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Shape factors for g-decay

By M. K. BANERJEE AND A. K. SaHA

Institute of Nuclear Physics, Calcutta, India

(Communicated by M. N. Saha, F.R.S.—Received 11 January 1954)

Expressions for the shape factors of the Lth degree of forbidden f-transition were given by
Greuling (1942) for the pure interactions and by Pursey (1951) for different mixtures of the
pure forms. The same results have been derived here by a method due to Spiers & Blinstoyle
(1952) and formulated neatly in terms of three parameters, (a) £ giving the spatial covariance,
(b) 7 giving the spatial parity and (c) { giving the space-time parity. The results readily
point out that the correct form of interaction in the f-processes is either a STP combination
or a VA combination. It has been concluded that the proper way of setting up the f-inter-
action is to require that all the Dirac covariants, whose scalar products appear in the
Hamiltonian, must behave in the same way under space-time reflexion.

A brief sketch of the principal mathematical tools required in the method of Spiers &
Blinstoyle has also been given.

INTRODUCTION

Konopinski & Uhlenbeck (1941) were the first to calculate the shape factor for the
forbidden g-transitions. In their method the Hamiltonian is expanded in a power
series of z/r, y[r and z[r. The calculation of the shape factor is performed with terms
of a selected order of magnitude. In the final result, the terms are rearranged and
expressed as the sum of invariant scalar products of irreducible tensor operators in
the Cartesian form. The absence of a convenient algebra for composition and reduc-
tion of these Cartesian forms limits the applicability of the K.-U. method to only the
first few degrees of forbiddenness. Greuling (1942) was able to write down the shape
factor for the five pure interactions for any degree of forbiddenness by inspection of
the results of actual calculation for the first five degrees of forbidden transition.
Pursey (1951) gave similar results for any mixture of the five pure interactions.
Though he does not explain his method of obtaining the results, it appears to be
similar to that adopted by Greuling. Spiers & Blinstoyle (1952) developed a very
elegant method of calculation of the shape factor, based on the use of the properties
of irreducible tensor operators in the solid harmonic form and the rules of Wigner-
Racah algebra. They were able to calculate the shape factor for the Lth degree of
forbiddenness and the results corroborated those given by Greuling. In this paper,
the method of Spiers & Blinstoyle has been used to calculate the shape factor in
a general degree of forbiddenness, assuming a linear combination of the five forms of
f-interactions to be operative, and we have obtained agreement with the results
of Pursey. It is well known that the experimental results demand that the proper
combination in the Hamiltonian should be either of the STP type or of the VA type.
We have found, as will be shown presently, that the STP combination contains the
Dirac covariants which do not change sign to a space-time reflexion, whereas VA
contains those covariants which change sign to space-time reflexion.
[ 472 ]
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Our paper is divided into two sections. §1 is devoted to a sketch of the two
principal mathematical methods needed in our work, namely, (A) the Wigner-
Racah algebra and (B) the factorization of the Dirac matrices. §2 contains the
method and the results of calculation of the shape factor.

1. MATHEMATICAL APPARATUS

(A) Wigner-Racah algebra
(i) T'he trreducible tensor operator

Whenever a problem requires the construction of rotationally invariant quantities,
the irreducible tensor operators, defined by Racah (1942), are most helpful. The
21+ 1 components of an irreducible tensor U, (I, m are integers and m =1,1—1, ...,
—1) satisfy the following commutation rules with the components of the total
angular momentum operator J:

(S £1,), U] = (I F m) (£ m+ 1)} Uiy, )

[, Ul = mUZ,.
Here the bracket symbols [4, B] stand for the commutator 4B — B4 and J,, ete.,
are the components of J. It is well known that the solid harmonics r'Y?,(0, ¢)
satisfy (1). These will be called the irreducible tensor operators of the vector r. In
a similar fashion, one defines the irreducible tensor operator of a general vector

A as A'YY (0,4, ¢.4), in which 6, and ¢, are the polar angles of A. We shall denote
this solid harmonic of A by the symbol (A),.

(ii) T'he laws of combination and reduction of tensors

The advantage of casting the operators in the form of solid harmonies is that all
the well-known properties of the latter can be made use of. Thus the vector addition
theorem (Wigner 1931) can be used to construct an irreducible tensor out of two
kinds of argument vectors. Let (A )}, be an irreducible tensor operator of rank ! formed
out of [ vectors A and (B)%, be one of rank /', formed out of I’ vectors B. These two
can be combined to give an irreducible tensor of rank

L=1+0U, 1+0U'-1, .., |I-V], (2a)

formed out of / vectors A and I’ vectors B. This tensor is denoted by the symbol
(A%, B")%,. The law of composition is

L1V
LB
(A BY% =337 00 ) A (B 2)
where M = m+m’ and L has one of the values specified in (2a). (]{J[ 751, nlz’) stands

for the Clebsch-Gordon vector addition coefficient ({"LM | li'mm’) used by Condon
& Shortley (1935). Although (A)!, and (B)Y, are irreducible tensors, their product
(A)L, (B)L, is, in general, not so. However, it is possible to express the product as

a linear sum of irreducible tensors of rank ranging from | —1"| to [ +1'. This process
ofreductionisthereverse of (2) and is obtained from (2) by means of the orthogonality
relations between the Clebsch-Gordon coefficients, given in (4). We have

ALBL = 3 (B VY A (3a)
'm 'm L=y M m mr ) M-
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In the special case A = B the equation (3a) is modified as follows:

I+ [w_@]é(l; l l’)(L v

1 -
(A (Ao =2l L) 000)\M mm

) AME.  (36)

(iii) Properties of the Clebsch-Gordon coefficient
The following relations are useful:
(L v U

L1
Mmoo\ M mm = 8LL'3JWM'
(orthogonality relations),

z

m,m’

4
YA AT *)
LMMmm/ M n n = YmnYmn’

(L v = (=L L l 4
M m m -M —m —m
(= T 2L+174 (1 I L
- 2A+1| \m —m’ M .
oLalli/ 7 L 1 " (symmetry properties). (5)
= (= Y-m| 2T
(=) m[2l'+l] (m’ M ~m)

(e L U 1
M m m

The conditions for non-vanishing of the vector addition coefficients are that the
triangular inequality will be satisfied, namely,
L+1-VI'20, I+I'—=L>0, I'+L-1>0. (6)

The six numbers L+1-10', I4+1'~L, '+ L—1, l—m, I'—=m’ and L—M must be
integers:

L1l . , .

(O 0 O) =0, if L+1+4+17 isodd, (7Ta)
et L L ,
—[W WAk when L = [+, (76)

(iv) Racah coefficients

Consider three irreducible tensors (A)x
bined in two ways:
L 1 l l l
A (B) (C)s, = 12 3)( A
( )m, ( )’Inz ( )’ma L,Ella (M ml -+ m2 m3 ml + m2 ml
(L L Iy ) ( bs b I
L\ M my my+mg) \mg+mg my my

(B), and (C)%, . The three can be com-

) (A B, O

) (AL, (B%, Chis)fy.  (8)

(AL, By, Ch)E; is a tensor formed out of the tensors (A, B)b

similarly (A%, (B, Ch)s)%; from the tensors (A)% and (B, Ch)le

Mme+ms®
sum of [, and /, and I, that of /, and /5. Using (4), one obtains

Lol
(Ah, (Bl Clya)fy = 3 (215 + 1)} (2ps + 1) [L Ly
In

l12

and (C)k , and
1,518 the vector

lzs] ((Al, B, Cl)E, (9)
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where

Loty o )(L ha 13)

M m; mg+mg) \ M m,+my, my

% ( l12 ll lz ) ( l23 lZ l3 ) . (10)
mq + Mg My My mqy + Mg My Mg
a b

Here [c d f ] stands for W(abed; ef) defined by Racah.
e

my Ma M

ll lZ l
(24 1) (2yg + 1)} L 1y 23j| = 3 (

b

The advantage of using this form is that the symmetry properties are easily
recalled, namely,

ab b d d ca
[cdf]=[a, ce]=[bf¢f}=[d be}
e I e f

eb d a e
= (__)e+f—u-—d|:c f :I = (_)e+f—b—c[f d c“ . (10)
a b
The orthogonality relations for the Racah coefficients are
ae Mae s
S2e+1)|fd ||gd =572, (10a)
e 2f+1
b b
a c ab ac
3 (— )atbrerdterSfto(2e + 1) | b d 1 [d c g} =1d b g] . (10b)
e
f e f

(v) L8-jj recoupling coefficient
Of particular importance is the transformation coefficient between the j-j coupling

scheme and the L-8 coupling scheme.
We have

((AB, By, (Ch, D),
J ]2) (]1 A 81)(j2 ly Sz)
= A (B)g (G, (D),
mZ;w'(M my Mg/ \My Wy 01/ \Mg [y Oy (A (B)z, (G (D)
(A%, CB)E, (B, D)),
_ J LS\(L I L, (8 s; s L Teve (N (ThVes
=2 (M M 0’) (z”' M1 ﬂz) (0' 0y 0'2) (A)ﬂl (B)(,‘ (C)M (D)ag’
where ((Ak, Bsi)f, (Ck, Ds2)i2)Y, is a tensor composed of the tensors (AL, Bs1)l: and
(Cl2, D#2)lz and similarly ((Ah, C)Z, (Bs, D%:)S)3, is a tensor composed of the tensors
(A, C:)L and (B%, D#:)5. From these two equations one finds

Los1 g
((All, le)jl’ (Clz’ Dsz)jz)']]ll = Z l2 Sa jZ ((All? CZZ)L7 (le’ DSB)S)JJII’ (11)
LS|\L S J
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where, as can b€ easily shown with the help of (4) and (10),

Ly 8141
ly 83 Jo| = (2L+ 1)} (28 +1)¥(2j; + 1)} (2, + 1)}

L SJ
ly Js Ll ly 8
x5 (=) (2A+1) [s 8 A] [J S A}[J Ja A]. (12)
X .

S L J1
There are other perfectly equivalent expressions for the right-hand side.
L8y g
The values of | I, s, j,| for the cases s;=8,=1%, S=0,1, L=1+1, and
2 J2 1=8 =73 2
L SJ
J = L, L +1 are listed below, as they will be useful for our work.
S§S=0,J=L=1+1,
2kl =[<2l1+1><2l2+1)]’ ld btd ="[2ll+1]’
) - . N L (13)
Lt h+3 L1 Lih-%
Lt 4] = [5] L} -3 = 0.
L0 L | 2 L0 L |
S=1J=L+1=1+l,+1:
Lilh+i
Iy 3 l,+1] = 1. All others vanish. (14)
L1L+1
S=1,J=L=1+I,
(. 1 17 1 11 —17
it S N o I T TS
R AR C by il I V)
WAL UREAY (0
Lt a-if = [t b} -1 =0,
L1 L | 2 L1 L ]
S=1,J=L-1=1+I,—1:
[l 3 L+4] 1 a1,
l2 ’%‘ l2+%‘ =_[ :l;
A 22L—1) (21, +1) (2y+1)
[l 1 7 —17
\;1 ; ;1+i _[ 2L+1 2L, (2L, - 1) ]%
2 2T 2 — )
L1 o1 BLEL=1)@L+1) @+ 1)
_— ;
glzgﬁf [ oL41  2Uy(2y—1) ]t
2 272 T T >
L1i-1 2LRL—1) (2L, +1) (2l +1)
e Ll e ]
2 22| = .
L1 L-1] 2L—1(20,+1)(2l,+1)
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These results are given by Spiers & Blinstoyle whose

L %
B (JLS) = |1y § Ja|-
LSJ
An immediate corollary of (11), (11') and (11”) ig

(J J1 .72) (.71 h 31) (.72 ly 32)
M my m, my Hy Oy My He T2

s ;1 ‘;1;.1 (J LS)(L I 12)(8 8 32) a8)
LSL2§} M poo)\p py o) \o 0y 09)

For convenience in subsequent work, we define a quantity

o o
;1 bar ;1 AN AR !
2% J2( =% 2 2| | T o ) 0 00)@2l,+1)!

LS J LS J
L1
1|z oL-2(9] + 1)1 ¢
__ 14 1
N 4n[% g{;} N (L) [(2L—2ll+ 1)! (11!)2] ’ (12)
4! T}

(vii) Scalar product of irreducible tensors
The Hermitian conjugate of equation (1) is
[(Jp i), U] = — J{(L + M) (LT M + 1)} Uﬁln,} (1)
[, UH] = - MUH. ‘
Now it is trivial to prove with the help of (1) and (1’) that the commutators of
Mé LU%j V%, with J, +iJ, and J, vanish, showing that the quantity is invariant

L
under rotation. ¥, UZJV%; is called the scalar product of the two tensors. The
M=-L

invariant nature is independent of the composition of the two tensors.

(viii) Selection rule of the tensor operator (A));
Racah (1942) has proved that
J, S

g My | (Al 30 = (51 51 ) | AY [y, (19
where J; and J; are the total angular momenta of the states between which the
matrix element is taken and ;, M, are the corresponding magnetic quantum
numbers and a’s denotes the other quantum numbers necessary for a complete
description of the states. It is well known that the second factor in (19)is independent
of the magnetic quantum numbers. The selection rules on AJ and AM follow at once
from the conditions of non-vanishing of the vector addition coefficient. These are

A =J;—J; = +J, J_r(J-—l),...,O,}
provided J;+J;>J,
AM = M;— M, = M. (21)

(20)
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(B) The factorization of the Dirac matrices

The contents of this section consist essentially of a proof of equation (8) of Spiers
& Blinstoyle. We have given the proof in some detail to bring out certain symmetry
properties which lead to a deeper insight in the f-decay problem. In the usual
representation of the Dirac matrices £ and o, are diagonal and the four components
of the wave function may be labelled by the eigenvalues ( + 1) of § and o, namely,
Vpo Thus, Yy =ty 1, Yo =Yy _1 Y3 =Y _1and ¥y = ¢y, ;. In the formalism of
Spiers & Blinstoyle use is made of the fact that each Dirac matrix can be
represented as the Kronecker product of two 2 x 2 matrices, namely,

(Bo|A| o) = B|B[F)(e]|C|o"), (22)

where A4 is a 4 x 4 matrix and B and C are two 2 x 2 matrices. Using the above
correspondence between r; and ¥4, the Kronecker product rule is

C C_ C Cy_
Bu( 11 b1 ) Bl—l( 11 1 1)

A = (gn glq )X (011 g]—-l ) — Oy Oy Cy Oy . (23)
-1 P11 Cqp Cpy B (011 Cia ) B (011 O
Oy Oy Ty O

The Kronecker product will be indicated by a cross. The matrix multiplication rule
is as follows: if there are two 4 x 4 matrices 4 and Bandif 4 = axaand B = b x g,
where a,b, and £ are 2 x 2 matrices, then

AB = abx ap. (24)

The three Pauli spin matrices and the unit matrix 4,

S I S NN 1 R

form a complete set of 2 x 2 matrices. Hence a complete set of independent 4 x 4
matrices can be constructed by forming Kronecker products of these matrices.
Suppose now that the space-time axes are subjected to an extended Lorentz trans-
formation (i.e. including reflexions), and suppose also that under the influence of
this transformation, a matrix element yfA¢ (where ¢t = ¢*f, A any 4 x 4 matrix)
be transformed into P, /7A@, then it is well known that there exists a non-singular

4 x 4 matrix A, such that PoytAg = ytA-LANG. (26)

Table 1 gives the factorized representations of A and A~! associated with four types
of extended Lorentz transformations that are useful for our purpose.

TaBrLE 1
Lorentz transformation A At
rotation about z; axes & x ebif8: O x e—4108;
reflexion of all the space co-ordinates iS, x ¢ —iS,x ¢
reflexion of time co-ordinate —iS,x o i, x &

total reflexion iS, x & —iS,xd
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We have further ATTAN = (a~ca) x (b~1db), (27)

where A = a xband A = ¢xd,a,b,cand d being 2 x 2 matrices. From table 1it can
be seen that the behaviour under three-dimensional rotation is determined solely
by the second-factor matrix and that under the reflexions by the first-factor matrix.
In particular, a 4 x 4 matrix, which is a scalar, as far as behaviour under three-
dimensional rotations is concerned, would contain ¢ as the second-factor matrix.
The components of a vector 4 x 4 matrix will have as the second-factor matrix the
respective component of 8. The first-factor matrix which is determined by the
behaviour of the 4 x 4 matrix under reflexion can be found for the different cases
from table 2. The top row gives the change of sign under reflexion of space co-
ordinates and the first column that under total reflexion. A plus sign denotes that
there is no change of sign, while a minus denotes change of sign.

TABLE 2
reflexion
of XYZ + —
reflexion
+ é S,
- S z S Y

In subsequent calculations we shall be required to factorize (KA*)* = Q = K*A4,
where K is one of the sixteen Dirac covariants, 4 = —ix, £ and the star denotes
complex conjugate. When K is a 3-vector, then out of the irreducible components
of K we get the three functions @, as follows:

* Rk
Qui=T Ifﬂ”—j;{—u, Qo = K34. (28)

Denoting the three components by a single symbol K, we have altogether eight
Dirac covariants which are characterized by their behaviour under spatial rotation,
space reflexion and total reflexion. There are two possibilities for each operation
which are denoted by the values 0 and 1 for three parameters £, 5 and { as defined
in table 3. Thus, for example, if K= fa, £ =1,9=1,{ = 0.

TaBLE 3
para-
transformation meter 0 1
spatial rotation I3 invariant (scalar) transforms like a vector
space reflexion i invariant (even parity) changes sign (odd parity)
total reflexion 4 invariant changes sign

The two-factor matrices are completely determined by the three-parameter. Let
@ = axb, then (B’ || B7) = i(— )+ (B 85 0y-0 (29)
If K is a 3-vector, then @, = @ x w, and
00

. . (10 .(0 1
w1=—1J2(0 1), w_1=—1J2(0 O) and wn-—l(l O)'

If K is a scalar, then @ = a x 0.
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2. CALCULATION OF SHAPE FACTOR
The general expression for the shape factor of the f-energy spectrum is
273

= Wpih, P(W), (30)
where W is the total energy of the electron, p and q are the momenta of the electron
and neutrino, respectively. P(W)dW is the probability of the electron being emitted

with energy between W and W+ dW. Our problem is to find Cy, the shape factor
for the Lth forbidden transition and to express C' as Y (y. C;, will be characterized
L=0

by the distinctive features of the nuclear operators inducing the Lth forbidden
transition. Thus Oy, will satisfy the following criteria:

(@) Cp, will contain operators whose order of magnitudes are nearly the same,
being ~ R, where R is the nuclear radius.

(b) The nuclear operators in C}, shall have the same parity. The parity will be odd
or even according as L is odd or even.

(c) We shall omit those operators which satisfy the first two criteria, yet give
selection ruleson angular momentum which are merely repetitions of those occurring
in the lower degrees of forbiddenness.

The nuclear operators are composed of r, the nuclear co-ordinate, and K, one of
the Dirac covariants. An odd-parity Dirac covariant (yz = 1) mixes the small
components of the wave function with the large components. So its presence
reduces the matrix element by a factor ~v/c~RE. But an even-parity Dirac
covariant (7 = 0) mixes small components with small components and large with
large. So it leaves the order of magnitude of the nuclear operator practically
unaltered. This is because the Dirac matrices which have even parity with respect

@
to space reflexion must have the structure ( ------ fooree ) , whereas those with odd parity
i

must have the structure (—S—Z) . Therefore a nuclear operator of the order of
magnitude ~ RL must be of degree L — 7 in r, when 7, determines the parity of
the Dirac covariant contained in it. Thus the total parity is determined solely by
L and is odd or even according as L is odd or even. So the two criteria (a) and (b) can
be consistently fulfilled. An advantage of casting the nuclear operators in the solid
harmonic form is that the selection rules on angular momentum come out auto-
matically. The nuclear operators in C;, will be of the general form

(cZ-1%,K)3;, where J =L—9g+fg, L—ng+fx—1,.., |L—ng—ic|
The selection rule on angular momentum is given by (20) and (21). In most cases all
the values of J, except the largest two, can be omitted on the basis of criterion (c).

In order to construct the nuclear tensors in the solid harmonic form, it is con-
venient to use the light particle wave function of an electron in positive-energy
state in the nuclear Coulomb field as has been expressed by Spiers & Blinstoyle,
which is j 1 1

¢j1,m1a1(r> Oy 181) = ( ! ! :

Bran 15 31
S e s (31)
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where [, = j; +3a,6,, a, = + 1 for wave functions of types 4 and B of Rose (1937)
and o and £ have the significances mentioned in §1B. The connexion between f and
g of Rose and the F’s used here are

_ 1 G _ e i1 G
ﬁ’%l—lfl—’ Fp=", Fih= f”, Fit 1=g;l1' (32)

For the neutrino we can use a similar set where ¢ is obtained from F by putting
Z = 0. The neutrino wave functions for the positive-energy states are

B b F) gy
Bmn 0B = (22 2 ;2) G (P (33)
. q 2
where I, = jo+ 30285, G400, = G2 m Glats, (34)
and G+l =—i and G '*l=+1. (35)
The matrix element of f-decay is of the form
H = J‘(‘I"?K‘Fz) (Y*K¢')dr, (36)

where ¥'; and ¥'; are the final and initial nuclear wave functions. ¢ is the wave
function for the electron in positive- energy state and ¢’ that for the neutrino in the
negative-energy state. K is one of the Dirac covariants. In order to use (33), the
following procedure due to Furry (1938) is adopted. Using the operator 4 = ia, f,

one gets ¢’ = (Ad)*, (37)
where ¢ is the neutrino wave function for the positive-energy states, and the star
signifies the procedure of taking complex conjugate. Hence H can be written as

1 = [(r}ET) () ar, (39)
where Q = (KA*)* = K*A4. (39)
The advantage of this procedure is that it avoids the use of projection operators
in the summation over the negative-energy states after squaring of H. This permits
the use of Racah algebra in forming the nuclear tensors from the very outset. The
application of Wigner-Racah algebra after squaring of I and introduction of the
projection operators is rather clumsy.
Following the procedure of Spiers & Blinstoyle we construct the Hamiltonian in
a form different from, but perfectly equivalent to, the form given by Konopinski
& Uhlenbeck. We specify that the electron-neutrino system carries away an angular
momentum J, and that the individual total angular momenta are j; and j, for the
electron and neutrino respectively. There is the further condition that j; and j, are
such that I, + 1, = L —nx. This will ensure that the nuclear operator has the order
of magnitude ~ RZ (cf. criterion (¢)). The orbital angular momentum of the electron-
neutrino system will have values Iy +1,, I, +1,— 2, [, +1,—4, ..., | I, —1,|. We retain
only the highest value L — % on the basis of the criterion (¢). The required matrix

element is I 1
, AT A T Ty It
Sl fT8,0) = =23 3 3y) SIS b A

— Kk

x F ﬁ’xa;‘ Ghalglt1(—)S gt 3ﬁ1+(27, D (40)
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where {el1g, Ky = (f || (xlx, K)T || i) (41)
and S = {x.

The expression for C}, is

4qr®
2 XY X | FHy, ufJS, ja) |2 (42)

C, =
L E)q2p2MiMf2J;:+]'JM J1tty 510

The main steps in the evaluation of C;, are given by Spiers & Blinstoyle. The

formula given in appendix I of their paper has been extended and proved quite
Lh

generally in §1A. {ly ¥ jo} has been defined in (17). The Dirac matrices have been
IL S J

factorized in a manner described in § 1 B. For the first-factor matrix, the expression

(29) has been used. C;, has been calculated on the assumption that a linear com-

bination of the five forms of interactions, namely,

is operative. The shape factor is expressed as a sum of four parts characterized by
D 7% =1 Ex = Lk () P& F x> Cx = Cxo» (i) N = Vi, Ex F {ic and (i) 1 + 70,
Cx+ L. The values of ¢, , 9 and { for the different covariants are given in table 4.
In table 5 the matrix elements that appear in different interactions are given along
with the selection rules on angular momentum. In a general linear combination
squares of all the eight terms appear. Product terms occur only between the matrix
elements in the same column. The results agree perfectly with those given by
Greuling & Pursey.
Thus, if C;, = 3 Cr,(KK'), we have
KK’

D1z =1 =18 =8l =
OEK’) = (= x4 g g e 3 {(rhmrs, K% (ci-me, K'Y + 0.0}
J

v+1 3 v+ v+1 . v+3§
x}_‘,[ > {L—v—9—-14%1 L—v—y—1+tal{L—v—y—1 4% L-v—y—1+3a
=t L-y 8 J L-y & J
X qz(L—V—ﬂ~1)MV
v 3 v+3 l v . v+1
+ X {L-v—9 § L—v—y+}a-{L—v—n } L-—v— 17+~a g* L[,
=1l Ly 8 J J L-y & }
v+1 3 v+1 v 1 +%
+( )m( L-v—9-1% Lov—qg—3HLov—y } Lov—n—}
L—y S J L—y & J

{ i+ v+i
+{L—v—y—1 % L—v—y—%i{L—v—9y } L-v—n—4%}|¢*>-1N |,
L—y S’ J 1 S
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(i) 7 1% Ex = Cx = &:
CL(KK') = (= Jrtte(dm)? g g 20 0Lz, K)7* (rl1x, K') +c.c.}
T

v 3 v+i v ¥ v+ 1
xz[u—%a L—v— § D=v—3L=v—ng } Lov—} gL,
Y L-ng S J L—yg 8 J
v+1 v+1 [ v} v+i
+ (= )rtt _21 L-v-1 4§ L-v-1+4aliL-v—1 4} L—v—1+}ag*T>-DN34, 6,
o= L 8 J l L-1 & J

(iil) 7% = x> Cx F Ex:
CL(KK') = (— faHe(4m)? g e g 2 {<0E71, K)YT*(xl1, K')7 +¢.0.}
J

[ v+l g v+3 1 v+1 3 v+3d
xz[— > lL—v—yp—-1%L—v—y—1+%allL—v—9y—1 % L—v—9y—1+1}a
v “=*11 L—y 8 J L—y & J
x QZ(L—v—ﬂ—l) M,,_
v y v+3 v 3 v+ %
- L-v—y Y L—v—y+}alll—v—9y } L—v—ny+ial ¢*L>L~
a=2ll Ly 8 J L—y & J
v+1 1 v+ ] v % v+31
—<~>€K( Lv=y=1} Lov=y-}{L-v—y § T—v—y—}
‘l L—y S J [ L-y 8 J
v+1 3 v

(V) 1x F 1> Cxc F Cxc
CL(KK') = (— ertte (4m)? g g g 2 {1 (o l7E, K)T* {elx, K')7 + ¢.c.}
J
v v+1 l v 3 v+i
«3)| e =11 D-v-nec § Lo 3 Loy § Loyl g
v Lo 8 7 || Lone s g

Doj=

v+1 % v+3 l v 3 v+3¥
+(—)x ¥ {L—v—14% L-—v—-1+4aL—v—1 § L—v—1+}a} *L> VN7, o0, ;]|.
a=*1 L 8 J J L-1 8 J

The relations between the reduced matrix elements used here and the Cartesian
tensors of Greuling are as follows:
2| QLA B)(L+1) 2= [N(L)]2 l(BL AYLAL[2,
| QuA)/L! |2 = [N(L ]2|<AL>LI2
5| QuA < B,B)L! | = Tyt B, Ay,

1QL(A B)@.(CxB,B)+c.c.
(L)

=—3—N(L)N(L—1)A/(L+1) [(BL-L, ALYL* (BE, G+ c.0.],

ete.
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The quantities L, M and N are defined as follows:

1 _ g+, . E [ 2 Zpy+1l+s
- 112 1-12y _ P v—2 _ Ly ) ;
Ly 2 2F0(|FV l +IF1) l ) 2])2F0R2V Fo((2V+l)!p) 2V—|—2 3
1 . g—fi, . F 2! 28, (v+1+s,) 1
- wje_| g1y - P =J=—2 L 28, ) 1
L 2p2F S e ) 2p2F B> ~ By (2v+ 1)!1“) 2+ 1) W’

24 g2 1y 2 2
|2 11y _ Sr I =E; 2yt v+2 (aZ
U, = 2p2F (P |2+ [ )_2p2F0R2"+2 FO((2V+2)!p v+1+4s, \2R

s, p* (2v+1)(az)2W \[aZ\ (v+1)(s,—v)s, 4s,+3 2,
+(2sv+1W<2sv+1)<v+1+sy>)<‘) (25, +1)? (1“ o, 1) 2)1”2

+ (1 + (s, +V1(;1:;j— ?1))+ S,) azzz) (23??— 1) 2] ’

— 1 F~ —1]2 1 92—-v—2_fv2
M; =37 (| F 2= B ) = 2pF, e
_F ( +1pl 2 2s, OL_Z)2L+ o272 Zg 8,,(V+l)
T\@+?) | Tvrits, 2R) Wirits & Ts 11
s, 0272 p? (4s +3)oc2Z2] aZ \?
L i N R R "
><[14”(1/+1)(v+1+sv)]WJF[ v+ 1+s, (2su+1) 4E
i vy S —p—2Y—p—
N, = 2p2F, (R P Fr ™ F ) - g2p2§'0R§gL1 ?
_E (2t N2 1 [aZ s, p? 20272
“F\@+DP) vr1|2R 25, + 1 W 25,41
i — v+ —yp—2Y —p—
N7 = g, (MR FT = Ft e ) =B s
AR Za\ .
“F;((zvﬂ)!p) (v+1)2[ W(QR)+Z ]
B (21)—{—2)!]2 sy —1) W}I‘(s,,+1y |2
Where .FL(W, Z) = [ V' (2}')R) € W N
Z
S, = J{(v+1)2—a2Z? and y=o~6—g—7.
TABLE 4
interaction K 9 éx 1K ik
S B Gg 0 0 0
14 1 Gy 0 0 1
4
o —GV ‘—371 1 1 1
T po Gr %’T 1 0 0
P e 1 1 0
3
A o G 337«' 0 1
’},o "'GA 0 1 1

P ﬂ')/5 G P 0 1 0
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Asan example of the use of the equations (43) and the tables 4 and 5, the expression
for €, is calculated for the STP combination. The various products of the tensors
that appear are given in table 6. The diagonal terms arise from the squares of the
pure interactions and the off-diagonal terms from interference of the different inter-
actions. The coefficient associated with each term is given in table 7. It is important
to note that besides |( fo, rEYE+1 |2, i{ fo, rLyL+1* { fy rl+1yL+1 4 ¢ 0. will also con-
tribute to the unique forbidden transitions. While the terms omitted on the basis of
the criterion (c) are smaller by a factor 10—4,i{ fo, rE)L+1* ( By, rL+1NL+l 4 ¢ c. is only
102 times smaller. So that it may not altogether be neglected.

{fo,v)? and {fy,)° give rise to the first forbidden (0« 0, yes) transition (cf. the
case of Ra X).

TABLE 5
K AJ=+(L-1) AJ=+L,+(L-1) AJ=+(L+1),+L
N ﬂ - <ﬂ, rL>L _
v 1 — <k —_
o {at, rLA1>L41 {a, rL—1>L o
T fo (o, vEyL-14y, {fo, rhHL {fo, rlyl+1
ﬂ(! <Iga’ rL—1>L—1 <ﬁu’ l-L41>L o
A c <@, rlyL-1§; | (o, riyL {a, rLyL+1
Vs Ypriohid — —
P Bvs <Pyss xE-1HI-1 — —
TABLE 6
S T P
s |B,TP e — —
T i<ﬂ,yL>L*</)’u, ri-1yL 4 c.e. I <ﬂc’ l‘L>L+1[ 2 i<ﬂc, rL>L+1*<ﬂ'y5,rL+1>L+1 +c.c.
BoyBl* fo,rlyl 4 c.c. [<Be,rHL|2 _
- [<Bo, rE>L=224y,, i fo, rLyL-1% By Jrl-13L-187, +c.c.
I | <Iga’rL~1>L|2 .
— I(ﬂu’rL~1>L~2‘23L)2 .
— ifo, rlyl* fa,yL-15 +c.c. —
P - - [<Byss rL~1>L—1|28L,1

The most interesting feature about the expression for (y, is the appearance of the
1/W term when there is a mixing of operators having different values of {. The
advantage of formulating in this manner is that on the basis of experimental
evidence regarding the absence of the 1/W term, at least, in the allowed and the
first forbidden (AJ = +1,0,yes) spectra (Mahmoud & Konopinski 1952; Kono-
pinski & Langer 1953; Davidson & Peaslee 1953; Peaslee 1953), we can at once
conclude that the interaction in f-decay must be either a STP combination ({ = 0)
or a VA combination ({ = 1). So it appears that the proper way to set up the

p-decay Hamiltonian H = % 9x(VIKY,;) (YT KP)

is to impose on K’s the condition that they should either all commute with y, (STP)
or all anti-commute with it (VA), so that with reference to a space-time reflexion
they should either all retain the same sign or all change sign.

32-2
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Comparing with the condition of Fierz for selecting the #-decay Hamiltonian, we
find that our condition is less stringent than that of Fierz in the sense that gg, g, etc.,
may be arbitrary, whereas Fierz’s condition imposes definite relationship between
them. On the other hand, our condition is more stringent when we remember that
the Fierz condition allows other combinations also besides STP and VA, e.g. SPAV
may be allowed.

TABLE 7
<, 212 GINUL) £ [41,0-41, + 205,04, + Dy V=L,
p=0
[<Ba, rLyL+1|2 GzNz(L)— 2. By, ?t-*L,
»=0
dr L+ 1
[<Ba, rLyL|2 GEN*(L) idd m%'__ 2 Ay, ?Er-DM, — 20, ¢*--2-1N,
' B
+ (‘DLV—L —il’l) qu—zyLy:l
[<Bo, rLyL-126, 4 GEN?(1) 477(%qu +3gNo+ M)
[<Ba, rE-1pL|2 GAN*L — l)—— Z Ay, g2,
»=0
[<fo, rh-1yL-2(2 57, GEN (1) 47(59°Lo + 3Ny + M)
L+1
i(fo, rlol*  fa, rl-15L 4 c.c. GiN(L) N(L—I)A/( + )—é— 2 [— AL, ?l--2N, + O, ?L-»-1L ]
y=0

l<ﬂ7’5r S s R GEN2(0) L,

; L
i frivlE fo, rl-15L 4 c.c. GsGpN(L) N(L— l)A/ —ﬂ) 2 [Ag,?l-»-2N, 4 O, q?l—2v-1L ]

y=0

LI\L% I\L L+14ﬂ 2L—2 2L -2

Priyl*fo, rivl +c.c. GsGyN2%(L) [ |—— Z [4r,¢*k-2—2M, + (Dr,— By,) ¢*L-%L,]

i fo, P (g PIALIN o, Gp@yN(L) N(L+1) / ( ) S (A sy N, 4 Oy 1L, |

i<,3°, rlyl-1% P, ri-iyL-1 8L,2 +c.c. GpGpN(1) N(0) \/ 47) (3qL, +N0)

At the present stage more emphasis is put on the STP combination, as Marshak
& Petschek (1952) pointed out that the presence of P is required in order to explain
the spectrum of Ra .

In conclusion, the authors wish to thank Professor M. N. Saha, F.R.S., for his
kind interest in the progress of this work. The work was supported by the Atomic
Energy Commission of India.
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