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Abstract. Very little work has been done in generating alternatives to the Poisson process
model. The work reported here deals with alternatives to the Poisson process model for the
earthquakes and checks them using empirical data and the statistical hypothesis testing
apparatus. The strategy used here for generating hypotheses is to compound the Poisson
process. The parameter of the Poisson process is replaced by a random variable having
prescribed density function. The density functions used are gamma, chi and extended
(gamma/ chi). The original distribution is then averaged out with respect to these density
functions. For the compound Poisson processes the waiting time distributions for the future
events are derived. As the parameters for the various statistical models for earthquake
occurrences are not known, the problem is basically of composite hypothesis testing. One way
of designing a test is to estimate these parameters and use them as true values. Moment-
matching is used here to estimate the parameters. The results of hypothesis testing using data
from Hindukush and North East India are presented.

Keywords. Compound Poisson processes; hypothesis testing; parameter estimation; wait-
ing time distributions; Polya process; statistical models for earthquake occurrences.

1. Introduction

The debate whether the earthquake occurrences follow a Poisson process model is still
inconclusive (Benioff 1951; Aki 1956; Shalanger 1960; Knopoff 1964; Lomnitz 1966;
Ferraes 1967; Vere Jones 1970; Schlien and Toksoz 1970; Utsu 1972; Udias and Rice
1975) though a predominant view is that the Poisson process model is not particularly
appropriate. One reason why the debate is still alive is that the Poisson process model
has great conceptual appeal and those who rejected the Poissen process model have
tried to restore it by removing the aftershocks and foreshocks from the sequence of
earthquakes (Vere Jones 1970; Schlien and Toksoz 1970; Udias and Rice 1975). These
attempts have lacked internal consistency because the definitions of the main event and
the cluster of the main event and its aftershocks and foreshocks have beeri-ad hoc.
These have been in terms of the arbitrarily defined ‘cluster length’ which violates the
assumption of independent events in a Poisson process model for the cluster centres,
because two or more cluster centres are then forbidden within a cluster length. The
second reason is that not much work is done in generating alternatives to the Poisson
process model. The work of Vere Jones (1970) in which a contagious Poisson process
model of the Neyman type has been suggested for the number of earthquakes per unit
time is almost exceptional. No model can be effectively rejected unless more successful
models are obtained. The third reason is that only some consequences of a Poisson
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process model have earlier been studied. The present paper points out that different
random variables derived from the stochastic process models may lead to different
conclusions unless a really superior model is generated. Towards this end three
different alternatives to the Poisson process model are generated here viz. Polya
compound, x-Poisson and compound (y-x)-Poisson. Under all the four hypotheses,
distributions are obtained for the discrete random variable, number of earthquakes per
unit time and density functions for continuous random variables such as waiting times
for the next, second, third, etc. event. ’

The strategy used to generate alternatives to Poisson process model is compound-
ing, Let

k

A
P(x=kl)\)=-;-e"‘, A>0, k=012 (1)

be the probability of k earthquakes per unit time under Poisson process model where A
is a parameter, called the rate of the process. Let A be awarded a status of a random
variable with density function p(X) over the range [0, ). Then

P(x=k) = fP(x = k| N)p(A) dA
0
= E[P(x = k|\)), )

gives the probability of k earthquakes per unit time under a compound Poisson process
where E, [+]is expectation with respect to the density function of A (Fisz 1963; Johnson
and Kotz 1969).

If the density function of A is chosen to be v, that is, if

a

A =
p(A) ol

A exp(-ah) u(). (3)

where w(A) is unit step function, and
T'(v) = [ exp(—\) dA (4)
0

is the gamma function and where @ > Oand v > 0 are parameters, it has been shown
that (Fisz 1963; Johnson and Kotz 1969) (2) becomes

[TV .
P(xzk)=(—1)"(k)pkq~ k=012 (5)
where
_ 1 - _ a4
14 l+a’q P~l+a, 0<p<, (6)
and

-V (=W (=v=1)...(—v—k+1]
(k) = .

(M

Equation (7) gives a negative binomial distribution. If v is a positive integer, it is
sometimes called Pascal distribution (Johnsonand Kotz 1969). When the postulates of
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Poisson distribution. particularly independence, are suspect, the negative binomial
distribution is a frequently suggested alternative (Johnson and Kotz 1969).
Compounding of Poisson distribution of (1) by rectangular, truncated normal and
log-normal density functions has also been considered in literature (Johnson and Kotz
1969). Two new compound Poisson distributions are obtained in the next section.

2. Compound Poisson distributions

2.1 Compound Chi-Poisson distribution:
Let A have a x density function given by (Papoulis 1965)

2 )
= M7exp(— N/26)u(\), n>1. o> 0. (8

A 5
PN = )

Then (2) becomes

£

f)x"*"" exp[— (A}/20° + N]dA 9)

0

2
Px =k = ="
) 2;1/..11(}1/2) U”k!

which is a compound Poisson distribution which will be named x-Potsson. The
problem is to evaluate an integral

Cim, a. b) = f}\"’exp[— (a\* + bN)]dA. (10)

0

We have (Spiegel 1968)

]

fe)(p[-(n:l)\2 + bA + ¢)dA

0

i
= ‘2—(71'/0)1/2 exp[(h — dac)/4a exfe(b/2v/a), (11)
where
2 f 2 12)
erfe(p) = J’exp(—)\ ) dA. (
Vo

is the complementary error function. By putting ¢ = 0 in (11) we get

o oc

1 . l N 7
fexp{—(a}\' + AN}dA = —\/:exp(h'/4a) J exp(— A )dA. (13)
: a
o bya

Differentiating both sides of (13) with respect to & and using Leibnitz's theorem
(Spiegel 1968) that
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D) = 2 (+') pmu (14)

where D isa dlfferentxal operator which is d/db in our case, we get

f N"exp[—(a\* + bA)]dA
0

D" (s my d ) "’ F 2
= — b4 —A)d
7 {}:_,O(r) o LX) —o (m{/;exp( ) )}
(__ 1) m dm—r-[ l )
- ~ b4
{r=0( ) dbm-r-] [ 2\/;‘ exp( / a)]
—d—; [exp (b*/4a)] + [ f /40)]} (15)
db b
Now, let
o(x) = exp(— ¥'[2),  ¥(x) = exp(x}/2), (16)
and let ‘
"x) = (= 1Y) Halx),  ¥"™(x) = (x) Hi(x), (17

where H,(x) and H,(x) are polynomials and ¢"(x) and ¢"'(x) are nth derivatives of
¢(x) and yr(x) respectively. Hy(x)are knownasHermite polynomials(Abramowitzand
Stegun 1966) of degree n. They satisfy recurrence relation (Whalen 1971)

His1(x) = xHy(x) — nHy-1(x), Ho(x) =1, Hx) = x. (18)
[t can be easily shown that A,(x) must satisfy the recurrence relation
Hiilx) = xH(x) + Bx), Hix) =1, Hx) = x (19)

Using (18) and (19) to tabulate the polynomials H,(x) and ﬁ,.(x) it is easily seen that
the two sets of polynomials are closely related. In Hy(x) and Hn(x) the absolute values
of the coefficients of various powers of x are the same. However, whereas in H,,(x) all
the coefficients are positive, in H,(x) the coefficients of x"™%, x"*°, x"™!°, etc, are

negative, where n — 2, n — 6, n — 10, etc are non-negative integers. Thns relation
between H,(x) and H,, (x) can be summarized by

Hix) = (= )" Ha (jx). (20)
Equation (20) could also be obtained more directly by using (16)and (17) after writing
$(x) = exp[— (/0')2, (20

The polynomials H,(x) can be named modified-Hermite polynomials because (20) is
similar to
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I(x) = (=) Ju (jx), (22)
for Bessel and modified Bessel functions Jn.(x) and J(x), respectively (Bateman

1953). Ho(x) and H,(x) must now be regarded as known polynomials. Using (16) and
(17, (15) becomes

C(m, a, b) = [N\ exp[— (aX* + bA)]dX
0

1 —

I
) W{E (') (= 1Y Ho-r-1[61(20)") Hilb](20)"]
r=0

+ (—1y" /]2 erfe [b/(2a)"] Em [b/(2a)"] exp(b2/4a)} (23)

which now becomes a known function. Using (9), (10) and (23) we can write

2
P(x=k) = -1, 1/24%,
(x=k) T2 ke Cn+k 126 1)
20k n+k—2 n+k_2 ) _
= 2P k! P G
+ /2 erdc (0/v/2) (= )™ Hyexei (0) exp(oz/Z)}, (24)

which is the compound X-Poisson distribution. Of course, the modified Hermite
polynomials in (24) can be expressed in terms of Hermite polynomials withimaginary
arguments using (20). A computer program to evaluate probabilities in (24) on DEC-
20 has been written (Sharma 1982).

2.2 Compound (gamma/chi) — Poisson Distribution:

Let the density function of A be
l n 2
p(\) = —— Nexp[—(aA® + bN)] u(N), (25)
C(n,a,b)
a>0,b>0n=012..

where C(n,a, b) is given in (23). This density function can be named extended
(gamma/chi) because, if a = 0.

f. T'(n + 1)
C(na, b) = C(n0,b) = fx exp(—bx)dx = T (26)
: -
and p(\) of (25) reduces to the form
n —h)\b"”
p(\) = ————— u(}), (27)

'm+1)
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which can be seen to be a gamma density function from (3) and if b = 0

oc

C(n,a,b) = C(n,a0) =fx"exp(— ax?)dx

T+ 1/

2a(n+ 1)/2

(28)

and p(\) of (25) reduces to the form

20('”1)/: . 2
(A) = —————— Nexp(—al)u(h), n>0,a>0
P Tin+1)/2) P

which can be seen to be a y density function from (8). Substituting (25) in (2) and using
(10)

% I .
Pix = k) = | — e7» ———— Nexp[— (aA” + hA)]dA
Jr o cnab)

_ Cn+ kab+1) (29)
Cln, a, b)Y k!

where (23) can be used to get an explicit expression, This can be named compound
(gamma/chi)-Poisson distribution. It subsumes gamma-Poisson and chi-Poisson dis-
tributions as special cases. A computer program to evaluate probabilities in (29) on
DEC-20 has been written (Sharma 1982).

Probabilities under the Poisson, negative binomial. compound chi-Poisson and
{gamma/ chi)-Poisson distributions are shown in table | with afew chosen values of the
parameters.

3. Compound Poisson process models

3.1 Poisson process model

Let X, be the number of earthquakes during the time interval [0, 1) where 0 < 1 < o0,
Then{X;.0 = r < oo} is a stochastic process, where for every r the random variable

can take on integer values k = 0, 1, 2,.... Under certain ideal assumptions (Feller
1956; Fisz 1963) the earthquakes follow a Poisson process model given by

()t
PLX = kA= ——exp(=M), k=0,1,2..0 >0 (30)

If the parameter X is awarded a status of a random variable having density function
P(A), we get

x()\
PX: = k) :f

o exp(= M)V A (31)

0

as a compound Poisson process modei (Fisz 1963).
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Table 1. Probabilities for each distribution.

Poisson Negative binomial ~ Compound Compound
distribution distribution chi-Poisson (gamma/chi)-
k A=3.2808219 a=1.0118489 distribution Poisson
v=3.3196956 n=2, a=2.65 distribution
n=3, a=0.1,
b=0.01

0 0.0375973 0.1021264 0.1046892 0.0390846
1 0.123350t 0.1685158 0.1601306 0.0975718
2 0.2023448 0.1809124 0.1729216 0,1444864
3 0.2212858 0.1594551 9.1574826 0.1633476
4 0.1814998 0.1252216 0.1283219 0.1550099
5 0.1190937 0.0911185 0.0962408 0.1294238
6 0.0651208 0.0628011 0.0676109 0.0978149
7 0.0305214 0.0415600 0.0453229 0.0679416
8 0.0125169 0.0266475 0.0279501 0.0450210
9 0.0045629 0.0016659 0.0171359

10 0.0014970 0.0102013 0.0107734

11 0.0004465 0.0061399

12 0.0001221 0.0036418

13 0.0000308 0.0021332

3.2 Polya process model

If A has a gamma density function of (3), (31) becomes (Fisz 1963)

O P
P(X, = k) =f exp(— M) —— A" exp(—ak)dA
; k! Iy
k v
4+ Do (vt+k—
V() Yooy )( 1 ) ( a )./\'=l.2,3,...
k! at+t a+t
= ( u ) k=0 (32)
a + ¢ s

using the definition of (4) and the properties of the -y functions.

3.3 Compound chi-Poisson process model
If X has a chi density function of (8} (31) becomes

]

P(X, = k)f A exp(— A2/ 26%) dA
0

() =) 2
kP 2"’ I'(n| 2)0"

2tk r ntk-1 2 2 '
= T k] f)\ exp[— (/20" + Any]dA
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— 2”‘ /\ D) -1
- 2;1/211('1/2)011[\,! C(ﬂ+ I‘(—G) -f)

n+k=2

26" {rz (n+k~l)

21

Hr:-rk-,-_:(ﬂ'l')l‘—i,(a[) + (7.’.'/2)1/2(_ ])IH‘I\’—Y

erfc (—U\/%) Hooi ~|(m)e><p(ozr’/2)} (33)

where (10) and (23) have been used. Equation (33) represents compound chi-Poisson
process. '

3.4  Compound (gamma/chi)-Poisson process model

If A has an extended {(gamma/chi) density function of (25), (31) becomes

£ ' exp[— (aA? + bA)]
,P(X,:k)f (1) exp (— A Xl (a )] dA
: k! C(n, a, b)

fCn+k a b+
= (34)
k! Cn. a. b)

where (10) has been used. An explicit expression can be obtained if substitutions are
made for C(n+ k, a, b+ 1y and C(n, a, b) from (23). Equation (33) represents com-
pound (gamma/chi)-Poisson process.

4. Waiting time distributions for earthquakes

4.1 General theory

Let T be the waiting time for the next earthquake, and let 1, be a specific value which
the random variable T, takes. Then

Prob (Ti < #) = Prob. (one or more earthquakes occur during time 1)

qu

PX, =k =1- PX, = ,0)' (35)

A 1

Let T}, be the waiting time for the pth earthquake, and let 1, be a specific value the
random variable T, takes.
Then

Prob (T, < 1) = Prob (p or more earthquakes occur during time 7,)
w P—1
=X PX, =k=1—3% PX, =k. - (36)
k=p r k=0 r |
Differentiating (35) with respect to 1, the density function for T is obtained as
(Massey 1971):
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pTl(h) = an (X, = 0). (37

Similarly, differentiating (36) with respect to #,, the density function for 7, is obtained
as

fidal

- — 2 d - —
pTP(I,,) =5 -L:“—I, P(X, =K. p=L2. (38)

of which (37) is a particular case.

1.2 Poisson process model
Substituting for P(X, = 0) in (37) from (30). we get (Massey 1971)
pﬂ(n) = Aexp(— Ar)ulin). (39)

which is a negative exponential density function. 7, can also be considered
‘he inter arrival time of the earthquakes. Thus. the interarrival times for the Poisson
arocess are negative — exponentially distributed.

Substituting for P(X, = k) in (38) from (30). we get. after mundane adjustments

p.p-l

. = exp(— M) u(ry). (40)

p, () = E’—T

From (3) it can be seen that the waiting time for the pth earthquake is y-distributed if
the earthquakes follow a Poisson process model.

4.3 Polva process model
Substituting for A(X, = k) in (38) from (32) and simplifying. we get

et D)o (vt p—Dd 87!
(@ + 1) (p— I

‘Dr.(”') = u(tp). (41)

which is the density function for waiting time for the pth earthquake under the Polya
process model for earthquakes. This density function can also be obtained by
compounding the gamma density function of (40) for 7, by assuming a gamma density
function of (3) for A (Sharma 1982). Hence, the density function of (41) can be named
compound gamma-gamma. This also proves that (a) compoundinga Poisson process
by gamma-density function for A to get the Polya process and then to obtain the
waiting time density functions under Polya process model and (b) obtaining the
waiting time density functions under Poisson process model and then compounding
them by a gamma density function for A. both give the same results. This is certainly
reassuring and similar results would be expected for other compound processes.

4.4 Compound chi- Poisson process mocdel

Substituting for P(X, = k) in (37) from (24), obtaining a relation (Sharma 1982)
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HP(x) = xHu(x) = Ha1(¥), (42)
for Hermite polynomials and using it together with

A(x) = Hyor(x) = xHilx), (43)
which is obtained from (19) and simplifying, we get (Sharma 1982)

n—2

Z [(" l)r(n; I) UHn‘r—2(0'1l)ﬁr+l(Ut1)

Pﬂ(fl) = - 2N/2F(n/2) =

-1 _
- (— l)r (n 2 )UHn—r-! (Ufl) H (0'11)

+ (= 1Y'oHu-1(ot) + (= 1) o(m/2)" erfc(an/\/i)ﬁnwn)exp(o’r%m]

(44)

As the same result can be obtained by compounding the negative exponential density
function of (39) under the Poisson process model by assuming A to be chi-distribvted
according to (8), the density function of (44) can be named compound chi-negative
exponential.

Substituting for P(x, = k) in (38) from (24) we get

1k d I
) = — {———C thk—1,— .1
Prlt) 2"’21*(;1/2),,; k! di, n 20° 2
k-1 1
+ - l)’C(n-I-k— I, '2_(;2_ y tp)]. (45)

For reasons alluded to above this density function can be named compound chi-
gamma density function. Using (23) an explicit expression for it can be obtained.

4.5 Compound (gamma/chi)-Poisson process model

Substituting for P(X, = k)in (37) from (34) and using (23), (42) and (43) to simplify,
we get (Sharma 1982)

n-1
prn) = —[ ) {(-l)’ (f) Hu-r-1[b + 11/ 2a)"™] Hier [b+ 1/ (20)]
1 _
a)” - -1y (7) G Bl ¥ t/(20)) H, [b+1n/(20)"]
a

1
(2a)"

+ (— 1y H.[b+1/Qa)"? 1+

o s e e
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(= 1Y (m/2) P erde (b+n/2/a) Hyer [b+1/(20)'"]

exp(b+ 11)2/40}] /

n—1
[ T (7) (= 1) Hoerei[b/2) P BB/ 20)P] + (= 1 (]2
r=0

|
(2a)'?

erfe (b/2/a) Fr [6/20)"™] exp (t*/4a)]. )

For reasons alluded to above this density function can be named compound
(gamma/chi)-negative exponential density function.
Substituting for P(X, = k) in (38) from (34), we get

1 Phe 4 d '
)= - ——— {— — Cln+k a b+
Pyt cmab) =l Kk di ’
!
— ¢ +k.a,b+z} (47
(k — l)! (n p) )

which can be named compound (gamma/chi)-gamma density function for which
explicit expression can be obtained by using (23).

5. Estimation of the parameters of various distributions
5.1 Poisson distribution
The moments of the Poisson distribution of (1) are (Johnson and Kotz 1969)

E(x) =\, EGH =N+ A\,
E6d) = A+ 3+ A Ex) = A+ A+ 6\ + A (48)

If expression for any population moment is equated with the corresponding sample
moment, estimate A for A can be obtained. Thus

N .
Y x. (49)

. |
A =—
N =1

could be the simplest estimate of X where N is the number of samples. As the second
and third central moments of the Poisson distribution are also equal to A, other
estimators for A can be obtained.

5.2 Negative binomial distribution
The moments of the negative binomial distribution of (5) are (Fisz 1963):

mean = m = vp/q,

variance = p2 = (v/qp)(l + %) (50)
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Using (6), we can get

a = [(w/m)— D', v=ma (51
Therefore,

a = [(afm) = 1], v = ma, (52)

can be taken as the estimates of a and v, where ﬁz and m; are sample variance and
sample mean respectively. If v is assigned some value and only a is considered a
parameter, we get

a=vim. ‘ (53)

5.3 Compound chi-Poisson and (gamma/ chi)-Poisson distributions

For these distributions given by (24) and (29) respectively, expressions for the first two
and three moments respectively can be written and equated with the corresponding
sample moments. However, the resulting equations cannot be analytically solved.
Therefore the parameters (a) n and o (b) n, aand b respectively of the two distributions
have to be evaluated by computing these distributions and their moments for various
parameter values till the population moments match the sample moments.

Here also the value of n can be fixed and (a) o and (b) a and b respectively can be
obtained by matching the first and first two moments.

54 Gamma distribution

The mth moment for the gamma density function for the waiting time for the pth
earthquake under Poisson process model for earthquake occurrences of (40) can be
shown to be (Sharma 1982):

0

AP
B = ——f:,?*f’"exp(— Aip)dy
(p= 1)}

___p(p-l-l)... (pt+tm=—1

C (54)
Therefore, by putting m = 1, we can get
A = plE(1), ‘ (55)
where E (15) is the sample mean of 1,. We can, of course, get estimates as
o (plpt 1) .. (ptm— Ipim
A= { X - }, (56)
E(tp)

where E (1) is the mth sample moment of 7.
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5.5 Compound gamma-gamma distribution

The mth moment for the compound gamma-gamma density function of (41) for the
waiting time for the pth earthquake under Polya process model for earthquake
occurrences can be shown to be (Sharma 1982):

v+ 1) .. (v p=Da " rmAp-1 .
p E ( f] )(___ a)mﬂ"l-l

E(p) =
{ir) (p — =0

*

fr-""”’d_v. (57)

0

In particular, by putting p = [.2.3and m = 1. 2, 3in (57). we get

a
E(n) = —-—1" v >, (58)
v .
) 2’
Eny= ————————.7V > 2. (59)
(v—1 (v—2)
E(r) ta’ >3 (60)
E(n) = v >3
T = (=2 (v=3)
2a
E(n) = U2 (61)
(v—1)
E(R) ba > 2 (62)
N(B) = —————— ¥ )
(=1 (r—2)
. 24q’
E(rn) = v >3, (63)
(v=1) (v—2) (v—13)
E(r) = 3al(v — . v> 1 (64)
E() Ll > 2 @5)
B = ————— v .
‘ (v=1 (v—2)
; 604"
E(r) = v >3 (66)

(v—=D(—=2)(v—3

It is clear from (57) that the mth moment for 7, exists only if v > m. That is, all the |
moments do not exist for the density functions of (41). Solving the pairs of equations
(58) and (59). (61) and (62) and (64) and (65). respectively, we get

E(t) E (1) o E@) — EXn)
x % .. V= — s
E() — 2EXn) E() — 2E*(n)

(67)

A
a =
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EA‘(lz) EA(tg) R 4E 8 - 3L‘: (2) (68)
—% —% sy V = x
2E(B) — 3EXn) 2E (1) — 3E (1)

i

S o
and s = E (1) E (55) - 3E(5) — 2E (1) )

3E(d) — 4EXn) 3E(R) — 4E (1)

>

as estimates for parameters in the density functions pr(t1), pr(t2) and pr(ts) res-
pectively of (41). If the conditions on vin (58) to (66) are not satisfied, the estimates of a
and v may not be valid. These estimates may or may not be consistent with (60), (63)
and (66) respectively.

5.6 Compound chi-gamma and (gamma/chi)-gamma distributions

The moments of the compound chi-gamma and (gamma/chi)-gamma density func-
tions of (45) and (47) for the waiting time for the pth earthquake under the compound
chi-Poisson and (gamma-chi)-Poisson process models for earthquake occurrences can
in principle be obtained, and equated with the corresponding sample moments to
obtain the estimates of the parameters (a) n and o and (b) n, a and b, respectively.
However, the expression for prltp) themselves are complicated and, therefore, this
procedure is clearly impractical. The only hope is to tabulate the density functions and
their moments on a computer for various values of the parameters till the sample
moments match the computed population moments.

6. Hypothesis testing
6.1 The regions and data

The data of earthquakes in the Hindukush region are taken from the catalogue of
epicentral locations of earthquakes published by the Indian Meteorological Depart-
ment. For computing the number of earthquakes per unit time, 2395 earthquakes of
magnitude greater than 3.5, for the period from January 1963 to December 1974,
having focal depth less than 250 km in anarea bounded by 62 to 76° E longitude and 30
to 39° N latitude are used. In tests for waiting time density functions, 1935 earthquakes
were considered from a region restricted to 69 to 72°F longitude and 35 to 38°N
latitude during the period from January 1970 to December 1976,

Another set of data of microearthquakes from the North-Eastern region of India is
also used. Thesc data were collected by the University of Roorkee and the Geological
Survey of India under a joint project, for a period of 5.5 months from May 1979 to
October 1979. There were seismic stations at Raliang (25.47°N, 92.43°F), Borjori
(26.40°N. 92.94°E), Burnihat (26.06°N, 91.89°E) and Shillong (25.57°N, 91.88°F).
The Shillong station was run by the Indian Meteorological Department. Magnitudes
were between 2.2 to 5.1.Earthquake sources having distances more than about
300km, i.e. those with S-P times greater than 40 seconds, were excluded. 235 events
were used for the analysis,

6.2 Choice of a test
The likelihood ratio test was used. That is, if Py(x)and Po(x) were probabilities under

the alternative and the null hypotheses, the alternative hypothesis was accepted if
(Whalen 1971)
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Pi(x) >
Pux) (70)

Similarly. for the continuous random variable /,, the alternative hypothesis was
accepted if (Whalen 1971)

P ( t,)) I
polty) an

where pi(1;) and po(t,) are the density functions under the alternative and the null
hypotheses.

Under multiple observations, the observations could be considered to be indepen-
dent (though not always a correct assumption) and the alternative hypothesis was
accepted if (Whalen 1971)

P Y pili
E)N SLUUDNSS (72)
=1 P()(x,) =1 Pn(lp:)

where x, is the ith sample for number of earthquakes per unit time or f,is the ith sample
for the waiting time for the pth earthquake, and N is the number of samples.

Alternatively. whenever the inequality (70) or (71) was satisfied for a particular
sample. it was considered as one vote for an alternative hypothesis, and an alternative
hypothesis was accepted if it collected a majority of votes. Thus, in the two decision
rules. the integration of samples can be said to be before the decision and after the
decision, respectively.

The tests discussed above assume that the parameters (A, 1. 0, a or p) are known.
However. if the parameters are not known and have to be regarded as random
variables. the hypotheses are called composite. One of the strategies in sucha case isto
obtain estimates of the unknown parameters and use these estimates as the operative
values of the parameters to obtain the likelihood ratio (Whalen 1971). Normally,
maximum likelihood estimates are used, but here we have used moment-matching
estimates discussed in §5.

6.3 Tests for number of earthquakes

6.3a  Poisson versus negative binomial distribution: For number of earthquakes per
week occurring in Hindukush region as random variable, we have

Sample mean = 3.281. second sample moment = 17.287.
third sample moment = [13.64, sample variance = 6.523 (73)
Therefore. from (49) and (52)
N = 3281 &= 1012, =332 (74)

Using (72). (1) (5) and (6). the negative binomial distribution is to be accepted if
(Sharma 1982) _




276 Naveen, P S Moharir and V K Gaur

— NA+ NIn[(® = D] ~Nvng +
\ N \ R
+ 3 kin(A/p)= (v + ki~ NS0 (75)

The value of the left side in (75) comes out to be — 1768.89. Thus, the negative
binomial distribution is to be accepted.
Taking the number of earthquakes per fortnight as a random variable. we get

Sample mean = 7.011: second sample moment = 70.038;
sample variance = 20.419 (76)

Therefore. from (49) and (52)
A =701, 4=0527 v=3710 (77)

and the left side of (75) turns out to be — 6513 suggesting again that the negative
binomial distribution can be accepted.

Taking the number of micro-earthquakes per day in the NE India as a random
variable. we get

Sample mean = 9.198: second sample moment = 110.51:

sample variance = 25.899 (78)
so that from (49) and (52) we get
A= 9.198. =055, v = 5135 (79)

and the left side of (75) turns out to be — 11841.8 which once again suggests that the
negative binomial distribution can be accepted.

Using the number of earthquakes per fortnight in the Hindukush region asa random
variable and the voting scheme for decision-making. the votes in favour of the Poisson
and negative binomial distributions are 153 and 187 respectively. Thus, the negative
binomial distribution is favoured. Using the number of earthquakes per week in
Hindukush region as a random variable, the votes in favour of the Poisson and
negative binomial distributions are 448 and 282 respectively! In this case the Poisson
distribution is favoured.

6.3b  Poisson versus compound chi-Poisson distribution: Taking the number of
earthquakes per week in the Hindukush region asa random variable, the parameters of
the compound chi-Poisson distribution were estimated to be

n=2% o= 265 (80)
With these parameters the population moments are
First moment = 3.316 and second moment = 17.121. (81)

These values are reasonably close to the sample moments of (73),
The votes in favour of the Poisson and compound chi-Poisson distributions were
404 and 326 respectively. thereby favouring the Poisson distribution.
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6.3c

Poisson versus compound (gammal/chi)-Poisson distribution: Taking the
number of earthquakes per week in the Hindukush region as a random variable, the

parameters of the compound (gamma/chi)-Poisson distribution were estimated as

h=13 a=01 b=00l

(82)
With these parameters the population moments are

First moment = 3.566,

second moment = 17.593 and
third moment = 99,245

(83)
These values are reasonably close to the sample moments of (73).

The votes in favour of the Poisson and compound (gamma/chi)-Poisson distribu-
tions were 432 and 298 respectively, thereby favouring the Poisson distribution.

6.4 Tests for waiting time distributions

6.4a

Gamma-versus compound gamma-gamma distribution: From (71), (40) and
(41), the decision rule is to prefer compound gamma-gamma density function over the
gamma density function if

g = A, — G+p)lna+4) == vind+plna
p—i
— Y In(v+j)= A, (84)
=0
where 1, is the waiting time for the pth earthquake, and the test is resolved by
comparing a statistic g(1,) against the threshold .\,
With inter-arrival time 7; as the random variable and using (55) and (67). we get
A= 6983 X 10°. a4 = 1.411 X 10" and v

= 10.851
With waiting time f: as the random variable and using (55) and (68). we get .

A= 6979 X 10°. 4

(85)

= 1.996 X10° and v = 14.930 (86)
With waiting time /1 as the random variable and using (55) and (69). we get

A = 6978 X10°, & = 2.555 X 10° and v = 18.830. (87)
Using (85) to (87) for p = 1, 2, 3 and (84), the thresholds A, turn out to be

Al = — 167.896, A, = — 245808 and A; = — 322.392. (88)
The data used are from the Hindukush region and the time is measured in seconds.
The votes in favour of gamma and compound gamma-gamma density functions
were (2) 864 and 670, (b) 906 and 627, (c) 870 and 662 respectively for waiting times 1,
1, and 1. thus the Poisson process model is preferred to Polya process model.
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6:4b  Gamma versus compound chi-gamma and (gamma/chi)-gimma distributions

The expressions for compound chi-gamma and (gamma/chi)-gamma density func-
tions are complicated and these density functions have not been computed yet.
Therefore, they have not been tested against the gamma distribution yet.

7. Discussion
7.1 Analysis of results

(a) While comparing various stochastic process models for earthquake occurrences
the decision of hypothesis test may depend on the definition of the random variable
chosen for the test. If the test is based on the number of earthquakes in a fortnight the
negative binomial distribution is favoured. The Poisson distribution is accepted if the
unit of time is a week (for the data from Hindukush region using voting scheme).

(b) The decision to accept or to reject a particular hypothesis may depend on how
the test is set up. When the random variable was the number of earthquakes per week,
the Poisson distribution was accepted on the basis of a voting scheme whereas the
negative binomial distribution was preferred when various samples were treated as
independent samples.

(c) When stochastic process models for earthquake occurrences are being tested,
different results may be obtained on the basis of different implications of the stochastic
process models. If the number of earthquakes per unit time is used for the hypothesis
test. the Polya process model may be accepted. but on the basis of waiting times for the
first, second. third, etc. earthquakes Poisson process model may be preferred.

(d) There are situations wherein the Poisson process model is not the best and the
Polya process model seems superior. But. also in situations where the Poisson process
modelis preferred the difference in the number of votes gathered by the two hypotheses
under comparison is not very large. That is, the alternatives to the Poisson process
model proposed here are not very poor. In fact. if instead of deciding the issue by
simple majority and takinga hard decision. if the soft decision were entertained, that s,
if a particular hypothesis was to be accepted only if it got (50 + A)% votes and if the
decision was to be deferred if the votes gathered by the winning hypothesis were less
than (50 + ). it is conceivable that the decisions in this paper would have been
deferred until larger data sets are available for A = [2%.

7.2 Limitarions of the analysis

(a) Itis known that the mean. variance and the third central moment are all equal to
for the Poisson distribution. It can be seen that this equality does not hold for the data
from (73). (76) and (78). Similarly. values of ¢ and v estimated from the different
waiting time statistics are significantly different under Polya process model, as can be
seen from (85) (R7). This might be interpreted to mean that neither the Poisson nor the
Polva process model is particularly good for the data considered here. Nevertheless it
can also be used as an argument that the parameters of a stochastic process model
should not be estimated by matching just the requisite number of moments for a
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chosen random variable. Butan attempt may be made to match more than the requisite
number of moments for a moderate number of random variables simultaneously under
a suitable matching criterion. Alternatively, estimators such as maximum likelihood
or maximum entropy estimators may be sought. The results of the hypothesis test may
depend on how the parameters are estimated. |
(b) After the parameters are estimated by a method. the estimate of the density
function or the probability is not obtained by substituting the estimate instead of
parameter. That is,if A is obtained from (49), X is @ maximum likelihood estimator of A
(Johnson and Kotz 1969), but then A*exp(—A)/k! is not h maximum likelihood
estimator of P(x = k). In fact, the minimum variance unbiased estimator of P(x = k)
is shown to be (Barton 1961 and Glasser 1962)

o= (D

A similar situation would arise for other distributions. Asanexample, let P(x = k;n,
a, b) be a distribution of (29) where parameters n, a, b are explicitly shown. Once the
estimates », a, b are obtained, for likelihood ratio test we have used

P(x =k:n a b) = P(x =k, n, a, l;) (90)
as an estimate of P(x = k: n, a, b). That this is erroneous can be easily shown by
expanding P(x = k: n, a, b) as a function of n, a, b as Taylor’s series around n, 4. p.

Then

P(x = k:n,a,b) = P(x = ki n. a. fA;) +

_P(x = kinab) 9P(x = kin.a.h)
(n — n) + (a — a)
on da
. OP(x = k:n.a.h) (n — hY @P(x = kih.a.b)
+ (b — b +
9 2 on
(@ — af &P(x = kin.a.b) h — b} PP(x = kih.a.b)
+ - :
2 da 2 b’

+ (n—n)a— a
on da

X . 8Py = kin.ab)
+n—mb =5
on ab

. . PP = k:/?.fl.i)) 91)
+ (a — a) (b — b)
da ob
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whereinasn # f1, @ # 4, b # b, the terms-other than the first on the right side, do
not vanish. Taking expectation with respect to the joint density function of n, a, b, (91)
becomes

Plx = kin, a b) = E[P(x = ki f.a.b)]

[

var (n) 8*P(x = k; n, ,I;) + var (2) 8 P(x = k: n.a.b)
2 an’ 2 od’

var (b) 8*P(x = ki h.a.h) . PP = ki hab)
- + covar (n,a)
2 ab” on da

N . PP(x = ki n.a.b) . b *P(x = k: n.a.b)
; . covar (a,
covar (n.h) on ab da ob

(92)

assuming that the series in (92) converges, that higher order terms can be neglected,
that 1, a, b are unbiased estimators of m, a, b and that the derivatives of P(x = k;n, a, b)
are independent of (¢ — a) (a — a) (b — b), etc. Thus, in general

E[P(x = k: h.a.b)] # P(x = kin.a,b) (93)

thatis P(x = /\':;1,5.;)) is not an unbiased estimator of P(x = k:n, a, b) in whatever
way 1. a, b are obtained. To estimate an error, low order moments of the estimators of
parameters must be estimated. There are many methods of estimating parameters. For
example, four methods of estimating parameters of the negative binomial distribution
are described (Johnson and Kotz 1969). Such an analysis should be done for all the
methods. As this exercise has not been conducted in this paper, the results need not be
reliable.

(c) Compounding has been used here to generate alternative hypotheses for earth-
guake occurrences in a heuristic way. Anattempt has not been made to attach physical
meaning to the parameters of the compounding distribution or to the compounding
distribution as a whole. Thus the work reported here needs further investigation.

(d) The alternative hypothesesgenerated here relate only to earthquake occurrences
and do not take into account the location of the epicentres. the magnitudes of the
earthquakes, etc. A more comprehensive and utilitarian statistical mode! for earth-
guakes must include these aspects.

(¢) The computed probabilities for the compound chi-Poisson and (gamma/ chi)-
Poisson distributions violated the necessary constraint that the probabilites must
always be positive. for large values of k. Thus, the formulae for these distributions are
not numerically appropriate. Numerically appropriate formulae for them should be
obtained. These may be in terms of the recurrence relations between P(x = k), P(x =

k = D..... Plx = k — m). The choice of time period of one week was dictated by
this numerical difficulty.
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