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Electrical resistivity anomalies over hydrocarbon bearing structures
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Absfract. The present study is aimed at working out the possible resistivity ano-
maljes associated with hydrocarbon bearing structurcs. The anomaly due 1o a typi-
cal two-dimensional anticlinal structure filled with hydrocarbon, and overlying a
basement of infinite resistivity was computed using the conformal mapping technique.
A more realistic and elaborate model, which could not be simplified by conformal
mapping, was studied using the finite clement method. This model consisted of
a two-dimensional anticlinal structure filled with oil or gas-embedded midway in a
homogeneous layer which itself overlies a half-space of infinite resistivity, the electrical
resistivity of the hydrocarbon bearing structure being simulated as infinite;

Keywords. Electrical resistivily ; hydrocarban ; structures.

1. Introduction

Techniques of oil exploration in current use are mostly indirect in the sense that
they are designed to locate structures which are most favourable for the occur-
rence of oil. Confirmation of the presence of oil can be made only after actual
drilling which involves a careful balance of cost against the possible return. Hoy.-
ever, recent developments in the use of direct geophysical techniques for locating
hydrocarbons offer possibilities of improving the chances of success. It, therefore
seems feasible now to mount vigorous efforts to investigate the role of electrical
methods in a petroleum exploration.

Geoelectric methods may -under favourable conditions, help detection of o]
directly because of its unusually very high resistivity. It seems desirable to
compute theoretical or experimental responses of idealised structures containing
hydrocarbons. The present analysis is an attempt in this direction.

We have selected the following models as a first step towards evolving more
realistic models of hydrocarbon deposits, as more confidence has been gained
in developing computer simulation techniques. The essential feature of all
these models is a two-dimensional anticlinal form of anomalous resistivity in these
cases of infinite resistivity, which simulates oil or gas accumulations.

P (A)-13 239




240
Model 1

Model II
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consists of buried two-dimensional anticlinal structures filled with oil
or gas, overlying a basement of infinite resistivity (figure 1A).

is a variation of the above model in the sense that the anticlinal structure
containing hydrocarbons is embedded midway in a homogeneous
layer which itself overlies a semi-infinite medium of high resistivity

(figure 2).
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Figure 1. Transformed geometry of the model I. (a) Geometry of the problem.
(b) Conformal transformation of the geometry shown in figure a. (c) Conformal
transformation of the geometry shown in figure c.
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A pair of infinitely long line source and sink parallel to the strike of the struc.
ture are impressed over the surface of the earth. It may, however, be mentioned
here that whilst it is mathematically essential to consider line-source in a theoretical
analysis, it will not be necessary to use line source in practice in order to utilise
such theoretical results for interpretation of the observed data. It can be shown
(Tranter 1956; Roy and Jain 1961; Naidu 1967; Mufti 1976) that measurements
made in the field with point source can be transformed to yield corresponding
values which would have been obtained if line source had been used. The data
so transformed can then be interpreted in the light of theoretical results obtaineds

A closed form solution was obtained for model I using the conformal mapping
technique. Computed values of apparent resistivity have been presented it,
figures 3 to 5. Model II was analysed using the finite element method which in
essentially a numerical method for modelling complex problems.

2. Solution of the problems
2.1. Model I (figure la)—Solution using the conformal mapping technique

Figure la represents the geometry of the model. ABDO is the line of basemen
over which the anticlinal structure BCD flled with hydrocarbon is resting and
it is overlain by material of resistivity p,. Line HF represents air-earth contact,
+ I is the position of infinite line source and — I is the position of infinite line
sink. Two successive transformations are required to reduce this model into
one involving two homogeneous half-spaces (figure 1¢). Since many geological
structures, generally extend for long distances in some direction, they can be
approximated to idealised two-dimensional structures. The method of conformal
mapping is the most convenient and perhaps the only analytical method available
for simplifying the geometry of such complex problems, so that a given curve may
be completely mapped on the real axis of the transform plane, the only prerequisite
being that the function should be analytic.

The reciprocal transformation in respect of figures 1a and 1b can be expressed

by the relation
7=~ In —— 6))

where z = x + iy,
w=u+iv,
I = the depth of the base of the structure from the surface of the earth,
2] is the length of the base of the anticline,

andl:w:ﬁlnm-{_1
T a—1

The next transformation in respect of figures 1b and Ic can then be obtained
from the following relation:

t=3(v+5) - @
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where (=¢&+in.

The solution for the electric potential in the transformed  {-planc is casily
obtained using the conditions (i) that the potential gradient across the real axis
vanishes, (ii) that the potential tends towards zero on the semicircle with infinite
radivs in the upper-half-plane and (iii) that the current clectrodes are at finite
distance.

The harmonic potential ¥ ({) on the surface of the carth (n = 0) satisfying
the above boundary conditions due to a source (&5, 0) and sink (— &, 0) is given
by

v =20 - &) + o + &) ®)

where I is the current per unit length fowing through the current electrode and
p, is the resistivity of the surrounding medium.

Inverting the expression for the electric-potential in the {-plane to the corres-
ponding value on to the original z-plane, using transformations (1) and (2), can
be written as

V(z)=117%

(EEP > wxfh+ 1 . e_xEtx/h—l N (exp mifh+l  expmxg/h-11NT
expax/h—1_  expax/h+l a) exp /=1 ° " exp axg[h+ 1 Ex)
fexpmx[h+1 _expmx/h—1 }) (exp wxfh+1 | expaxglh— 11)

\exprifhi—1"" expaxfhtla i

exp mxg/h—1 o exp X/t 1 a

©
Using the expression for the Schlumberger apparent resistivity given by
_n ( 1 1 \1dW(2)
=\ GrD T %)) & )

One obtains the following expression for the apparent resistivity over the first
model (figure la).

_ o Gesfh = x[h) (%] + /R
pa/pl =2n (x1/h n x2/h) il )

[exp (nx[h) — 1]*
x exp (nx/h) {!1 - W} (41 + 4y

Y 1
] — 112
({[exp(nx/h) et E:‘(g g’;%;ﬁ}a} — (exp (xfh)— 1],41)
X L
({[exp (nx/h)+11a+ %:i%((g //]I%%%a} + {exp (mx/h) — 1]A2>

©)
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_ exp (/) + 1 <exp (x| h)+1 exp (mxy/h)—1 1>
7

exp (zlfh)— 1 a

where @ exp (7x, /],)__1 exp (mx,/h)+1 q
(k=1,2).

When the structure is absent (/ = 0, two layer case) the expression for Palpy is as
follows:

exp [7/2h (x; + X)] cosec [%1 Gry + x):’
p_m +exp[ — 7/2h (x — x)] cosec <2£h (xy — x))

I’ 2% 1 1
x1+x+x1—x 0

Expression (7) is the same as expression (97) of Parasnis (1965).
2.2. Model IT

Since it was not possible to transform the geometry (figure 2) of this model into
a simple form, it could only be studied by the finite element method (FEM).

The finite element method is a numerical technique used for obtaining approxi-
mate solutions for a wide variety of problems. It is akin to the classical tech-
niques and can be employed in problems involving complex geometrics which
may not lend themselves easily to an analytic solution.

The various steps involved in solving the problem by FEM are

(i) discretisation of the solution region,

(ii) selection of interpolation function,

(iii) element properties,

(iv) assembling of the element properties to obtain the system equations, and

(v) solution of the system equations.

3. Formulation

The continuity equation for the current density in a two-dimensional cartesian
system can be written as follows in terms of the electrical potential ¥

oV S( &V
ox~5—3?>+6—y ay5>+Q—0, ®)
subject to the specified boundary conditions

V= V,(x,y) on the surface of the system.

In the present case o is the electrical conductivity and Q the internal current
source. In the model, ¥ satisfies the Laplace’s equation at all points not occu-
pied by electromotances.

The numerical solution of equation (8) can be obtained through a variational
approach, ie., from the energy functional whichis then minimised. The required
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energy density function (JE), where J is the current density and Eis the electrical
field, can be written as

1) =4 { [0,(6V/6%)% + o, (67/6y)% t dx dy, ©)

where t = thickness of two-dimensional continuum.

The solution domain has been divided into various quadrilateral elements of
n nodes each (8 in the present case), the potential within each of which is given
by

NV (10

M=

V=

[

o

whete 7 is the potential at any point within the element, ¥, represents the poten-
tial at the ith node and N, is the associated interpolation polynomial shape
function (parabolic in the present work).

The minimisation of energy functional in the solution region is achieved by
equating its first derivative with respect to the potential at the ith node equal to
zero, le.

SI(P)6V, =0 for all i’s. a1

Equation (11) can be written as

i)

oI, (V) 12)

SI(V))oV, = 51; s

g

where I, is the energy stored within an element. For an element, one can writ]
816V, =0
o ISPy (13)

[ (5, 0NN, SN, 3N,
where Sy = j. T 5% ox oy oy 5;>td)Cdy

v

S]¢ can be written as

[ter o161t dsdy (14)
x 0
where [D] = [O y:]’
ONi 0Ny . ON,
and 16] = ox o0X ox
GN, 8N, N,
Sy oy &y

If the geometry of the element and the shape function are known, the above terms
can be evalnated by using the numerical integration techniques.
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The same shape functions which define the unknown potential function in an
element are used to map the element in the x-y coordinate system also

x=2 N, x, and y=EN¢J’u

where x; and y, are the coordinates of the nodes in x—y coordinate systems.

If the function [N,] are so chosen that ¥ satisfied the continuity and conver-
gence criteria in the £-n coordinate system, then [S]¢ in the cartesian coordinate
system can be derived using a few simple transform. Thus all derivative compo-
nents transform as

ON/S) _ ¢ {5N4/5£}
{awsap} = {3ty
in which [J] is the Jacobian matrix

_ [ 0x/6& oyldé
1= 5we o

In two dimensions the volume element becomes
dv = tdxdy = tdet[J]d¢ dn.

The limits for integration of the equation for each element are 4- 1. With these
iransformations the matrices are ecvaluated using numerical integration schemes,
The numerical values of parameters of model IT chosen are as follows:

dih = 0-47,
H = 2h,
and X/h = x[h = 2-0,

where H is the depth of the basement.

4. Analysis of the numerical results

Expressions for the apparent resistivity for the above models were calculated using
an electronic computer (IBM/370) and these are plotted graphically in figures 3-6
The excitation current is assumed to be introduced in the earth through line
electrode parallel to the strike of the structure, for reasons already explained
above. :

Figure 3 graphically represents the variation of apparent resistivity with the
position of measuring potential electrode for fixed current electrode separation
(%,/h = x,/h = 4-0) and varying d/h values, the d/h =0 representing the case
when the structure is absent. These curves show that in the absence of the
structure, i.e., corresponding to a two-layer case, the apparent resistivity curve
possesses a regular hump when the current electrodes are at a finite distance.
The p,/p, curves show significant variations in shape as compared with those for
d/h =0, when the structure is present and the dissimilarity becomes more pronounced
with the increasing size of the structure (vide figure 4) attaining a maximum just
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Figure 3. Plot of p,/p; vs x/h when current electrodes are symmetrically placed about
the axis of the structure (conformal mapping technique).

above its axis when the current electrodes are symmetrically disposed. Figure 5
shows the plot of p,/p; v8 S(S = x; + x,/2h) for different values of d/h, at a point
lying over the axis of the structure. It can be observed that whilst the slope of
the p,/p, curve is about 57° (for d/h = 0 and S greater than about 2) as expected
over a two-layered earth with a resistive substratum, it exceeds this value when
the structure is present, increasing with its size, thereby providing a clue to the
presence of the structure as well as a means of calculating its dimensions.
Figure 6 shows the same variation for model 11 using the finite element method.

The nature of the curve is broadly similar to that obtained for model I described
above.

5. Discussion and conclusion

The primary aim of the exercise was to investigate the pattern of resistivity anomalies
gleaned through various electrode configuration over an anticlinal enclosure
filled with oil or gas and buried in a homogeneous half-space (with the basement lying
at a considerable depth). However, it was not possible to solve this problem by
conventional mathematical techniques. A slightly modified model was there-
fore adopted in which the basement was shifted from infinity to the lower plane
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Figure 4. Plot of maximum anomaly produced by the structure at a point on it
axis vs dfh.
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Figure 5. Plot of py/p; vs S (conformal mapping technique).
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Figure 6. Plot of p,/p1 vs x/h (FEM model II).

of the structure in order to solve it using a conformal mapping procedure (model 1),
Model II which is a progressive elaboration of model T has been solved here using
the ‘finite element method’.

The study has demonstrated (i) the potentiality of the finite element method
in estimating resistivity anomalies over geological structures, not amenable to a
closed form solution, which may be resorted to both for planning a resistivily
survey as well as for interpretation of data. (ii) The anomaly produced by a
buried hydrocarbon bearing structure of infinite resistivity can be detected with
1easonable certainty if the ratio of its height to depth of its burial is of the order
of 0-2. Further work is, however, needed to study the degree of uniqueness,
obtainable in the solution of the corresponding inverse problem (Nek Ram 1976).
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