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BROWNIAN COAGULATION OF AEROSOLS
IN THE TRANSITION REGIME
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Abstract—Earlier experimental studies of Brownian coagulation of aerosols have been extended into the transition
regime, i.e. Knudsen number values 0.8-1.6. This was done by working with the same range of particle size as earlier,
but at a reduced pressure. A number of modffications were made in the experimental technique, including the use of
diethylhexylsebacate instead of dibutylphthalate in order to avoid the possibility of loss to the walls by evaporation.

The rate of coagulation at Kn = 0.2 agreed closely with that predicted, using Smoluchowski's coagulation constant
for the continuum regime as modified by the Cunningham correction. The rate at higher Knudsen numbers
(Kn = 0.8-1.6) was somewhat lower (about 20%) than that predicted by Fuchs' formula for interpolation between the
continuum and free molecule regimes.

Colloidal particles suspended in a fluid medium are
constantly buffeted about due to the molecular impacts,
and they trace out tortuous paths which we call Brownian
motion. Whenever two such particles collide, they may
either stick together or bounce apart. It is a one-way
process—larger particles do not shatter into smaller
ones—so that a fine-grained system inevitably becomes
coarser. It coagulates.

The process is conceived as arising from two body
collisions. Accordingly, the fundamental equation can be
represented by

d p_k_i= k(a, aj)nnj — flk k(a, ak)nl (1)

when k is the concentration of particles with radius ak.
The first term represents the rate of formation of particles
of size ak by collision and subsequent coalescence of
pairs of smaller particles, and the second term represents
the rate of depletion of particles of this class by collision
with all other classes.

The crux of the matter is the rate constant, k(a5, a,).
This depends upon a great many factors. However, we
will simplify the problem considerably. Firstly, we
assume that coagulation is only due to translational
Brownian motion, eliminating all other processes that can
bring particles into contact, such as the sliding of adjacent
lamina past each other, turbulence, thermal gradients,
molecular diffusional gradients, and electrical, magnetic
and gravitational fields. We also assume that the particles
are spherical, that they coalesce upon coming into
contact, and that they are liquid so that the coagulum also
assumes spherical shape.

Brownian motion of particles is conceived as originat-
ing from two aspects of the mechanical interaction with the
fluid. At any particular moment there is anet impulse due to
the non-uniformity of the molecular bombardment of the
particle. At the same time, there is a resistance to the
resultant motion of the particle which arises from the
viscosity of the fluid.

There are three regimes. These depend upon a
dimensionless parameter known as the Knudsen number,
which is the ratio of the molecular mean free path in the
fluid to the particle radius, Kn = A/a. When Kn <0.1, the
so-called continuuth treatment, in which a layer of fluid is
dragged along with the particles, applies. In this case, the

particle motion is described by the Stokes—Einstein
diffusion coefficient. For aerosols at atmospheric pres-
sure, this corresponds to particle radii of approximately
one micrometer or greater.

At sufficiently large values of the Knudsen number,
there is no interaction between the particles and the fluid.
Then the colloidal particles are conceived as undergoing a
molecular-like motion obeying the kinetic molecular
theory. A value of Kn> lOis generally taken for the onset
of this free molecular condition, corresponding either to
very small particle sizes or very large molecular mean free
paths.

Intermediate values of the Knudsen number (0.1 <
Kn < 10) comprise the so-called transition regime for
which there is no adequate theory. In this regime there is
"slippage" between the particle and the fluid as a result of
their relative motion. The slip effect can be corrected for
in the first part of the transition regime (0.1 <Kn <0.5) by
an empirical correction to the diffusion coefficient, the
Cunningham correction. This was studied by Robert
Millikan, and the values proposed by him in 1923 are still
in use today.

Smoluchowski set the problem up as a diffusion
process. The rate of coagulation was related to the rate at
which particles diffused toward a central particle. He
utilized for the diffusion coefficient the value obtained by
Einstein for a particle undergoing Brownian motion in the
continuous regime, i.e. when Kn < 0.1. The resulting
coagulation constant can be written as

k6(a,, a,) = + a,) [-+ (2)

where k is the Boltzmann constant, T is the Kelvin
temperature, and is the gas viscosity. Smoluchowski
noted for the special case in which initially there is only
one class of sizes, the coagulation equation reduces to a
simple second order rate equation which is independent of
particle size

dn 4kT2 3.0x l010n2 (at T =
2960K).

(3)

Indeed, until about a decade ago when computer based
solutions of eqns (1) and (2) became practical, experimen-
tal studies of coagulation generally merely verified
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various equations. The Cunningham expression takes
effect as Kn > 0.1. The diagram illustrates how the Fuchs'
expression interpolates between the two limits—the
Smoluchowski and the free molecule cases—going
through a maximum in the transition zone. The experi-
mental points will be discussed later in this paper.

Experimental' studies of coagulation have often been
quite crude, being usually concerned with a qualitative
verification of the second-order rate relation predicted by
the initial rate of coagulation of a monodisperse system.
There have been two categories of difficulties. The first is
related to the preparation of narrowly dispersed colloids
consisting of spheres which coalesce to spheres, and the
second to the analysis of particle size distribution.

(5\
We have recently developed an aerosol generator which' I lends itself quite well to this problem and, in addition,

have had considerable experience in aerosol particle size
analysis by light scattering. We will not be able in this
paper to consider the many aspects of aerosol generation
involved in the design of the generator nor the equally
interesting problems related to particle size analysis by
light scattering. We utilized a procedure in which light
scattering "monitors" the evolution of the particle size
distribution. It was not possible to determine the size
distribution ab initio because of the complexity of the
size distribution of a coagulated system.

Our strategy was as follows. The light scattering was
measured early enough in the life history of the aerosol
for its size distribution to be monomodal and sufficient-
ly narrow to obtain an unambiguous determination of the
particle size distribution. The scattered light was also
measured at some later time during which coagulation had
occurred. The latter light-scattering results were not
utilized directly; rather, starting with the initial distribu-
tion, the evolution of the particle size distribution with time
was calculated using the Fuchs' kernel in the coagulation
equation. The particle size distribution at each particular
time had a characteristic light-scattering pattern associated
with it. The coagulation time was advanced until the
light-scattering pattern calculated in this way agreed with
the pattern which had been measured at the later time.

Another experimental strategy on which we had to
decide was the manner of varying the Knudsen number.
This, of course, is the variable that we wish to study. An
obvious procedure is to work with aerosols of different
particle sizes. This is easier said than done. There is a
lower size limit of about 0.15—0.20 jm which is imposed
by the light-scattering technique. This would limit us to au
upper value of the Knudsen number which would be less
than unity. However, there is another way of scaling the
Knudsen number, viz to alter the mean free path of the
gas. The latter procedure has the advantage that a particle
size range can be selected which is convenient both frog
the point of view of aerosol generation and of particle size
analysis. The mean free path was altered by working ai
reduced pressures. This required changes in the design o
our aerosol generator as well as in several of th
measuring techniques.

The experimental assembly is shown schematically
albeit not to scale, in Fig. 2. It is a flow system in whici
there are no constrictions or sharp bends so that laminai
flow is obtained throughout. It may be operated fron
atmospheric pressure to moderately reduced pressures; ii
the experiments being reported here, the pressure range
from 0.5 to 1 atm. All light-scattering measurements wen
made in situ without perturbing the system.

The apparatus consists of the following sections: (1) ai

(6)

whether or not the reciprocal of the particle number
declined linearly with time in accordance with the
well-known solution to the second-order rate equation.

For the initial part of the transition regime, the
Cunningham correction enters in a straightforward
manner, giving (for 0.1 <Kn <0.5)

kc(a1, a) 2JLT(a. + a) [-'- (i + A -)+--
(i + A1_-)].

(4)

The coagulation constant for the free molecule regime
(Kn> 10) can be written as

I8kT(m1 + m1)1112 2

kM(a,aJ)= mm J (a+a1)

where m, and m3 are the particle masses.
Perhaps the most useful interpolation between the

continuous and free molecule theory has been worked out
by Fuchs. The particles are assumed to diffuse in
agreement with the continuum model to within a distance
of the central particle comparable to the molecular mean
free path. Within this spherical layer there is a "jump" in
particle concentration in which diffusion occurs by the
free molecule mechanism. The particle flux is matched at
this surface of this layer. Although Fuchs' expression is
rather complicated, it does not involve any new physical
parameters, and so we will not write it out here, merely
designating it as kF(a,, a1). The reader is referred
elsewhere for the detailed expressions.1

We now define a relative rate constant /3 by

k =k(a1, a1)/3

/3 is the ratio of the coagulation constant for equal-size
particles, as given by a particular theoretical expression,
to the constant given by the Smoluchowski expression.
Figure 1 is a plot of /3 against Kn as calculated by the

Fig. 1. Collision rates for equal size spheres relative to
Smoluchowski's continuum result. Cunningham correction from
eqn (4), Fuchs from reference [1], and free molecule from eqn (5).
Triangles depict average values of /3E obtained with dibutylphtha-
late, circles depict average values of /3, obtained with dieth-

ylhexylsebacate.
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Fig. 2. Schematic diagram (not to scale) of apparatus. Heliumtank,
T, needle valves, V1, V2, glass-wool filters J, U, fiowmeter K,
mercury manometers M1, M2, combustion furnace F, combustion
boat E, falling film evaporator A, reservoirs for DEHS R1, R2, heat
exchanger I, tube for reheating DEHS 12, tube pump P3, oil bath 0,
oil thermostat 0, rotary pump P2, condensation zone B, reheating
and condensation zone C, light scattering cells C1, C2, hold-up tube
D, light scattering photometer L, by-pass valves L1, L2, millipore

filter holder H, vacuum pump P1.

aerosol generator, (2) a coagulation chamber, (3) a light
scattering photometer, (4) a filter sampler, and (5) a
pumping system.

Helium is the carrier gas. It passes through furnace F
maintained at 590°C where it picks up AgCl vapor from
molten AgC1 contained in combustion boat E. This vapor
condenses to minute aerosol particles which serve as
condensation nuclei.

The heart of the generator is tube A, down the walls of
which drains a ifim of diethyihexylsebacate (DEHS). It is
important for the proper functioning of this generator that
this film flows uniformly and continuously along the walls
of this container. The DEHS is recycled from reservoir R1
to reservoir R2 by means of a tube pump P. This section
of the generator is maintained at an elevated temperature
(e.g. 167°C) by circulating hot silicone oil from the oil bath
A through the thermostat 0 by means of a rotary pump
P2. It is necessary to operate this generator at such a high
temperature because of the exceedingly low vapor
pressure of DEHS, which at room temperature is about
10 mm. This is sufficiently low so that there is no
possibility of evaporation of the aerosol with subsequent
condensation upon the walls of the coagulation chamber.
Accordingly, all changes in particle size may be ascribed
to coagulation.

The nuclei-laden helium stream becomes partially
saturated with DEHS vapor in tube A, and the vapor
condenses upon the AgCl nuclei as it emerges from the
heated zone in tube B. This initial aerosol is then
reevaporated in tube C, which is heated to 265°C by
electrical heating tape, and the final quite monodispersed
aerosol reforms upon emerging into the cool zone.

Two light scattering cells, C1 and C2, each equipped
with a flat entrance window and a Rayleigh horn, are
attached by ground glass joints at the entrance and at the
exit of the hold-up tube D. Figure 3 illustrates these cells
schematically. These cells have the same diameter as tube

SI/v_R
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Fig. 3. Illuminated region view by photometer P; entrance slit 5,
entrance window W1, viewing window W2, Rayleigh horn R, region

viewbyphotometer, V.(a)side view;(b)top view.

B, and with the gradual tapers at the entrance and the exit
of the hold-up tube, there is no apparent turbulence in the
aerosol stream. The aerosol exhibits brilliant higher order
Tyndall spectra under white light illumination.

Light-scattering measurements were obtained with the
aid of a specially constructed photometer which is
capable of sliding along the stand S. This apparatus was
designed to clear the hold-up tube and the light-scattering
cells so that in situ measurements could be made at each
location. At the entrance to the hold-up tube, prior to
significant amount of coagulation, the aerosol is relatively
monodisperse. There were several hold-up tubes each
with a different volume. The coagulation times depended
upon the particular hold-up tube and the flow rate.

The entire assembly between the needle valves V, and
V2 was kept under the desired reduced pressure by
careful adjustment of the helium flow rate at V1 and V2,
and also of the pumping rate of P1.

The aerosol mass concentration was measured
gravimetrically. We noted that there was a radial
concentration gradient in the tube, and that this varied
with pressure. The gradient occurs because cooling starts
in the outer regions of the tube, and as condensation starts
there is diffusion of vapor from the axial region until this
region cools sufficiently for condensation to occur. Since
the light-scattering measurements occur in the axial
region, it was necessary to measure the concentration
specifically in that region, and this was done with the
sampling device illustrated in Fig. 4. The experimental
details of these measurements, as well as a number of
other experimental problems that had to be surmounted,
are described elsewhere.'

The calculation is outlined in Fig. 5. Light-scattering
data obtained prior to entry into and after exit from the
hold-up tube are depicted in the upper two boxes. The first
step is the inversion of the data at the entry in order to
obtain the size distribution of the initial aerosol. This is
characterized by two parameters, the modal radius and a
measure of the width of the distribution. In addition, the
particle concentration is calculated from the mass
concentration obtained from filtration data and from the
study of the variation of concentration in the central
region compared with the total concentration.

The second step is the calculation of the size
distribution as a function of coagulation time. This was
done in two ways—using the Smoluchowski collision
kernel with Cunningham correction, and also with the
Fuchs' interpolation formula.

In this calculation it is necessary to remember that
aerosol is undergoing Poiseuille flow with the usual
parabolic velocity profile. Generally, the coagulation
equations must be solved separately for each annular
region, and the size distribution which is obtained for each

(a)
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Fig.4. Sampler for determination of aerosol concentration in axial
region; sampler S, condenser C, heating tape H, flowmeter M, filters
F1 and F2, axial sampling tube A, aerosol reformation zone R,

stopcocks T1, T2 and T3, bypass U.

annulus must be averaged appropriately to obtain the final
distribution. Actually, since we are only interested in the
aerosol within the illuminated region viewed by the
photometer, the calculation need only consider a sufficient
number of annuli to encompass this region. In fact, it is
only the fraction of each annulus cut by the view of the
phototube that is actually averaged. This varies with the
angle of observation.

The polarization of the scattered light corresponding to
the size distribution within the viewing volume of the

I. INVERSION OF DATA

2. BROWNIAN COAGULATION

CALCULATION

photometer is then calculated for each angle of observa-
tion. This comprises step 3. Step 4 consists in comparing
the calculated polarization ratio with the experimental
light-scattering data depicted in the upper right box in Fig.
4. The coagulation time is then advanced until the two sets
of light-scattering data (the calculated and the experimen-
tal) best agree. The criterion of a best fit is a minimum in
the mean square per cent deviation of the 19 experimental
and calculated values of the polarization. Obviously, this
is an arduous calculation.

We have completed experiments and calculations for a
large number of runs at three pressures, viz. 1 atm, atm,
and atm. Four different hold-up tubes and three different
flow rates were utilized in order to vary the results. These
actually involved rather short coagulation times in order
to avoid working with highly polydisperse systems. In
most cases, this meant less than a quarter-life time, and
although the size distributions broadened significantly,
there was not a very great change in the average size.

Tables 1—3 illustrate the results obtained with DEHS at
each of the pressures which have been investigated. The
average residence time in each hold-up tube is given by
tE; tF represents the calculated average residence time,
using Fuchs' equation, which leads to agreement between
the calculated and the measured polarization of the
scattered light. The corresponding quantity using the
Smoluchowski—Cunningham equation is given by t.
Fuchs' equation predicts slightly more rapid coagulation
than is observed; the Smoluchowski—Cunningham equa-
tion predicts a greater deviation.

The Fuchs' collision rate, f3F, is defined above in terms
of the modal size in the distribution. It is the rate
predicted by the Fuchs equation relative to that predicted
by the Smoluchowski equation for the rate constant. The
experimental rate, /3E, given in the last column of each
table is defined by

f3E = 13F(tFItE). (7)

Accordingly the use of tF/tE as an empirical correction
factor will give coagulation times is in agreement with
experiment.

4. COMPARISON

CALCULATED LIGHT
SCATTERING RESULTS

t=tFor

3. LIGHT SCATTERING
CALCULATION

FINAL SIZE DISTRIBUTION

Fig. 5. Flow chart for coagulation calculation. Calculation is complete when light scattering data for coagulated aerosol
agrees with calculated light scattering results. Experimental hold-up time is tE. Calculated hold-up times obtained using

the Fuchs equation is tF: that obtainedwith Smoluchowski—Cunninghamequationist.

PUMP I

M

S

C

H

LIGHT SCATTERING DATA

FOR INITIAL AEROSOL
tzO.

LIGHT SCATTERING DATA

FOR COAGULATED AEROSOLt tE

INITIAL SIZE DISTRIBUTION

0M' a.0, N0



Brownian coagulation of aerosols in the transition regime 461

Table 1. Theoreticaland experimental coagulation results (pressure 761 ± 5 mm; temp 24.6 ± 0.5°; flow rate 1.01/mm)

Smoluch.— Fuchs' Experimental
Modal Breadth Knudsen Experimental Fuchs' Cunningham collision collision
radius parameter number time time time rate rate
(j.m) (oo) (Kn) (tE) (tF) (ta) (1SF) (i3E)

Table 2. Theoretical and experimental coagulation results (pressure 569±4mm; temp 24.1 ± 1.4°; flow rate 1.35 1/mm)

Smoluch.— Fuchs' Experimental
Modal Breadth Knudsen Experimental Fuchs' Cunningham collision collision
radius parameter number time time time rate rate
(jtm) (ff) (Kn) (tE) (tF) (ta) (1SF) (13E)

0.23 0.09 1.11 68 56 53 2.42 1.99
0.24 0.10 1.07 68 68 61 2.38 2.38
0.23 0.10 1.12 68 59 57 2.44 2.12
0.23 0.11 1.12 68 51 50 2.44 1.83

0.23 0.10 1.11 61 43 43 2.42 1.71

0.23 0.11 1.15 61 43 38 2.48 1.75

0.23 0.09 1.11 61 52 49 2.43 2.07
0.23 0.08 1.11 61 60 57 2.43 2.39
0.24 0.10 1.08 61 58 55 2.39 2.27

Average 0.23 0.10 1.10 2.43 2.06
S.D. 0.01 0.01 0.04 0.03 0.24

Table 3. Theoretical and experimental coagulation results (pressure 385 ± 6mm; temp 25.1 ±0.8°C; flow rate 2.03 1/mm)

Smoluch.— Fuchs' Experimental
Modal Breadth Knudsen Experimental Fuchs' Cunningham collision collision
radius parameter number time time time rate rate
(sm) (o) (Kn) (tE) (tv) (ta) (1SF) (1SF)

0.23 0.12 1.67 45 39 36 3.20 2.77
0.24 0.13 1.63 45 37 37 3.16 2.60
0.23 0.12 1.70 41 39 35 3.25 3.09
0.24 0.12 1.58 41 35 35 3.08 2.63
0.23 0.14 1.65 85 69 65 3.17 2.57

0.23 0.14 1.67 85 61 58 3.20 2.30
0.23 0.15 1.72 85 81 65 3.26 3.11
0.23 0.13 1.68 85 83 76 3.21 3.13

Average 0.23 0.13 1.66 3.19 2.78

S.D. 0.01 0.01 0.06 0.04 0.29

The points on Fig. 1 summarize the averages of the where the Cunningham correction is not very large (about
results of five sets of experiments, including two earlier 25% correction to the diffusion coefficient), the experi-
sets with dibutylphthalate aerosols, one set in nitrogen as mental rate agrees very closely with the theoretical value
the carrier gas and one in helium. The points in this figure obtained by using the Cunningham correction in
correspond to f3E in the tables. Smoluchowski's equation. Little can be said in this case

Fuchs' equation may be viewed as a semi-theoretical about the coalescence efficiency. This is because the
interpolation formula; in a sense, the purpose of this coagulation rate is not sensitive to coalescence efficiency
research has been to check its validity. For Kn =0.20, whenever the radius of the aerosol particle is large

0.23 0.07 0.84 47 35 34 2.05 1.54
0.24 0.07 0.80 47 41 39 1.99 1.77

0.23 0.09 0.84 47 39 36 2.05 1.72

0.23 0.07 0.81 47 41 39 2.02 1.78

0.23 0.10 0.84 47 38 36 2.06 1.68

0.23 0.10 0.84 81 57 51 2.05 1.44

0.23 0.07 0.85 81 64 61 2.07 1.64

0.23 0.07 0.85 81 65 61 2.07 1.66

0.23 0.07 0.83 81 50 47 2.03 1.25
0.24 0.08 0.81 107 82 77 2.02 1.55
0.23 0.08 0.83 107 84 78 2.04 1.60
0.24 0.08 0.81 107 82 78 2.02 1.55
0.23 0.07 0.84 107 82 77 2.05 1.57
0.24 0.07 0.82 107 73 68 2.02 1.38
0.23 0.13 0.84 152 123 118 2.04 1.66

Average 0.23 0.08 0.83 2.04 1.59

S.D. 0.01 0.01 0.02 0.02 0.14
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compared to the stopping distance for the particle, as is
the case here.

At the next higher value of Knudsen number (Kn =
0.83), the agreement between the two sets of results is
remarkably good despite changes in the experimental
procedure which included (1) changing the aerosol
material from DBP to DEHS with concomitant changes in
the aerosol generator and changing the procedure for
analyzing the mass concentration, (2) changes in the
optics, and (3) changes in the computations.

The averaged results at each of the higher Knudsen
numbers (Kn = 0.78, 0.83, 1.10 and 1.66) indicate that
Fuchs' equation over-corrects the rate constant in this

range by about 20%. This might suggest that the
coalescence efficiency is less than unity. However,
considering the approximate nature of the equation and
the experimental error of about 10%, we would stress the
agreement between Fuchs' equation and experiment
rather than the difference. Work is continuing at lower
pressures, i.e. at higher Knudsen numbers.
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