ON THE GEOMETRY OF GENERALISED QUADRICS
N. MOHAN KUMAR, A. P. RAO, AND G. V. RAVINDRA

ABSTRACT. Let {fo, "+, fa;90, - ,gn} be a regular sequence in
P27+ and suppose that Q = Y7, f;g; is a homogeneous polyno-
mial. We shall refer to the hypersurface X defined by @ as a gen-
eralised quadric. In this note, we prove that generalised quadrics
in P27+ for n > 1 are reduced.

1. INTRODUCTION

We work over the field of complex numbers C.

Let {fo, -+, fn; 90, " ,gn} be a regular sequence in P?"! and sup-
pose that @ = )", f;g; is a homogeneous polynomial. We shall refer
to the hypersurface X defined by @ as a generalised quadric. In this
note, we prove that generalised quadrics in P?"*! for n > 1 are reduced.

In characteristic p > 0, it is easy to construct generalised quadrics
which are non-reduced. By exploiting this fact, low rank vector bundles
were constructed on P* and P? in [4]. Furthermore, in characteristic 0,
reducible generalised quadrics exist in P3; for instance, the hypersur-
face defined by X?Y?2— Z20U? = 0, where X, Y, Z, U are the coordinates
of P3, is such a generalised quadric. We do not know any examples of
reducible generalised quadrics in higher dimensional projective spaces.
However, the question of non-reducedness is settled by our main theo-
rem.

2. ATivAH CLASS AND CHERN CLASSES OF VECTOR BUNDLES
OVER SCHEMES

Let X be any scheme and F be any vector bundle on X. We recall
that the Atiyah class at(E) (see[l]) of the vector bundle E is the natural
extension class

0—-Qy®E —PE)—E—0

where P(FE) is the principal parts bundle of E. Thus at(E) is an element
of the cohomology group H' (X, Q4 ®End(E)). Starting with this class,
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one can define Chern-Hodge classes c;(E) € H' (X, Q%) as follows (see
[3] or for a simpler exposition see [5]).
Consider the composition

(U ® End(E))E™ — ()®™ @ End(EE™) — Q2 @ End(AE) — Q7

where the last map is induced by the trace map Snd(ﬁ E) — Ox. We
then define (upto a constant non-zero factor) the Chern-Hodge classes
from the composite map below:

H (X, Q4 @ End(E))®™ — H™(X, (O & End(E))*™) — H"(X, Q)

at(E)®m — at(E)U---Uat(E) — cp(E)

By convention, co(E) = 1 € HY(X, Ox). Furthermore, we let c(E) =
> ¢;(EF) which is an invertible element in the graded commutative ring
@; H' (X, Q).

Now let X be any scheme and let F be a coherent sheaf on X which
has a finite resolution by vector bundles

0—-Ps—=F—0
Definition 1. ¢(F) = ¢(P%) := [ ¢(P%) D" € @ HI (X, Q).

We recall some basic properties of the Chern-Hodge classes. Let
P(X) be the set of all sheaves on X which have a finite resolution by
vector bundles.

Properties:
(1) For any sheaf F € P(X), ¢(F) is independent of the resolution.
(2) For any short exact sequence of sheaves in P(X)

0—-F - F—=F"=0
c(F) = c(F")c(F").

(3) For any morphism f : Y — X there is a natural ring homo-
morphism f* : @; H (X, Q%) — @; H(Y, Q%) under which if E
is a bundle on X, then f*c(E) = c(f*E).

(4) For any bundle E and a line bundle £, we have

T

G(E®L) = a(E)e (L)

i=0
(5) If F € P(X) and
0—-P—F—0

is a finite resolution by vector bundles and if f : ¥ — X is
any morphism, we can define ¢¥' (F) € H*(Y, Q%) as c(f* P%).
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In general, this is not c¢(f*F), since this sheaf may not have a
finite resolution by vector bundles on Y. These coincide if

0—f"PY—fF—0
remains exact and thus in this case c¢¥ (F) = c(f*F).
(6) For any short exact sequence of sheaves in P(X)
0—-F —-F—-F"—0
on X and a morphism f:Y — X, ¢¥'(F) = ¥ (F) ¥ (F").
The following lemma, which is the key lemma, is essentially due to
Gruson et.al [2].

Lemma 1. Let X C P" be an irreducible hypersurface which is not
reduced. Consider the restriction maps

H'(Qpn) = H'(Q,,)

red
and
iroyi \ BT8O0y
H'(Q%) — H (ered).
Then Im (B =Ima for1 <i<n-—1.

Proof. Since « factors through H'(€%), we only need to show that
Imf C Ima. Since X is irreducible, we may assume that X is defined
by a homogeneous polynomial f™ m > 1 with f irreducible and so
Xieq s given by the vanishing of f. We consider the exact sequence

Ox(— deg(f™)) “02 Qb © Ox — O — 0
Restricting it to X,eq, we get

(1) Qpn ® Ox,q = Dk ® Ox,.,
This implies similar isomorphisms,

Qpu ® Ox,,, = Ok ® Ox,.,,
for all i.

Since « factors through H (9%, ® Ox..,) and similarly 3 factors
through H'(Q% ® Oy,.,), it suffices to prove that the map

iy S 11/
H (Qpn) - H (Qpn ® OXred)
is onto by the isomorphism (1) above. We have an exact sequence,
0 - Qﬁpn(_d) - Q,ﬁ”” - Qﬁnn ® OXred

where d = deg f. Taking cohomologies and noting that H’(Q%,. (—d)) =
0 for j =14,i+ 1, since 1 <i <mn—1, we see that J is an isomorphism.
O

— 0,
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Lemma 2. Let M C P" be a closed subscheme of dimension r. Then
the natural map, A A

v H (Qpn) — H' (L)
is ingective for 0 < i <r.

Proof. If h € H'(P",Q4.) is the class of the hyperplane section, then
H'(P",%,) is a one dimensional vector space generated by h’. Thus,
it suffices to show that its image in H*(M, €2%,) is non-zero. If it is zero
for some i < r, then h" = h'h"~* =0 € H" (M, Q},). A proof of the well
known fact that A" # 0 is sketched in the Appendix. O

Lemma 3. Let X C P" be an irreducible hypersurface which is not
reduced. Let F be a coherent sheaf on X with a resolution 0 — P% —
F — 0 by vector bundles on X such that 0 — P% @Oy — 0 is ezact
where M C Xyeq and dim M = r . Then 0 = ¢;"4(F) € H/(X, Q% )
for 1 <i <min{r,n — 2}.

Proof. Since 0 — P% ®0Oyr — 0 is exact, ¢™(F) = 1 by Property 5.
From Lemma 1 above, it follows that ¥V 1 < i < min{r,n — 2}, there
exist classes t; € H' () such that

pei(F)) = alty).

Let 6 : H'(Qy ) — H'(Q),) be the natural map. Then 63(c;(F)) =
cM(F) =0 for i > 0. Thus, fa(t;) = 0. But, o = v and by Lemma 2,

)

we get that t; = 0 for 1 < i < min{r,n — 2} and thus
¢ (F) = Bei(F) =0

(2

for 1 < ¢ < min{r,n — 2}. O
3. GENERALISED QUADRICS

In this section, we apply the results of the previous section to show
that generalised quadrics in P?"*! for n > 1 are reduced.
Let Q C P?2"*! denote the generalised quadric given by the equation

Z?:O flgz = (0. Let

Z:=Qn(fi=-=f=0)
Li=QN(fo=- = fu=0)
Ly:=QN(g=fi="=f=0)

Then Z = L; U Ly and we have an exact sequence
0— OLQ(— degfo) — OZ — OLl — 0

Furthermore, Z is a complete intersection of n ample divisors on (@,
L; for i = 1,2 are local complete intersection subschemes in () of codi-
mension (and dimension) n.
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Theorem 1. The generalised quadric ) is reduced.

Proof. If @ is not reduced, let X be an irreducible component of )
which is not reduced and let X..q denote the subscheme X with the re-
duced structure. Thus Y fig; = f" f' with f an irreducible polynomial,
r > 1 where f" =0 defines X and f = 0 defines X,eq.

Let 7/ = ZNX, L, = L;NX. It is easy to see that Z’ is a complete
intersection in X by f;;7 > 0. We consider the Koszul resolution of
Oz on X:

0— OX(—Z%‘) — = P3,0x(—a;)) = Ox - Oz — 0
By a formal computation, it follows that
cn(Ogz) = ah™ € H'(Q%)

where a = (—1)""*(n — 1)! (IL;a;) # 0.
On the other hand, since L) are local complete intersections in X,
there exist finite resolutions by vector bundles over X for the sheaves

Op:
0— P} — O —0.
We have an exact sequence,
0— Op(=d) = Oz — Op, — 0
where d = deg fy, which gives by Property 2 that
(O) = e(Or) (O (—d)) € H (%),

Let M; be the subscheme defined by the vanishing of go,..., g,
in Xed. Then dim M; = n and since Ly N M; = 0, we get, 0 —
P} ®0), — 0 is exact. Since dim M; = n = min{n,2n + 1 — 2}, by
Lemma 3, we see that ¢Xr4 (O, ) = 14, where x € @, H(Q ). A
similar argument with Ly and M, ( which is defined by the vanishing of
Jos g1, -+, gn o0 Xieq) gives, ¢Xred (O, (—d)) = 14y. Thus by Property
6, cXred(Oy) = 1+ 2z with 2 € Bjspy Hi(Qered). In particular, we see
that ¢X+a(0z) = 0. But, we have seen that this is the image of ah™
for a # 0, h the class of hyperplane section. By Lemma 2, this is a
contradiction. O

4. APPENDIX

The purpose of this appendix is to prove the following theorem which
is folklore, but we thought we will give a proof for completeness.
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Theorem 2. Let X be a projective scheme of dimension r > 1, h €
H' (X, QL) the class of a hyperplane section. Then h™ in H" (X, Q%) is
not zero.

Since we plan to show some class is not zero, we will usually not
worry about correctly identifying cohomology classes and allow our-
selves the liberty of multiplying by non-zero constants. In other words,
cohomology groups will not be canonically identified and we will allow
ourselves choice of bases. We first prove a slightly stronger theorem for
Pr.

Let h € H'(P",Q4,) be the class of a hyperplane. We will assume the
well known facts that h* € H'(P",Q%,) generates this one dimensional
vector space (in particular h’ # 0) and ¢;(Opr(1)) is a non-zero multiple
of h.

Theorem 3. Let H be a hyperplane section of P" with r > 2. Then
we have a canonical isomorphism o : H''(H, Q1) — H' (P, O%,)
and a(h™Y) = ch”, ¢ a non-zero constant where each of the h’s is
the class of an appropriate hyperplane. (If we had made the correct
identifications, then ¢ = 1).

Proof. We have a canonical exact sequence,
0— Qp — Qp(H) — Q7 — 0.
This gives, by taking cohomologies an isomorphism
a: Y H, Q) — H(P7,Q5),
using the fact that H'(P", Q. (H)) =0 for i = r — 1,7,
O

Lemma 4. Let C be a non-singular projective curve and let L be an
ample line bundle. Then | = ¢,(L) € H'(C, QL) is not zero.

Proof. Tt is clear that we may replace [ by nl for any n > 0 and thus

we may assume that L is very ample. This gives, by taking two general

sections of L, a morphism f: C — P! with f*(Opi (1)) = L. Since
l=c(L) = a(f*(Op(1))) = [H(cr(Om (1)),

it suffices to prove that ¢;(Op:(1)) # 0 which we have assumed and

that f*: H'(P!, QL) — H'(C, QL) is injective. The second statement

is obvious, since the natural map Qﬂl;,1 — Q& splits. O

Proof of Theorem 2. Let Y C X be a reduced irreducible closed subva-
riety of dimension 7. We have a natural map H"(X, Q%) — H"(Y, Q%).
Thus it suffices to prove the theorem for Y, since A™ goes to h". Thus
we may assume that X is integral. Similarly, we may replace X by its
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normalization and thus assume that X is normal. Proof is by induction
on r where the case r =1 is treated in lemma 4.

For the induction step we proceed as follows. If h is the class of the
ample line bundle H, we may clearly replace H by nH,n > 0. Thus
we may assume the following. H'(X, Q% (H)) = 0 for i = r — 1,7,
since r > 2. Further, we have a section Y €| H | which is integral
and normal and the multiplication map Y : Q% — Q% (H) is injective.
Let £ be the cokernel of this map. We may also assume that we have
a finite map f : X — P" such that f*(Opr(1)) = H and a section
s € H°(IP", Op-(1)) such that f*s corresponds to Y. Let us denote
the hyperplane s = 0 by L. By our assumption, we see that the map
HHY,E) — H'(X, Q%) is an isomorphism. We also see that on the
smooth points of Y, & = Qi~'. This says that the double dual of &
and Qy' are isomorphic. We denote the double dual by F. Thus we
have maps £ — F and Q}' — F which are isomorphisms on the open
subset of smooth points. Since the codimension of the singular locus is
at least 2, we see that

H YY) 2 H 1Y, F) 2 H (Y, 05 ).
Using f, we have a commutative diagram,

H L, Q7Y — H(P7,05,)
L i L f
H’“‘l(Y, ) N H"(X, Q%)

We have the natural map H" ™' (L, Q; 1) TN H 1Y, 057 1) and the class
of h"~! goes to a non-zero element by induction. But the latter group
is isomorphic to H""*(Y, £) and thus 2"~! goes to a non-zero element in
this group and then by the above isomorphism, its image in H" (X, Q%)
is non-zero. Now, following A"~! via the other branch of the commuta-
tive diagram, we see that A" # 0 in H"(X, Q%) by theorem 3.

O
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