf − κi

2
[Pf (r)Qi(r) + Qf (r)Pi(r)] + [Pf (r)Qi(r) − Qf(r)Pi(r)]

]}

dr, (2.6)

〈κf || e2 ||κi〉 =
15

k2
〈κf ||C(2) ||κi〉

∫ ∞

0

{j2(kr)[Pf (r)Pi(r) + Qf (r)Qi(r)]

+ j3(kr)

[

κf − κi

3
[Pf (r)Qi(r) + Qf (r)Pi(r)] + [Pf (r)Qi(r) − Qf(r)Pi(r)]

]}

dr, (2.7)

〈κf ||m1 ||κi〉 =
6

αk
〈−κf ||C

(1) ||κi〉

∫ ∞

0

κf + κi

2
j1(kr) [Pf (r)Qi(r) + Qf (r)Pi(r)] dr, (2.8)

and

〈κf ||m2 ||κi〉 =
30

αk2
〈−κf ||C(2) ||κi〉

∫ ∞

0

κf + κi

3
j2(kr) [Pf (r)Qi(r) + Qf(r)Pi(r)] dr, (2.9)

where, κ is the relativistic angular momentum quantum
number. The radial functions, Pi(r) and Qi(r) are the
large and small components of the ith single particle

Dirac orbital, respectively. The coefficients of the Racah
tensor are given by,

〈κf ||C(γ) ||κi〉 = (−1)jf+1/2
√

(2jf + 1)(2ji + 1)

(

jf γ ji

1/2 0 −1/2

)

π(lf , γ, li), (2.10)

where j is the single particle angular momentum quantum number. The parity selection rule is given by,

π(l1, l2, l3) =

{

1 for l1 + l2 + l3 = even

0 otherwise.
(2.11)
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In equations (2.6) through (2.9), we define the wave vec-
tor k as, k = wα, where w = ǫi − ǫj is the excitation
energy at the single particle level, α is the fine structure
constant, l is the orbital angular momentum quantum
number and jn(kr) is a spherical Bessel function of order
n. Since kr is sufficiently small, we apply the following
approximation to calculate the above matrix elements:

jn(z) ≈
zn

1.3.5...(2n + 1)
. (2.12)

The oscillator strength and the corresponding transition
probability for a transition of any multipole type are re-
lated by the general formula,

f(Jf ;Ji) = 1.4992× 10−16A(Jf ;Ji)
gf

gi
λ2 (2.13)

where, gf and gi are the degeneracies associated with the
final and initial states respectively, λ is the wavelength
in Å and A(Jf ;Ji) is the transition probability in s−1.

Generally, in the astrophysical context, one uses the
weighted oscillator strength which is the product of the
degeneracy of the initial state and the oscillator strength
and is symmetric with respect to the initial and final
states; i.e.

gf = (2Ji + 1)fif = −(2Jf + 1)ffi. (2.14)

As it can be inferred from the above equations, there is
a great need for precise values of the transition wave-
lengths and the transition line strengths for the accurate
determination of the oscillator strengths and the tran-
sition probabilities. This demands for a highly powerful
many-body method which would include fully relativistic
effects and the electron correlation effects that are suffi-
ciently large especially in many-electron systems. So we
employ the RCC theory, which is briefly discussed below,
to calculate these quantities of interest.

The starting point of our method is the relativistic gen-
eralization of the valence universal coupled-cluster (CC)
theory introduced by Mukherjee et al [27, 28] which was
put later in a more compact form by Lindgren [23, 29].
In this approach, first we obtain the closed-shell Dirac-
Fock (DF) wave function (|Φ0〉) which corresponds to the
electronic configuration 1s2 2s2. This amounts to solving
the DF equations for N−1 electrons where N is the total
number of electrons in the system. These equations can
be expressed as,

[

c~αi · ~pi + (βi − 1)c2 + VNuc(ri) + UDF (ri)
]

|φi〉 = ǫi|φi〉(2.15)

where, c is the speed of light in vacuum, ~α and β are
the Dirac matrices, VNuc(ri) is the nuclear potential
and UDF (ri) is the effective average potential called the
Dirac-Fock potential, which is given by,

UDF (ri)|φi〉 =

N−1
∑

j=1

[

〈φj |
1

r12
|φj〉|φi〉 − 〈φj |

1

r12
|φi〉|φj〉

]

(2.16)

The large and small radial components of the single par-
ticle relativistic wave functions are expanded in terms of
the Gaussian type orbitals (GTOs) of the form [30, 31],

gL
κi

(r) = NLrnκi e−ζir
2

(2.17)

and

gS
κi

(r) = NS

[

d

dr
+

k

r

]

gL
κi

(r) (2.18)

where, NL and NS are the normalization factors for the
large and small radial components, respectively, of the
one-electron orbitals, nκi

varies for each relativistic sym-
metry and takes an integer value as 1 for s1/2, 2 for p1/2

and so on.
In equation (2.17) we have used the even tempering

condition for the exponents, i.e,

ζi = ζ0 ηi−1 where i = 1, 2, 3, ..., n (2.19)

where ζ0 and η are the user-defined parameters and n
is the size of the basis set. In equation (2.18), the ki-
netic balance condition is imposed on the small radial
components to avoid the variational collapse of the wave
functions into the negative energy continuum [30].
The differential equations (2.15) become matrix eigen-
value equations of the form [32],

F C = S C ǫ (2.20)

where F, S, C and ǫ are the Fock matrix, overlap matrix,
eigenvector and the eigenvalue matrix, respectively. This
is then transformed to a true eigenvalue problem and it
is diagonalized to get the energies (eigenvalues) and the
mixing coefficients (eigenvectors) for both the occupied
and the virtual orbitals. The virtual orbitals (including
the 2p1/2 valence orbital) obtained by this procedure are

clearly generated in the V N−1 potential of the frozen
core orbitals. The details of this method can be found
else where [32, 33].

The exact wave function (|Ψ0〉) for the corresponding
closed-shell system is calculated in the RCC theory using,

|Ψ0〉 = eT |Φ0〉 (2.21)

where, T is the excitation operator for the core orbitals.
It is the sum of all single, double, triple, and higher or-
der excitations of occupied electrons. The open-shell ref-
erence state for the desired valence electron, v can be
written as, |Φv〉 = a†

v |Φ0〉; where, a†
v is the creation op-

erator for the valence electron and |Φ0〉 is a closed-shell
reference state which is the Slater determinant represent-
ing the 1s2 2s2 configuration where as, |Φv〉 is the Slater
determinant representing, for example, the 1s2 2s2 2p1/2

configuration.
The exact wave function for the open-shell atomic sys-

tem can be expressed in the RCC theory as,

|Ψv〉 = eT {eSv} |Φv〉 (2.22)
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where, Sv corresponds to the excitation operator for the
valence and valence-core orbitals. Since the systems con-
sidered in the present case contain single valence electron
in their electronic configurations, the non-linear terms in
the expansion of exponential function of Sv will not exist
and the above wave function ultimately reduces to the
form,

|Ψv〉 = eT {1 + Sv} |Φv〉. (2.23)

where, {} indicates that the operator is normal ordered.
Even in the few electron systems, it is not possible to

consider all correlated excitations due to huge require-
ment of the computer memory. In fact, it has been found
that the CC theory with both single and double exci-
tations (CCSD) is quite successful in incorporating the
maximum correlation effects. However, we have consid-
ered the CCSD method along with the important triple
excitations (CCSD(T) method). The electron affinity en-
ergy (∆Ev) for the valence electron v and the RCC oper-
ator amplitudes are calculated self-consistently using the
following coupled equations,

〈ΦL|{ĤeT}|Φ0〉 = ∆E0 δL,0 (2.24)

〈ΦK |{ĤeT }Sv|Φv〉 = −〈ΦK |{ĤeT }|Φv〉 + [〈ΦK |Sv|Φv〉 + δK,v] ∆Ev (2.25)

where, (|ΦL〉) with L (= 1, 2) represents the singly or
doubly excited state from the closed-shell reference (DF)
wave function (L = 0) and ∆E0 is the correlation energy
for the closed-shell system. And, (|ΦK〉) with K (= 1, 2)
denotes the singly or doubly excited state from the single

valence reference state (K = v). The excitation energies
(EE) between different states are calculated from the
electron affinity energies.

We calculate the transition matrix elements of any
physical operator O by using,

〈O 〉i→f =
〈Ψf |O |Ψi〉

√

〈Ψf |Ψf〉 〈Ψi |Ψi〉

=
〈Φf | {1 + S†

f}O {1 + Si} |Φi〉
√

〈Φf | {1 + S†
f}e

T †eT {1 + Sf}|Φf 〉〈Φi | {1 + S†
i }e

T †eT {1 + Si}|Φi〉
(2.26)

where, O = eT †

OeT . First, we compute the operator O
as the effective one-body and two-body operators using
the generalized Wick’s theorem [23] and later sandwich
this between the necessary Sv operators. It has to be
noticed that the fully contracted O does not contribute
in the present calculations. The contribution from the
normalization of the wave functions (Norm) is given by,

Norm = 〈Ψf |O |Ψi〉{
1

√

Nf Ni

− 1} (2.27)

where, Nv = 〈Φv | eT †

eT |Φv〉 + 〈Φv |S†
ve

T †

eT Sv |Φv〉 for
the valence electron v (= i, f).

III. RESULTS AND DISCUSSION

In Table I, we present our calculated EEs for the
2s2 2p3/2, 2s2 3s1/2, 2s2 3p1/2, 2s2 3p3/2, 2s2 3d3/2 and

2s2 3d5/2 states from the ground state 2s2 2p1/2 for all

the considered systems and compared our results with the
available National Institute of Standards and Technology
(NIST) database [34]. Our results, in general, agree very
well with the measured NIST energies except for the fine
structure level of the ground states; i.e. 2s2 2p3/2 states.
This shows that the higher order relativistic effects are
important for these states and also the quantum electro-
dynamics (QED) corrections may be required to match
the observed results. In all the systems considered, EEs
were not known for the 2s2 3p3/2 and 2s2 3p1/2 states and
here we have presented them for the first time, that can
be used in the astrophysical observations for the identi-
fication of spectral lines.

We have used the length gauge in the calculation of the
transition properties of E1 and E2. In Table II, we have
reported the weighted oscillator strengths and the tran-
sition probabilities of a few allowed electric dipole tran-
sitions obtained from the RCC calculations. We observe
that the transition probabilities for 2s2 3d3/2 → 2s2 2p1/2
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TABLE I: Comparison of the calculated excitation ener-
gies with the tabulated NIST data. The ground state is
1s22s22p1/2.

Atomic Upper EE (cm−1)
system states This work NIST [34]

Mg VIII 2s2 3d5/2 1 339 798 1 336 030
2s2 3d3/2 1 339 584 1 335 860
2s2 3p3/2 1 276 642
2s2 3p1/2 1 275 753
2s2 3s1/2 1 210 608 1 210 690
2s2 2p3/2 3 433 3 302

Si X 2s2 3d5/2 1 980 585 1 979 730
2s2 3d3/2 1 980 086 1 979 260
2s2 3p3/2 1 904 870
2s2 3p1/2 1 902 937
2s2 3s1/2 1 821 314 1 822 000
2s2 2p3/2 7 261 6 990

S XII 2s2 3d5/2 2 753 686 2 748 100
2s2 3d3/2 2 752 714 2 747 400
2s2 3p3/2 2 659 966
2s2 3p1/2 2 656 319
2s2 3s1/2 2 559 004
2s2 2p3/2 13 465 13 135

transitions are larger than that of 2s2 3s → 2s2 2p1/2

transitions that may be because, the overlap of radial
wave functions of the former two states is larger than that
of the latter two states. We compare our results with the
MCHF+BP results of [20] in which the calculated ener-
gies are scaled to match the observed transition energies
and with a few non-relativistic results available in the lit-
erature [15, 18]. Their methods are less powerful than the
all-order RCC theory in incorporating the electron corre-
lation effects and rigorous relativistic effects and also the
RCC method has distinct advantages over the former two
[23, 35, 36]. Here, we have used the unscaled computed
wavelengths in calculating the transition probabilities.

In order to understand the correlation effects, we
have given explicitly the individual contributions to
the electric dipole transition amplitudes, in Table III,
for the 2s2 3s → 2s2 2p1/2 and 2s2 3d3/2 → 2s2 2p1/2

transitions, from the following four terms; 〈Φf |O |Φi〉,

〈Φf |O Si |Φi〉, 〈Φf |S†
f O |Φi〉, 〈Φf |S†

f O Si |Φi〉 which

are obtained on expanding equation (2.26) and the contri-
butions from the normalization factor. As expected, the
contribution from the term 〈Φf |O |Φi〉 is large compared
to the other three terms as it contains the DF term and
a few core correlated terms, where as, 〈Φf |S†

f O Si |Φi〉
is smaller than the rest as it contains two orders in the

TABLE II: Weighted oscillator strengths and transition prob-
abilities for the allowed E1 transitions to the ground state.

Atomic Upper Weighted oscillator Transition
System State strength (a.u.) probability (1011s−1)

This work Others This work Others

Mg VIII 2s2 3s1/2 0.051 0.052 [20] 0.251 0.255 [20]
2s2 3d3/2 1.188 1.205 [20] 3.555 3.589 [20]

Si X 2s2 3s1/2 0.048 0.049 [20] 0.529 0.541 [20]
0.044 [18] 0.481 [18]
0.051 [15] 0.585 [15]

2s2 3d3/2 1.234 1.247 [20] 8.066 8.149 [20]
1.232 [18] 8.010 [18]
1.234 [15] 8.310 [15]

S XII 2s2 3s1/2 0.045 0.047 [15] 0.987 1.06 [15]
2s2 3d3/2 1.260 1.256 [15] 15.932 16.2 [15]

Sv amplitude. The contribution from 〈Φf |S†
f O |Φi〉 is

larger compared to 〈Φf |O Si |Φi〉 in the 2s2 3s state,
where as, it is the other way round in the case of 2s2 3d3/2

state. However, the trends for all the three ions are al-
most the same for any given transition. We have also
presented the DF results in the bottom line of the ta-
ble in order to emphasize the correlation contributions
to the total results. The correlation effects for the elec-
tric dipole transition amplitudes are small compared to
the DF values and they are negative, thereby reducing
the contribution of DF values in both the cases.

In Table IV, we have given the DF and CCSD(T) re-
sults of the important forbidden transition amplitudes
due to M1, E2 and M2 transitions, which are interesting
in the astrophysical context. We have presented the per-
centage difference between these results (∆) which repre-
sent the contribution due to electron correlation effects.
In a recent calculation of M1 transition probabilities in B-
like ions using MRCI method with QED corrections [37],
it was shown that the contribution of the inter-electronic
interaction correlation is small for the transition from
2s2 2p3/2 to the ground state for S XII. However, we
observe that the contribution from the electron correla-
tion effects are non-negligible in many of the considered
transitions. Interestingly, the M1 transition amplitude
for the transition from 2s2 3p3/2 → 2s2 2p1/2 has very
large correlation effects which even change the sign of
the CCSD(T) result from the DF result.

We have also presented, in Table IV, the transition
probabilities calculated using the transition amplitudes
and wavelengths obtained using the CCSD(T) method.
These results are compared with other calculated results
available in the literature [20, 22]. As seen from the Table
IV, our results are in good agreement with the coulomb-
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TABLE III: Contribution from the individual terms for E1
transition amplitude (in a.u.) of 2s2 3s → 2s2 2p1/2 and

2s2 3d3/2 → 2s2 2p1/2 transitions.

RCC 2s2 3s→ 2s2 2p1/2 transition amplitudes
terms Mg VIII Si X S XII

O 1.28 E-1 9.84 E-2 7.93 E-2
O Si -6.52 E-3 -4.09 E-3 -3.04 E-3

S
†
f O -5.38 E-3 -2.68 E-3 -1.10 E-3

S
†
f O Si 1.90 E-3 1.27 E-3 9.12 E-4

Norm 6.14 E-5 1.04 E-4 1.03 E-4

Total 1.18 E-1 9.30 E-2 7.62 E-2

DF 1.28 E-1 9.89 E-2 7.99 E-2

2s2 3d3/2 → 2s2 2p1/2 transition amplitudes

O -5.21 E-1 -4.36 E-1 -3.75 E-1
O Si 1.73 E-2 1.20 E-2 9.28 E-3

S
†
f O -3.03 E-2 -2.36 E-2 -1.87 E-2

S
†
f O Si -3.66 E-3 -3.06 E-3 -1.51 E-3

Norm -2.54 E-3 -2.34 E-3 -2.09 E-3

Total -5.40 E-1 -4.53 E-1 -3.88 E-1

DF -5.32 E-1 -4.45 E-1 -3.83 E-1

guage results of [22]. We have presented the results for a
few other transitions which have not been studied earlier.
One can obtain the oscillator strengths using the general
formula given in equation (2.13) for these transitions us-
ing the above results.

Our results on the transition probabilities and lifetimes
of the low-lying transitions in the boron iso-electronic
ions may be helpful in the near future for the identifica-
tion of the spectral lines in the regions of extremely low
density plasma such as those present in the coronal atmo-
spheres of Sun and a few Sun-like stars. They also serve
as bench mark results for the laboratory astrophysics ex-
periments, using eBIT.

IV. CONCLUSION

We have calculated the weighted oscillator strengths
for a few electric dipole transitions and the transition
probabilities for some low-lying excited states of boron-
like ions: Mg VIII, Si X, and S XII which are abundant
in the solar atmosphere using the relativistic coupled-
cluster theory. It is shown that, the contributions of elec-
tron correlation effects to the transition amplitudes are
non-negligible in some transitions. Our results in general
are in good agreement with the calculated values avail-
able in the literature; thereby demonstrating the power
of this theory to generate accurate and reliable atomic
data for astrophysics.
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TABLE IV: Computed transition amplitudes and transition probabilities for a selected forbidden transitions.

Atomic Upper Multipole Transition amplitude (in au) Transition probability in (s−1)
System State DF CCSD(T) ∆(in%) Present [20] [22]

Mg VIII 2s2 3d5/2 M2 1.34 E0 1.33 E0 -1.13 1.90 E+3
2s2 3d3/2 M2 -4.12E-1 -4.01 E-1 -2.76 2.58 E+2
2s2 3p3/2 E2 -2.54E-1 -2.67 E-1 4.98 6.78 E+6
2s2 3p3/2 M1 1.24 E-3 -2.86 E-3 143.21 1.15 E+2
2s2 3p1/2 M1 2.62 E-4 5.76 E-4 54.44 9.28 E+0
2s2 2p3/2 E2 -2.96E-1 -2.70 E-1 -9.96 9.85 E-7 8.8804 E-7 9.61 E-7
2s2 2p3/2 M1 -1.15 E0 -1.12 E0 -2.7 3.48 E-1 3.2905 E-1 3.21 E-1

Si X 2s2 3d5/2 M2 1.13 E0 1.13 E0 0.33 9.65 E+3
2s2 3d3/2 M2 -3.38E-1 -3.34 E-1 -2.77 1.27 E+3
2s2 3p3/2 E2 -1.71E-1 -1.79 E-1 4.89 2.27 E+7
2s2 3p3/2 M1 1.74 E-3 -1.49 E-3 217.08 1.06 E+2
2s2 3p1/2 M1 3.80 E-4 5.91 E-4 57.37 7.24 E+1
2s2 2p3/2 E2 -2.01E-1 -1.84 E-1 -9.15 1.92 E-5 1.7837 E-5 1.91 E-5
2s2 2p3/2 M1 -1.15 E0 -1.12 E0 -2.54 3.27 E+0 3.1475 E+0 3.06 E+0

S XII 2s2 3d5/2 M2 9.67 E-1 9.79 E-1 1.14 3.77 E+4
2s2 3d3/2 M2 -2.96E-1 -2.86 E-1 -3.68 4.80 E+3
2s2 3p3/2 E2 -1.24E-1 -1.30 E-1 4.78 6.28 E+7
2s2 3p3/2 M1 2.33 E-3 -3.29 E-4 808.1 1.37 E+1
2s2 3p1/2 M1 5.24 E-4 6.58 E-4 20.4 1.10 E+2
2s2 2p3/2 E2 -1.46E-1 -1.34 E-1 -8.63 2.23 E-4 2.29 E-4
2s2 2p3/2 M1 -1.15 E0 -1.13 E0 -2.38 2.09 E+1 2.03 E+1


