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Estimation of the waiting time distributions of earthquakes
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Abstract. Whether the earthquake occurrences follow a Poisson process model is a widely
debated issue. The Poisson process model has great conceptual appeal and those who rejected
it under pressure of empirical evidence have tried to restore it by trying to identify main events
and suppressing foreshocks and aftershocks. The approach here is to estimate the density
functions for the waiting times of the future earthquakes. For this purpose. the notion of
Gram-Charlier series which is a standard methad for the estimation of density functions has
been extended based on the orthogonality properties of certain polynamials such as Laguerre
and Legendre. It is argued that it is best to estimate density functions in the context of a
particular null hypothesis. Using the results of estimation a simple test has been designed to

establish that earthquakes do not occur as independent events. thus violating one of the

postulates of a Poisson process model. Both methodological and utilitarian aspects are dealt
with.

Keywords. Gram-Charlier series: earthquakes; Hermite polynomials: Laguerre polvno-
mials: Poisson process: Polya process.

1. Introduction

The question whether the carthquake occurrences follow a Poisson process model has
been widely addressed (Benioff 1951: Aki 1956: Shalanger 1960: Knopoff 1964
Lomnitz 1966; Ferraes 1967: Vere Jones 1970: Schlien and Toksoz 1970: Utsu 1972:
Udias and Rice 1975). Under the Poisson process model. the number of earthquakes
x per unit time follows a Poisson distribution
)\A
P(x = k) = m e A A0 k=012 N
.
where \ is the rate of the process and the inter-arrival time ¢, for earthquakes has a
density function

prn) = Nexp(— Aouln) 2

where u(1) is a unit step function. Most frequently (1) and (2) have been fitted to the
empirical datd in the form of histograms using least squares criterion and bad fit taken

*To whom all correspondence should be made.
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asan indication that the Poisson process model is inappropriate. Rarely other density
functions such as

}\p,p-l

py(n) = cexp(—=Anu(n). A > 0. p positive integer 3)

of which (2) is a special case with p = 1, have been fitted in the least squares sense
(Udias and Rice 1975) and ;» = 2 was thought to give better fit than p = 1, though
systematic deviation from the gamma density function of (3) withp = 2hasalso been
reported. '

The approach followed in this paper is different. No particular density functions are
fitted to the empirical inter-arrival times or waiting times but the density functions are
estimated using Gram-Charlier type techniques.

2. Gram-Charlier series

If y is a random variable which has zero mean and unit variance (this can be achieved
by standardization), its density function p()') can be written as (Whalen 1971)

P = @)+ T ae™ (). —o <y < oo, (4)
n=1
where
I
o()) = N exp(— 1°/2), (5)

is a standard normal density function. ¢"™(y) is its nth derivative given as
@) = (= 1) o(r) Hi()), (6)

.. where H,(r)is a Hermite polynomial of degree n obtainable by recursive relation

Hyi () = yH((y) — nHa-1(p), Ho(») = 1, Hi(y) = 1. 0]
The coefficient a, in the Gram-Charlier expansion is given as
(- f
ay = " f p(Y) Ha(¥)dy, (8)

wherein the biorthogonality relation

_{Hzn(,")dm(,")d." = (= ])"”!6mn nom= 0.1... 9)

is used, where 8, is the Kronecker delta. Substituting for H,(y) in (8) from (7) we get

@ = = /3L ae = (e — 3)/4L
as = = (us — 10p3)/5% a6 = (us — 15ua + 30)/6!;
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a = — (w7 — 2lps + 105p3)/7!;

ax = (us — 28us + 210p, — 315)/8!;

e = — (uo — 36p7 + 378us — 1260u:)’9! (10)

where y; are standard central moments. These results are well-known (Whalen 1971)
and are summarized here just because they are used in this paper as a point of
departure. As standard central moments can be estimated from the empirical data. the
coefficients a, can be estimated from (10) and therefore, the density function p(y) can
be estimated from (4).

For reasons documented elsewhere (Kenney and Keeping 1963: Fry 1965). for
truncating, terms in (4) must be grouped as0,(3). (4. 6).(5,7.9).(8. 10, 12).(11.13.15).
(14. 16, 18), every group of terms should be included or excluded collectively. The
Gram-Charlier series thus truncated is called Edgeworth series.

Using microearthquake data from North-East India, (see §5) it . ..~ found that

ay = — 0.3137;  ay = 0.1437.  as = 0.01965;
as = 0.01168; a7 = — 0.005139;: ay = — 0.001065 (1n

Using data from the Hindukush region (see §5) it was found that

ay = — 0.4567. ay = 0.5661; as = — 0.7936:

1.1851: a7 = — 1.5682; ay = — 1.9469 (12)

aes

" Thus particularly for the large earthquakes the coefficients a, do not decrease
rapidly enough as n sweeps the Edgeworth groups. With the zeroth and the third term
included the density function has a mode away from the origin. Withn = 0,3.4and 6
terms included, the density function gives nonphysical values around origin. Withn =
0.3.4.6.5.7and 9 terms included the density function is monotonically decreasing.
Thus the behaviour is not yet stable indicating that n = (8. 10, 12), (11, 13, 15), terms
must also be added. This is not very simple. Because in (10) unbiased estimates of the
moments must be substituted and obtaining unbiased estimators of central moments
using small sample theory (Kenney and Keeping 1963) is a fairly tedious task.
Moreover, higher order central moments become less and less reliable when estimated
from finite samples. Thus, it is almost certain that the Gram-Charlier series, due to its
poor convergence, is not a proper method to estimate density functions in our context.

However, as Gram-Charlier series may be useful in other contexts and as unbiased
estimators for central moments are not readily available beyond the fourth moment,
they are listed here for easy reference

I N
A 2
2 - X — .
I N — 1 ,');'( ny)
N N
fis = Y (xi — m),

(N=D(N =2 i=
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NZ N
L= (x, —n )4:
HZ N =)V - 3N +3) ,;. '
) N3 N
e = 3 Z = mY,

(N— D (N=2(N — 2N+ 2 i=

N
e = Y(\’.— m)’,

(N = D(N = 5N + 10N — 10N + 5) i)

S N
N

h = - - Y o=,

(N = ) (N =2 (N — 4N' + TN — 6N + 3) (5|

N 5
ﬁf": 5 Z "‘ﬂ]

(N=1) (N = TN+ 21N = 35N + 35N = 2IN+7) (=

17 /
N N

Z (xi — m),

T N= D) (N=2) (N — 6N+ 16N = 24N+ 22N — 12N +4) 1=

'§>

(13)

Small sample theory (Kenney and Keeping [963) is used to derive (13), the terms of
the order of A™" are neglected. where Nis the number of samples, vy, ya...... xa and m
is the sample mean. and the details are reported elsewhere (Malasi 1981).

3. Gram-Charlier series of other types
3.1 The motivation

In Gram-Charlier series of (4). the first term is the normal density function and the
other terms measure deviation from it. Thus it is best suited il normal density function
is the null hypothesis or prototype. In the context of estimating density function for the
inter-arrival times for earthquakes the density function according to the null hypothe-
sis of Poisson process model for earthquake occurrences is a negative exponential
density function of (2) (Massey 1971: Udias and Rice 1975). It would therefore be
desirable to have a seriesexpansion for a density function in which the leading termis a
negative exponential density function so that the remaining terms directly measure
deviation from the null hypothesis.

Apart from the derivation using characteristic function, cumulants. etc. (Whalen
1971) the end result of the Gram-Charlier series can be interpreted as a biorthogonal
expansion exploiting the biorthogonality relation of (9) between the derivatives ¢""(y)
of the normal density function'and the Hermite polynomials. The waiting times for
future earthquakes can take only non-negative values. whereas the Gram-Charlier

P e s
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series of (4) was biorthogonal expansion over the range (— 0. ). It would be more
appropriate to use orthogonality or biorthogonality properties of some suitably
chosen functions over the range (0,00).

3.2 Laguerre tvpe Gram-C harlier series

L,(1) defined as (Krishnamurthy and Sen 1976)
n 1 d" n -
L) = (— e G—;(re). 01 < oo (14)
!
and satisfying the recurrence relation

L =@n+ 1 — 0 L) — 0 Lo (1)
Lin=1 Ln=1-1 (15)

is called Laguerre polynomial of order n. Let
V(1) = Line". . (16)

Then we have a biorthogonality property

(— l)n <
3 J‘Lm(’) \I’u(f) dt = Sum. n.m= 0, 1. 2. ... “7)
(ny ]

using which any square integrable function /(1) defined over the range [0,°°] can be
expressed as

o0

/(f) = ”g() an' W, (1), 0 < < oo (18)
where
3 I f . |
a =1 —/3 f,/(t)L,.(r) dr (19)
(n!)’ 0

Using (15), it can be shown that

=1 a=((1—n;x o= (2 — 4v + ) (20
@ o= (6 — 180 + 92 — w)/(3D%

gs = (24 — 96w + T2 — 16v; + p)/ (4%

a5 = (120 — 600y, + 600v: — 200p3 + 25vs — )/ (5D%

4 = (720 — 4320w + 54002 — 2400p; + 450v, — 36vs
— w)/(6!)": (20)
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where vy, is the mth moment of the random variable ¢ of which 7(r) is the density
function.

In addition to the two motivating factors discussed in § 3.1, the Laguerre type
Gram-Charlier series has one more advantage. The coefficients of the Gram-Charlier
series of (4) depend on the central moments as in (10), so that unbiased estimators for
them have to be obtained. On the other hand, the coefficients of the Laguerre type
Gram-Charlier series of (18) depend only on the moments of the random variable as in
(20) and the sample moments do not have a bias in this case.

The values of the coefficients in the Laguerre type Gram-Charlier series for the
inter-arrival times in the Hindukush area were found to be

a=1: a = 01301 X 107 a = 0.5630 X 107";
o == 0.1003 X 107", 4y = 0.3604 X 107:
as = 0.7429 X 10 g = — 0.8283 X 107, (20

The density functions estimated by truncating the series after third, fourth, fifth and
sixth terms are not very different, thus indicating good convergence of the series. The
inter-arrival time data was scaled to have unit mean before fitting the density function.

3.3 Legendre type Gram-Charlier series

The polynomials obtained by the recurrence relation
(n + DPosi(x) = x(2n + 1) Px) — nPr-(x);
Pux) =1, Pix) = x, (22)

are called Legendre polynomials and they have a orthogonality property over the
range [— 1. 1] that

1
2
m W(x)dx = ———— 8.
_j]’P (x) Pu(x) dx P é (23)

These polynomials cannot be applied directly to our present context, as we require

functions orthogonal or biorthogonal over [0.20). But this could be achieved by a
suitable change of variable (Lee 1960). First let

x =2 — 1 (24)
so that

|
2
2fP,,,(2y ~ NP2y — Ndy = ——— 6,
: Y 2m + 1 (29

Thus functions P(2y — 1) as functions of p are orthogonal over the range [0, 1].
Subsequently, let

y = exp(— pl) (26)
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so that
r _ |
e Pu(2e™ — 1) Pi(2e™ — 1)dr = B
5[ P I @
so that the functions P.(2e” — 1)as functions of  are orthogonal in the range [0. )
with pexp(— pr) as the weight function. Therefore, any square integrable function
f(1) can be expanded as
f(f) = E( ﬂn‘I’n(Pf)- 0=:< 2, (28)
n=0
where
Yi(pt) = Pu2exp(— pt) — 1)exp (— pi), (29)
and
&= (n + Dp [ £(NPa(26™ — 1) dr, (30)
0
on the basis of (27). From (22) and (29) we have
Yo(pr) = exp(— pi),
Vi(pt) = — exp(— pr) + 2exp(— 2pm).
Yapt) = exp(— pt) — 6exp(— 2p1) + 6exp(— 3pr).
Vipn) = — exp(— p) + 12exp(— 2p1) — 30exp(— pn
+ 20exp (= 4dp1). ete. (31)
If £() is a density function, the mth moment is
E(™y =) a};ft"’ P, (2™ — 1)exp(— pr)dr,
n={ 0
= Z anf;l.m(p)- (32)
0
where
Jum(p) = fr’" P.(2¢”" — 1)exp(— prdt. (33)
Q

Using terms upto n = 4, (22), (33) and replacing mth moment E(:"), by the mth
sample moment E (/") we get

2E (1) : + ' ! + !
)y = —_—— — gy — — a; —
P Ty TR T e Ty
vy L 84 W

= —_— —_—y — — -— ay,
PEW) =a=—matra = et @

e o e g n me S
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7 151 937 30689
PR

= - + + a4,

PEE) =@ e e T e T 2000

' Y 63 44597 2743363 303179

= - - a a;,

PREW) = a =t T s @ ossosa T 345600 7 (34)

where use has been made of

; m!
[t'"exp(— gpt)dt = ———— (35)
ey 0 ( p)
These equations yield a polynomial in p
Sp + Spt+ Spt 4 Syt + Spt + Sipt =0 (36)
, Because p = 0 is not an acceptable choice, we have
; S(»IJ;‘ + SiPJ + SJ,[J3 + Sx[)2 + Sp + S =0 (37
i where
| ' A Ao
; S = 0906854 £ (1), §» = — 0.857505 E (r°).
| So= 043T042F 00 S = — 49862859 £ (1):
! /
1 So = 37042561 £(£), and So = — 0.9948547 E (1), (38)

" Solving (37) and using a real positive root for p (34) gives a set of five equations
(excluding the last) which are linear simultaneous equations in constants ao. ay. a1, a1,
ay to be evaluated. which isastandard task. Instead or truncating the expansion in (28)
after n = 4, terms upto n = N could be retained. Then (34) will have N + 2
equations. The polynomial in (36) will become

SvopttiE Svapt i+ sl
Using the real positive root of this for p. (34). excluding the last equation will have
N+ 1 simultancous linear equations in A + | constants ao. a1..... av. Then (28)

gives an expansion for the density function,

Using data for interarrival times for earthquakes in Hindukush, we obtain

p = 012424 X 10" g = — 0.43302 X 10"
a =~ 013783 X 10 a; = — 0.22956 X 10°:
a; = = 022951 X 10 4 = — 0.96675 X 10", (39)

The density function given by these coefficients after substitution in (28) was

nonphysical. as suggested by the negative value of ay and large values of other
coefficients.

;é
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3.4 Fast convergent expansions

The idea to be discussed has already been used in § 3.3 but here it is put in a mo
general context. e
If functions ¢,(?) are orthonormal, i.e. if

an(t)¢y§(t)df = Sum, (40)

where the superscript asterisk denotes complex conjugation, it easily follows that the
functions ¢.(Bf), where B is an arbitrary positive constant, are also orthogonal
because (40) gives )

- | »
f on(BY) o (By)dy = ? Oum. 4
0 .

Equation (40) implies that any square integrable function over [0.%¢) can be
expanded as

i = ,,i.::na" @n(1). (42)

Equation (41) implies that we can also have the expansion
f@ = ");obn%(ﬁt), B >0, (43)

where B is arbitrary. but certainly the coefficients fn will depend on the choice of 8. 1f
the expansions in (42) and (43) are not to be truncated. the choice of B is really
immaterial. But if the series in (42) and (43) are to be truncated. it would seem
advantageous to choose f judiciously so that the expansion has smallest possible
number of terms for the same mean error. Ta illustrate this point. let (1) be ¢ulai).
a # | foraparticularvalue of p. Then in (42) we will need many terms to approximate

f(1). But in (43) a single term will suffice if 8 is chosen to be a.

This problem of choosing the scale factor B will arise for truncated orthonormal
expansions over aninfinite interval (— o, %)also. This problem does not seem to have
been discussed in literature explicitly. In the Gram-Charlier expansion of (4), standar-
dization of the random variable amounts to choosing the scale factor to be the

standard deviation.
As an example of how optimum value of B could be chosen, (19) is written as

(=
(n!)*

Then instead of (18) we could have the series expansion

B f Lo BN YA = B (44)
0

10 = T abul B, ' (45)
n=0

where the same symbol is retained for the coefficients but their values would now
depend on the choice of 8. If /(r) is a density function we wou}vld have

oo

E(") = ["f(ndr,

0
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N
Y a, V(8 dr.

n=1

oy

= glau[fr"’L,.(Br)exp(— ﬁr)dt}.
0

n={
= éﬂa,, Fum(B). (46)
where (16) has been used and
fom(B) = [ ' Lu(Br)exp(— Biyat. @
0

The functions fr,(B) can be easily computed. For example, using (15)

B = [ LB exp(— B,
0

= [ (1 — Bnexp(— Brdr.

0

= — 4/p. (48)

Thus all the other values of f;, »( 8) could be calculated. Substitutihg these in (46), using
N = 4 as an example and writing (46) for m = 1,2,..., 6, we get

BEW = a0 — a.

BEW® = Aa — 2a0 + 2a»),

Bﬂ‘:‘\(l") = 6lay — 3uy + 6ay — ba3)

BE () = 2ar — 4ar + 120, — May + 24ar)

BE () = 120(@ ~ 5a1 + 200 — 60a; + 120as),

BE (1) = 120(an ~ 6ar + 30a, — 12005 + 360au). (49

In general N + 2 such equations would be obtained. Here population moments E(m
are replaced by sample moments E(/") because of the context of estimating density
function from the sample moments. Equation (48) is 6 equations in 6 unknown, On
solving these and ruling out the solution B = 0. we get

S8+ SsB+ S8+ Sip S8+ 8 =0, (49)
where
Si=—E(y 8 = SE@)2:
Sy == 0E()3Y, S0 = 10£()ar:
Ss = = SE(P)St S = E(F)/6! (50)

Solving (49) for a positive real value of Band excluding the last equation in (48), we are
left with 5 linear simultaneous equations in 5 unknowns ay, a,...,as4,and these can be
easily solved.

Once the coefficients a, and B are evaluated, (45) gives the density function. In
general (49) would be a polynomial of degree N + 1, yielding (N + 1) possible
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choices of the scale factor 8. As N increases, many different values of 8 would be
available, making the choice of Sless and less important, so that when the éxpansion is
- not truncated, any arbitrary value of 8 would do. Thisis a fortunate feature because to
find out roots of a polynomial of large degree is ap increasingly difficult task, whereas
for a small value of A, the roots are relatively easily found and the choice of 8 is also
more critical.
Using this method for the Hindukush data for inter-arrival times of earthquakes, we
get

B = 1.1328; ay = 1.2425;
ay = — 0.040787, ax = 1.14667,
ay = — 0.0095450; ay = 0.014222. (51 i

Note that the value of ap has increased in comparison with (21). The other coefficients
are still fairly small.

4. A test for independent occurrence of earthquake :

»t is desirable to check whether the assumption of the independent occurrence of :
earthquakes, which is made in the derivation of a Poisson process model (Fisz 1963) is A
valid. A simple test can be set for this purpose. The density function for the waiting !
time for the next event (i.e. the inter-arrival time) has already been estimated using
Laguerre type Gram-Charlier series in §3.2. If the earthquakes occur statistically
independently, the density function for the waiting time for the second event would be
a convolution of the density function for the waiting time for the next event with itself
(Davenport and Root 1958) because the waiting time for the second eventis the sumof
the waiting time for the next event and the waiting time for the next event again. The
density function for the waiting time for the next event is

pr() = L anLa(r)e”, (52)

n=y é

where the coefficients are given by (21). Then

6 6 3
prit) * pr(n)= {Z (/,,I.n(l)e—'} * {Z anl‘,,(/)e"; (53)

n={ n=n

where x denotes convolution, Substituting for L,(r) from (15) and using the fact that
i {l'e”} * {1} fu”e “(r = u)"e” " du,

=¢ [u (1 — )" du, ‘
! 0 |
Lo T Ymiat !
=¢ — (54) ;‘
; (n + m+ 1! !

we get

Prin) * prln) = ¢TI L1419 — 0.0842687 + 0.12952° + 0.076443 |
— 0.013856° — 0.0036101/°) (55) ;

v
e T
v

[ ——
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Equation (55) gives the density function for the waiting time for the second 'earthque‘lke
under the assumption that the earthquakes occur independently. The density function
for the waiting time for the second carthquake canalso be estimated empiricaily by the
method in §3.2. For the Hindukush data it is (Goel 1982)

pon = ¢ J027272 4 5179210 - LY6SSSS + 0.56842/'

1007600374 < 00046387 = 0.000103/"]. (56)

1t is obyvious that the two sets of coefficients in (33) and (56) do not mateh. Thus the
assumption ol the independent occurrence of carthauakes stands refuted.

Ihe density Tunction for the waiting time for the third carthquake has also been
empirically estimated for the Hindukush data using the method of §3.2and is (Goel
1982

PN = e[= 0006602 + 410569 = 3.097957 + 0.88408"
— O0UH608 + 0.0069548° — 0.00015204/" 1. (57

Even this could have been used to check the hypothesis of the independent occurrence
of earthquakes.

5. Data

The data regarding earthquakes in the Hindukush region aretaken from the catalogue
of epicentral locations of earthquakes prepared by the Indian Meteorological Depart-
ment (1MD). These catalogues are prepared by IMD by using the data from USCSS, ISC,
1858 and various otheragencies Inall, 1535 carthuuakes of magnitudes greater than 3.5,
trom January 1970 to December 1976, of focal depth less than 250kin in an area
bounded by 69° E to 72° E longitude and 35° N to 38° N latitude, are used.

Another set of data regarding micro-earthquakes from North-Eastern region of
India is also used. These data were collected by the University of Roorkee and GSI
under a joint project for a period of 5.5 months from May 1979 to October 1979. There
were stations at Raliang (25.47° N. 92.43° E). Borjori (26.40° N, 92.94° E), Burnihat
(26.06° N. 91.89° E), and Shillong (25.57° N, 91.88° E). The Shillong station was run
by the IMD. Magnitudes were between 2.2 to 5.1. Sources having distances more than
ahout 300 km. 7.e. those with S=P times areater than 40 see were excluded. In all 235
events were used for the analysis.

5.1 Conclusions

(a) A simple test for independent occurrence of earthquakes was designed. The
hypothesis that the earthquakes are independent events stands refuted.

(b) The Laguerre type Gram-Charlier series. in which the leading term is the negative
exponential density function for the interarrival times for earthquakes under the
Poisson process model for earthquakes, is the best method for the empirical
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estimation of waiting time distribution for carthquake occurrences. Some of the
reasons for this are discussed in §§ 3.1 and 3.2

(c) The scale factor 8 should be properly chosen for the fast convergence of ortho-
normal expansion over infinite and semi-infinite intervals.

{d) Though one of the assumptions of the Poisson process model for carthquakes is
invalid. the estimated density Tunction for the inter-arrival time of carthuuakes is
notvery different from the negative exponential density function as shown by the
small values of g w-. in (2D and (31 The other conseauences of the Poisson
process model. such as other waiting time distributions. mav be incorrecet.

5.2 Criticism and scope for future work

(a) Various gamma density functions of (3) have been considered as medels for the
inter-arrival time of earthquakes (Udias and Rice 1975). The approach used here could
be interpreted as a generalization of this notion because the Laguerre type Gram-
Charlier series of § 3.2 can be viewed as a linear combination of various gamma density
functions. If the gamma density function of (3) is fitted. the parameter p has been
interpreted (Udias and Rice 1975) as the reciprocal of the average cluster size. Canthis
clue be generalized and a better index of clustering defined in terms of the coefficients
of the Laguerre type Gram-Charlier series?

(b) The Laguerre type Gram-Charlier series could be interpreted as obtained by
considering a linearly independent set of functions of (3). one for every positive integer
value of p and obtaining a biorthonormal set of functions {rom them by Gram-
Schmidt procedure (Barrett 1963). Similarly. one could start with alinearly independ-
ent set of functions pexp(  pn. 2pexp(— 2pt), 3pexp(— 3pn.... and obtain a
biorthonormal set of functions from them by Gram-Schmidt procedure. This could be
considered to be the basis of Legendre-tyvpe Gram-Charlier series which was derived in
§3.3 from a different starting point. In expanding square integrable functions.
orthonormalization or biorthonofmalization of a set of linearly independent functions
is said fo be a proper step. Butin obtaining expansion for a density function. it need not
be so. For example. one could have writlen

= Au’u-l
pl)y = E oy ———= exp{— A uli). (58)
nel (n — I

directly which amounts to writing a density function p(7) as a convex combination of
gamma density functions provided

Opn = 0. Z o, = . (59)

Equation (18) is equivalent to (5R) for square integrable bipolar functions. but nothing
equivalent to (59) has been imposed therein. Asa result there isa no guarantee that (18)
will. give a function which will satisfy /(1) = 0. so that f(1) can be a valid density
function, This can be clearly seen from (21). (51), (56) and (57). Similarly. one could
have written '

pl) = i apapexp(— npt) (60)
n=i

with (59) imposed. On the other hand Legendre type Gram-Charlierseries has already
yielded a blatantly nonphysical density function as reported in §3.3. This is the
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consequence of using notions of orthonormality, biorthonormality, Gram-Schmidt
procedure, etc. applicable for square integrable functions to the so-called class D of
functions which are candidates for density functions. Suitable class D procedures
should be developed. The Gram-Charlier expansion of § 2, however, cannot be inter-
preted as a convex combination of a family of density functions. This could be viewed
as one more disadvantage of it.

{c) It has been suggested that the Laguerre type Gram-Charlier series or its class D
‘counterpart is a particularly good choice for estimating the waiting time density
functions for the future earthquakes in the context of a Poisson process model. This
point should be raised to a general level. Suppose the null hypothesis is not a Poisson
process model but a Polya process model (Fisz 1963: Sharma 1982; Sharma er a/ 1983).
Then the various waiting time density functions are

v+ D.o(vtp— 1) P
(@ + 0P (p— I

/’7;‘“) =

(>0 p=1,273.. (61)

where T, is the waiting time for the pth earthquake, and a and v are positive para-
meters. Then to use a Gram-Charlier type approach, we should obtain a set of
orthonormal functions over the interval [0, ) by Gram-Schmidt orthonormalization
procedure and use this set of functions to develop a Polya type Gram-Charlier series
for the estimation of waiting time density functions for future earthquakes. Or alterna-
tively we should write

o viv + 1)o(v+ 0 — 1) !
pln = E ay

62
n=1 (@ + )" (n—1) r=>0 (62)

with (59) imposed.

(d) The Poisson process model of earthquakes implies that the inter-arrival times
of earthquakes follow a negative exponential distribution. There are conflicting views
in the literature whether negative exponential distribution for the inter-arrival times of
earthquakes implies a Poisson process model for earthquakes (Massey 1971; Udias
and Rice 1975; Vere Jones 1970). But the correct answer to the second question must be
negative as explained below. Under the Poisson process model, the density function
for the waiting time 7;, for the pth earthquake can be shown to be (Goel 1982 Sharma
1982; Sharma es al 1983)

APy
prlp) = ———— exp(— Ap)ullp), A>0,
(p — D!
p positive integer. (63)

Itisimportant to note that (63) lists various implications of a Poisson process model. It
can also be seen that (63) cannot be derived from (2) alone. Thus a Poisson process
model implies (2), but (2) does not necessarily imply a Poisson process model, because
(63)forp = 2.3.... maystill be violated. It is, therefore, instructive to find out under
what conditions (2) implies (63). It can be shown that (Goel 1982).

pr(0) *x pr() = pr (1) (64)
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where * represents convolution. Thus convolution of the waiting time density func-
tions for the nth and mth earthquakes given by (63) gives the waiting time density
function for the (n + m)th earthquake according to (63). In particular

pr) = pq () = ppn) = oow py ), (65)

where the term on the right side is a p-fold convolution. Convolution of the density
functions of two or more random variables gives the density function of their sum
provided the random variables are independent (Davenport and Root 1958), Thus (63)
follows from (2) only if the events are statistically independent. Fquation (2) alone does
not imply that the earthquakes are independent. The conclusion in § 5(d) should be
viewed in this light.

Acknowledgement

The authors are thankful to Dr H N Srivastava. Director, IMD, New Delhi. for giving
Hindukush data. Thanksarealso duce to project incharge. joint project by University of
Roorkee and Gs1 for NE India data. Authors are also thankful to Dr BK Sahu of 111,
Bombay. for useful comments.

References

Aki K 956 Zisin 8 205

Barrett J F 1963 J KElecoron. Control 15 .767

Benioff H 1951 Bull. Gieol Soc. Ani 62 331

Davenport Jr W B and Root W I 1958 «An introduction 1o the theory of random signals and noise (New
York: McGraw-Hill)

Ferres S G 1967 Geophus. Inr. 743

Fisz M 1963 Probability theory and mathemarical statisties (New York: John Wiley) p. 52, 164, 276, 298

Fry T C 1965 Prohahility and its engincering uses (Princeton: D Van Nostrand) p. 257

Goel S M J R 1982 Eviimation of the wating time distributions for earthquakes M. Tech. thesis. University
of Roorkee {unpubhshed)

Kenney J Fand Keeping F S 1963 Mathemarica! Statistics (Princeton: 1) Van Nostrand) Part 11 p. 108. 160

Knopoff 1 1964 Bull. Seism. Soc. Am. 54 187]

Krishnamurthy F V and Sen S K 1976 Computer based numerical algorithms (New Delhi: Affliated Fast
West Press) p. 421

Lee Y W 1960 Sraristical theory of communication (New York: John Wilev) p. 459

Lomnitz C 1966 Rev. Geophys. 4377 ’

Malasi S K 1981 A sratistical model for the inter-event arrival times for microearthquake in North East
India, M. Tech. thesis. University of Roorkee (unpublished)

Massey L D- 1971 Probubility and statisties (New York: McGraw-Hill)

Schlien S and Toksos M N 1970 Bull. Seism Soc. Am. 60 1765

Shalanger (Ben Menahum) A 1960 Gerlands Beitr. Geophys. 69 68

Sharma N K 1982 Generation and testing of hvpotheses for earthquake occurrences, M. Tech. thesis.
University of Roorkee (unpublished)

Sharma N K, Moharir P S and Gaur V K 1983 Proc. Indian Acad. Sci, ( Earth Planet, Sei.) (Communicated)

Udias A and Rice J 1975 Budl. Seism. Soc. Am. 65 09

Utsu T 1972 J. Fac. Sci. Hokkatdo Cniversitt Ser VI Geophes p. ¢

Vere Jones T 1970 J. Roy. Starivr. Soc. 832 |

Whalen A D 1971 Detection of signals i noise (New Yark: Academic Press) p. [26. 246. 250 252, 254




