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Abstract. Let E be a vector bundle on Pn. There is a strong relationship between E and
its intermediate cohomology modules. In the case where E has low rank, we exploit this
relationship to provide various splitting criteria for E . In particular, we give a splitting
criterion for E in terms of the vanishing of certain intermediate cohomology modules. We
also show that the Horrocks-Mumford bundle is the only non-split rank two bundle on P4

with a Buchsbaum second cohomology module.

1. Introduction

Let Pn denote n-dimensional projective space. If E is a vector bundle on Pn then
we have an associated locally free sheaf, OPn (E), of germs of sections of E . In what
follows, we will not make any distinction between a vector bundle and its associated
locally free sheaf.We will say that a vector bundle, E , splits if it decomposes as a sum
of line bundles. For any sheaf E , on Pn, we will let Hi∗(E) = ⊕

ν∈Z
Hi(Pn, E(ν)).

If E is a vector bundle, then the cohomology modules, Hi∗(E), are of finite length
whenever 1 ≤ i ≤ n − 1. There is a strong relation between E and these “interme-
diate cohomology modules”. In this paper, we will be focusing on a few aspects
of this relation. To begin with, the vanishing of various subsets of these modules
force interesting conditions on E . The strongest set of conditions in this direction
are found in a theorem of Horrocks [Hor1] which states:

Theorem (Horrocks). If E is a vector bundle on Pn then E splits if and only if
Hi∗(E) = 0 for 1 ≤ i ≤ n − 1.

Evans and Griffith [EG] established the following improvement of Horrocks’ the-
orem:

Theorem (Evans, Griffith). If E is a rank k vector bundle on Pn with k ≤ n then E
splits if and only if Hi∗(E) = 0 for 1 ≤ i ≤ k − 1.
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Imposing other restrictions on the cohomology modules may also force the bundle
to split. For instance, in a paper by Mohan Kumar and Rao [KR], they established:

Theorem (Kumar, Rao). If E is a rank 2 bundle on Pn with n ≥ 4 (resp. n ≥ 5)
then E splits if and only if H 1∗ (E) is Buchsbaum (resp. 2-Buchsbaum).

To the best of our knowledge, even for rank two bundles on projective spaces, the
consequences of restrictions on cohomology modules other than the first have not
been explored. In this note, our first result is the following cousin of the theorem
of Horrocks and of the theorem of Evans and Griffith:

Theorem. Let E be a vector bundle on Pn. If rank(E) < n and n is even then E
splits if and only if Hi∗(E) = 0 for 1 < i < n − 1. If rank(E) < n − 1 and n is odd
then E splits if and only if Hi∗(E) = 0 for 1 < i < n − 1.

An immediate corollary of this theorem is:

Corollary. If E is a vector bundle on P4 and if rank(E) ≤ 3 then E splits if and
only if H 2∗ (E) = 0.

Our final result, along the lines of [KR], is the following:

Theorem. If E is a non-split rank two bundle on P4 and if H 2∗ (E) is Buchsbaum,
then E is a Horrocks-Mumford bundle.

2. Main results

Atiyah, Hitchin, Drinfeld and Manin introduced the notion of a mathematical inst-
anton bundle on P3 [AHDM]. Okonek and Spindler generalized this idea to give
a definition of mathematical instanton bundles on P2n+1 [OS]. In addition, they
established the existence of these bundles for different Chern classes and studied
their moduli space. Instanton bundles on P2n+1 were further studied by Spindler
and Trautmann [ST] and by Ancona and Ottaviani [AO]. One criterion that these
bundles satisfy is that they have rank 2n on P2n+1 and have vanishing ith cohomol-
ogy modules for 1 < i < 2n. Hence they appear as the homology in the middle of a
“monad of sums of line bundles”. To be precise, each such mathematical instanton
appears as the homology of a complex

OP (−1)k → OP
2n+2k → OP (1)k,

where the map on the left is an inclusion of vector bundles and the map on the right
is a surjection of vector bundles. Since the maps are given by matrices of linear
forms, we may call such a monad a “linear monad of bundles”.

One can create monads which are not “linear” by, for example, pulling back a
linear monad by a finite map from P2n+1 to itself. In fact, Horrocks [Hor2] shows
that every rank two bundle on P3 is obtained as the homology of a monad of the
form

A → B → C
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where A, B and C are sums of line bundles. Additionally, the monad can be chosen
to be minimal in the sense that it is built from a minimal resolution of the first
cohomology module ([R2] and [D]). An analogous question can be asked for rank
two bundles on P4. We address some cases of this question (originally asked by
W. Decker: see page 187) in this paper. As a consequence of our investigation,
we are able to identify all rank two bundles on P4 which have Buchsbaum second
cohomology module.

Recently, Fløystad [F] analyzed linear monads on Pn of the form

OPn(−1)a → Ob
Pn → OPn(1)c.

While he was interested in linear monads for sheaves as well as for bundles, (i.e.
he allowed the left hand map to be an inclusion of sheaves and not necessarily an
inclusion of bundles), his results for linear monads for bundles show that under
precise conditions on a, b, c and n, the homology of the monad gives rise to vec-
tor bundles on Pn. He proves that if one obtains a vector bundle E on P2n, then
rank(E) ≥ 2n and if one obtains a vector bundle E on P2n+1, then rank(E) ≥ 2n.
Furthermore, he identifies the ones of rank 2n on P2n+1 with instanton bundles.

The main purpose of our note is to show that these rank limitations are true
even with arbitrary monads and not just linear monads.

In the following paragraphs, when we deal with the projective space Pn, S will
denote the underlying polynomial ring and, for any sheaf F , Hi∗(F) will denote
the S-module

⊕
ν∈Z

Hi(Pn, F(ν)).

Theorem 1. Let E be a vector bundle on Pn.

1. If n is even and if rank(E) < n then E splits if and only if Hi∗(E) = 0 for
1 < i < n − 1.

2. If n is odd and if rank(E) < n − 1 then E splits if and only if Hi∗(E) = 0 for
1 < i < n − 1.

Proof. When E is a vector bundle on Pn, it is well known that the following two
conditions are equivalent:

a) Hi∗(E) = 0 for 1 < i < n − 1.

b) There exist sums of line bundles A, B, C on Pn and a monad A α−→ B β−→ C
where α is an injection and β is a surjection of vector bundles, such that E is
given by ker(β)/image(α).

This equivalence follows from Horrocks’ theorem and his method of killing H 1∗ (E)

and Hn−1∗ (E) ([Hor2]) to produce a monad.
Suppose E is non-split and satisfies the two conditions. Then we can assume

in condition a) that either Hn−1∗ (E) or H 1∗ (E) is non-vanishing and in condition b)
that both α and β are minimal in the sense that no matrix entry is a non-zero scalar
and at least one of these matrices is non-zero.

Now if one of A, C is zero, then E or its dual is a first syzygy module. In this
case, E must have rank at least n by the following well-known argument. Assume
that C is zero and let r be the rank of E . From the short exact sequence

0 → A → B → E → 0,
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we get the exact sequence

0 → SrA → Sr−1A ⊗ ∧1B → · · · → ∧rB → ∧rE → 0.

Chasing exact sequences tells us that when r < n, this long exact sequence is split
at each place. In particular, the map SrA → Sr−1A ⊗ ∧1B which is obtained
from α as a1a2 . . . ar → ∑

(±a1a2..âi ..ar ⊗ α(ai)), is split. This goes against our
assumption that the matrix α had no non-zero scalars.

Suppose we know the result of the theorem for n even. Let E be a bundle on Pn

with rank(E) < n−1, n ≥ 3, n odd. If E satisfies condition a) and condition b) and
if we restrict E to a hyperplane H (of even dimension), then these two conditions
are inherited by the restriction. By our assumption of the result of the theorem for
n even, the restricted bundle is split. Since the restriction of the bundle is split,
this forces the bundle on the larger space to be split ([OSS] Theorem 2.3.2). Thus,
establishing the result of the theorem for the case of n even will also establish the
result for n odd.

Suppose now that n is even with n = 2k. Let E be a bundle on Pn with rank(E) ≤
n − 1. By adding line bundles to E (if necessary), we may suppose that rank(E) =
n − 1. Let c ∈ Z be the first Chern class of E .

We will study ∧k−1E and ∧kE . Let G equal the kernel of the bundle surjection
β in the monad. We get

0 → G → B β−→ C → 0,

0 → A → G → E → 0.

We claim that Hk∗ (∧k−1E) = 0. To see this, first consider the short exact sequence

0 → C∨ → B∨ → G∨ → 0.

From this short exact sequence, ∧iG∨ has a resolution by sums of line bundles:

0 → Si(C∨) → Si−1(C∨) ⊗ ∧1(B∨) → · · · → ∧i (B∨) → ∧i (G∨) → 0.

Therefore
H

j
∗ (∧iG∨) = 0 for 1 ≤ j ≤ 2k − i − 1.

Hence
H

p
∗ (∧iG) = 0 for i + 1 ≤ p ≤ 2k − 1.

Now from the short exact sequence

0 → A → G → E → 0,

we have the exact sequence

0 → Sk−1A → Sk−2A ⊗ ∧1G → · · · → ∧k−1G → ∧k−1E → 0.

If we break this up into short exact sequences and use the vanishing of cohomology
for ∧i (G∨) then we obtain Hk∗ (∧k−1E) = 0.

By Serre duality, ∧k−1E and ∧kE are dual to each other up to a twist by OPn(c)

(since rank(E) = 2k − 1), hence we get

Hk
∗ (∧kE) = 0.
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Consider the resolution for ∧kE obtained as

0 → SkA → Sk−1A ⊗ ∧1G → · · · → ∧kG → ∧kE → 0.

By our calculations, we conclude that the map

H 2k(SkA) → H 2k(Sk−1A ⊗ ∧1G)

is an inclusion, hence its Serre dual

H 0
∗ (Sk−1A∨ ⊗ ∧1G∨) → H 0

∗ (SkA∨)

is surjective. This tells us that

0 → SkA → Sk−1A ⊗ ∧1G
is a split inclusion. Hence the composite

0 → SkA → Sk−1A ⊗ B
is also a split inclusion. This is a contradiction as we saw in the earlier part of the
proof. 	


As a particular case, we get

Corollary 1. If E is a vector bundle on P4 and if rank(E) ≤ 3 then E splits if and
only if H 2∗ (E) = 0.

This last corollary, in the rank two case, can be viewed as the simplest case of
the following question due to Wolfram Decker.

Question 1. Let E be a non-split rank two bundle on P4, and let P be the second
syzygy bundle for the module H 2∗ (E). It follows by the killing of H 1∗ (E) and H 3∗ (E)

that E can be expressed as the homology of a monad of the form

0 → A α−→ P ⊕ L β−→ B → 0,

where A and B split and have ranks equal to the number of minimal generators of
the module H 1∗ (E), and where L is also split. Is it true that L is always zero?

We shall show that this is true in some cases mentioned below.
Suppose L �= 0. Then α = [α′, l1]∨ and β = [β ′, l2] where l1, l2 are matrices

of polynomials (with no non-zero scalar entries). Let G be the kernel of β. Then by
an elementary argument,

H 2
∗ (∧2G) = H 2

∗ (A ⊗ G) = A ⊗ N,

where A = H 0∗ (A) and N = H 2∗ (E).
From the sequence

0 → ∧2G → ∧2(P ⊕ L) → (P ⊕ L) ⊗ B → S2B → 0,

we get the exact sequence of maps on cohomology groups

H 2
∗ (∧2G) → H 2

∗ (∧2P) ⊕ H 2
∗ (P ⊗ L) → H 2

∗ (P ⊗ B).

In other words, we get the exact sequence

A ⊗ N
[∗,l1⊗1]∨−−−−−→ H 2

∗ (∧2P) ⊕ (L ⊗ N)
[∗,l2⊗1]−−−−→ B ⊗ N.
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Lemma 1. If H 2∗ (E) is Buchsbaum or has a Buchsbaum summand, then L equals 0.

Proof. Recall that if N = H 2∗ (E) is Buchsbaum, it means that N is annihilated by
multiplication by any positive degree form. So the map given by l2 from L ⊗ N to

B ⊗ N is the zero map. By exactness, L ⊗ N is in the image of A ⊗ N
l1−→ L ⊗ N ,

which however, is also the zero map. A similar contradiction is obtained if N has
a Buchsbaum summand, by restricting the exact sequence to the Buchsbaum sum-
mand. 	


With the aid of this result, we get the following amusing consequence.

Theorem 2. If E is a non-split rank two bundle on P4 and if H 2∗ (E) is Buchsbaum,
then E is a Horrocks-Mumford bundle.

Proof. Suppose H 2∗ (E) = N is equal to ⊕t
i=1k(ai), thus equal to t copies of the

module k in different shifts. By the last corollary, a monad for E then has the form

0 → A → ⊕t
i=1�

2(ai) → B → 0,

where A and B have ranks equal to 3t − 1. Hence (as above) we get the exact
sequence

A ⊗ (⊕t
i=1k(ai)) → H 2

∗ (∧2(⊕t
i=1�

2(ai))) → B ⊗ (⊕t
i=1k(ai)).

The sum of the dimensions of the vector spaces on the sides is equal to 2t (3t−1),
hence we must have 2t (3t−1) is greater than or equal to the dimension of the vector
space V in the middle. Included in this vector space V are

(
t
2

)
terms of the form

H 2∗ (�2(ai) ⊗ �2(aj )). We can estimate H 2∗ (�2 ⊗ �2) as follows: from the exact
sequence

0 → �2 ⊗ �2 → 10�2(−2) → 5�2(−1) → �2 → 0,

we see that H 2(�2 ⊗�2(2)) is 10 dimensional, and by Serre duality, so is H 2(�2 ⊗
�2(3)).

Hence the dimension of V is at least
(
t
2

)
20 = 10t (t − 1).

It follows from the inequality 10t (t − 1) ≤ 2t (3t − 1) that t = 1 or t = 2.
The case t = 1 is ruled out by Corollary 17 in [R1]. Hence we look at the case

t = 2.
Suppose N = k(a) ⊕ k(b), with a monad for E given by

0 → A → �2(a) ⊕ �2(b) → B → 0.

If E has first Chern class c1, comparing the monad and its dual gives us that

1. A∨ = B(−c1),
2. �2(5 − a) ⊕ �2(5 − b) = �2(a − c1) ⊕ �2(b − c1) (since �2∨ = �2(5)).

Hence if a ≤ b then a − c1 = 5 − b.
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In the case where a = b, without loss of generality, we assume they are both
zero, and c1 = −5. In the sequence

A ⊗ (k ⊕ k) → H 2
∗ (∧2(�2 ⊕ �2)) → B ⊗ (k ⊕ k),

we know that the vector space in the middle has dimension at least 10 in degrees 2
and 3. It follows that if A = ⊕5

i=1S(ei), B = ⊕5
i=1S(−ei −5), then the ten integers

ei, −ei −5 are concentrated at the values −2, −3. In the monad for E , since �2 has
no sections in degree 2, each ei ≤ −3. It follows that each ei = −3, hence giving
the monad of a Horrocks-Mumford bundle ([HM]).

In the case where a < b, without loss of generality, assume a = 0. Repeating
the argument, we conclude that the twenty integers ei, ei +b, −ei +c1, −ei +c1+b

are concentrated at the values b−2, b−3. This is quite impossible: for example ei

would have to be the smaller value b − 3 since b > 0 and then b = 1. So ei = −2.
But it is impossible to have a monad of this form since only �2(b) in �2 ⊕ �2(b)

has sections in degree 2, negating the possibility of an inclusion of bundles on the
left. Thus this case cannot occur. 	
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