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§ 0. Introduction

In [6], we tried to classify a certain class of rational singularities over a
rational surface, algebraically. One condition which made the local rings of
such singularities unique, was that they all had “logarithmic Kodaira dimen-
sion”, —co. In this paper we study a prominent class of such local rings, the
rational double points. It turns out that even in this special case, not all local
rings are isomorphic in some classes. To illustrate the statement above, we give
the statements of the theorems proved. Let us fix some notation:

k =an algebraically closed field of characteristic zero.

A =a normal local domain of dimension two which is the germs of functions
at a point on a normal rational surface over k.

R =k[X,Y,Z]x y z where X, Y and Z are indeterminates.

denotes completion with respect to the maximal ideal.

Theorem 1. If

i) AZRAX*+Y>+2Z2), then A=R/X*+Y?+2Z?). (Eo)

i) If AZRAY?>+ XY +2Z?% then ARAY*+X3Y +2Z?). (E-)

iti) If A=R/AX%+Y>+Z?), then either A=R/X>+Y*+Z?) or AXR/X*Y

+ X34 Y3+ Z? and these two local rings are non-isomorphic. (Eg)

Theorem 2. If A=R/(Z"*'—XY), then
) AZRAZ"'=XY)ifn=*7,8.
ii) If n=7, A=R/Z®-XY) or A=RAZ*—(Y—-X*(Y—X*-Y?) and
these two local rings are non-isomorphic.
iii) If n=8, AZRAZ®°—XY) or AXRAZ*— (X +Y??—X? and these two
local rings are non-isomorphic. (A)

*  Partially supported by NSF Grants
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Theorem 3. Let X be a normal rational surface with pe X, a D -type singularity
and X — {p}, nonsingular. Then either there exists a rational pencil with p, not a
base point, whose general member is non-singular rational or n=8 and there
exists an elliptic pencil which does not have p as a base point.

Remark. In Theorem 3, one hopes that the local rings are unique for n+8, but
we have not been able to find a proof.

These results grew out of an attempt to prove that the Chow groups of
affine rational surfaces containing at worst rational double points are zero. For
instance, the above theorems tell us that Chow groups for rational affine
surfaces containing exactly one rational double point and non-singular outside,
are zero if it is of type A, with n+7,8 or D, with n+8. We will prove a precise
result in §4. Spencer Bloch had informed us that he has a proof for all rational
double points without classifying the local rings themselves.

The proofs of these theorems, especially that of Theorem 2, are somewhat
tedious. The arguments are repetitive and so we would sometimes only sketch
the proofs of steps which are similar to earlier steps.

We fix some more notations and conventions. We will always be dealing
with rational surfaces and hence the term “surface” without qualification
would always mean so. We will write “exceptional curve” for exceptional
curves of the first kind. We will say that a curve C “meets” a curve D to
sometimes mean also that they meet transversally at one point. All unproved
statements about rational double points can be found in [2], [3] and [8]. We
may use the same letter for a divisor or its support when there is no confusion.
Also “ruling” always would mean a pencil of curves with no base points whose
general member is non-singular rational.

We state below some of the known results which are frequently used, for
the convenience of the reader.

I. Let X be a complete non-singular rational surface and let E be an
effective divisor on it. Suppose that k(E+ K)= — o0, where K is the canonical
bundle of X. Then for any LePic X, |L.+m(E + K)|=@ for m> 0 [3].

II. Let X be a non-singular rational surface and let E be any effective
divisor. Let D be a reduced irreducible curve on X. If [ID+ E+ K|=0, then

E(E+K
D~IP' and (D.E)g——in—).

Proof. Apply Riemann-Roch inequality for |D+ K| and |D+ E+K]|.

In particular, if E is the fundamental cycle of a rational double point and

. E(E+K
ID+E+K]|=0, then (D.E)<1, since JT“L-): —1

III. a) If C~IP! and C?=0 on a non-singular rational surface X, then /(C)
=2 and C gives a ruling of X. If Fe|C| is a reducible member, then there
exists an exceptional curve of the first kind L in the support of F. Also any
curve in Supp F which meets a section of this ruling occurs with multiplicity
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one in F. In particular, if L meets a section, then there exists another excep-
tional curve M in Supp F. If C is a curve on X which gives a ruling and D is
any other curve with C.D=0, then D is contained in a member of |C|. Also
D?<0 and D*=0 if and only if C~D [6].

b) If |C| is a ruling of X and F €|C]|, then since [F + K|=0, we get that every
component of F is ~IP'. Let E,, ..., E, be in SuppF and D any other member
of Supp F. Assume also that | J E; is connected. Then D.(} E)<1.

Proof. By (11) it suffices to show that (ZEI) . (Z Ei+K)= —2. Induct on n.
i 1

n—1

n=1is clear since E;~IP". Let E, be a component such that )  E, is connected.

n—1 n—1 n—1 1 n
By induction (Z Ei) (Z Ei+K)=—2 and E,- Y E,<1. But since ) E; is
1 1 1 1
connected, E, - Y E;=1. Thus

n—1 n—1

(;E) (iEi-kK): (g}z) (}; E,.+K)+2(E,,- Y Ei)+En(E,,+K)

1

=—242-2=-2

.E;, be an effective divisor with D.E;=0V; and K.D=—-2.
Then /(D)=2 and |D| gives a ruling of X.

14
¢) Let D=) nE,
1

Proof. Since D is connected, we get 0=E,-D=n,(E})+ ), n,(E;E;) and hence
i%j
E? <0, for every i, if p>1. Inducting on p, the case p=1 is trivial from a). If

p>1, then since K-D=—2, let K.E,<0. But then E, is an exceptional curve.
p—1

Let f: X » Y be the blowing down of E, and D'= )" n,f(E,). Then, since E,-D
1

=0, f*D'=D. Esay to see that D".f(E;)=0 1<5i<p—1. Also K,-D'=—2. Now
by induction we are done.

IV. Rational Double Points

The graphs in this article can be found for instance in [1]. It is also easy to
compute the fundamental cycle, given the graph, from the definition in [2]. By
Theorem (2.7) of [1], we get that if E=the fundamental cycle of a rational
double point on a rational surface, then |m(E+K)|=0 Vm>0 where K is the
canonical divisor. Also if E has n distinct components, then they are linearly
independent in PicX, and do not generate Pic X, since the corresponding
intersection matrix is negative definite by [2]. So rk Pic X >n. Also by [8], the
rings in the theorems all correspond to rational double points. Moreover, it is
easy to verify that non-completed rings in the theorems do correspond to
rational surfaces.
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V. Double Covers

The best place to look for the facts used is M. Artin’s Thesis, though it may
not be available. An alternate reference is Principles of Algebraic Geometry by
Griffiths and Harris, though the information is somewhat scattered.

§1. E;, E;and E

In this section we prove Theorem 1. We will separately analyse the three cases
and prove the corresponding statements.

Case of E¢. The graph of the special fibre of the desingularisation of this
singularity is:

Es |
E Es
E, E, Ee
Fig. 1.
where E;s are non-singular rational curves with E?= —2 and they meet as in

the diagram. The scheme-theoretic inverse image of the singular normal point
is E=E, +2E,+3E,+2E,+E;+2E,. So X is a non-singular projective sur-
face containing a configuration of E,. First we may blow down all exceptional
curves not meeting E. Since X is rational and it has more than one curve with
negative self intersection, X cannot be minimal. Let I be an exceptional curve
on X. By our choice L must meet E. Now by I, there exists an m>0, such that
[IL+m(E+K)|+0 and |L+(m+1)(E+ K)|=0. Fixing this m, choose an integer
r, minimal with the property that [L+mK +rE|+0 and |[L+(m+ 1) K +(r+ 1) E|
=@. Thus by minimality of r, we get [L+mK +(r—1) E[=§.

Now further assume that K? <0 and then K.(L+mK+rE)= —1+mK?<0.
Therefore |L+mK +rE| is not the zero divisor and hence write, L+mK +rE
=Y n,C;, C/s curves and n,>0. Then since

|C;+E+K|c|L+(m+1)K+(r+1)E|=0,

by II, we get that P(C,)=0 and (C,.E)<1Vi. If C?< -2 for every i, then by
genus formula, K. C; =0, Vi and hence K.(Z n; C,)=0 which is a contradiction.
So there exists a C;, with C2=—1. If C,.E=0, then C?=0, since every
exceptional curve meets E. But then by Riemann-Roch we get that /(C)=2.
On the other hand, we get an exact sequence:

0—0(C,—E)— 0(C)— 0, 0.

Since |C;—E|c|Y.n,C;—E|=|L+mK+(r—1)E|=0, we get [(C)<I(0p)=1,
which is a contradiction.
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Thus we see that, if C?=—1, then C,.E=1. Now blowing up C,, if
necessary, away from E, we may assume that C?=—1 and without loss of
generality we may assume C; meets E,. (Note that all components except E,
and E; occur with multiplicity more than one in E and E, and E; are
symmetric.) Thus we have found an exceptional curve C which meets E only in
E, and C.E,=1. Now blow down all exceptional curves not meeting
CuSuppE. We now call this new surface X. Note that we have left a
neighbourhood of Supp E, intact in all these proceedings. F=2C+2E, +2E,
+2E;+E,+E; is a divisor as in Illc) and E; is a section. If F has another
reducible member, then it must contain an exceptional divisor, by Il a). By
our assumption this exceptional curve has to meet the section E,. But, then
there must be another exceptional curve in this member by I11a), which clearly
cannot meet any Es or C. Thus we see that all other members are irreducible.
But then if we blow down C, E,, E,, E; and E, in that order we get a
minimal surface which implies K*=8—5=3>0. Thus we have shown that
eventually we may assume K?>0. Again blow down all exceptional curves not
meeting E and let C be any exceptional curve. If C meets E once as before we
can get to the stage K?=3. Let us assume that all exceptional curves meet E
more than once. Then we get by II, |C+ E+ K|+0. By Riemann-Roch:

. K
l(—E—K)z(EJrK)z(EJr2 )+1=K2>0,

Since C=(C+E+K)+(—E—K) and since [(C)=1, it is immediate that either
C+E+K=0 or —E—K=0. But since [E+K|=§, we get C+E+K=0. But

then
0=K-(C+E+K)=—~1+K? = K?=1.

Also, since Eg.E=—1, E,.C=—E..E—E,.K=1. Again, C.E=~-C?~C.K
=2. But E; occurs with multiplicity 2 in E and therefore C can only meet E,.
Again, F=E,+E,+2E,+2E,+2C gives a ruling with E, and E as sections
by Illc). If we blow down C, E,, E; and E, in that order we see that the
image of F is irreducible. But now Ef=—2 and EZ=—1 and hence this
cannot be a minimal fibration. So there exists another exceptional curve D in
another fibre. By our minimality D has to meet E and hence can meet only E,
and E. If it met both, then since D. C=0, we get,

0=D.C+D.E+D.K=D.E~12=1,

which is a contradiction. So it meets either E; or E; transversally and we are
reduced to the case K*=3. Now we may also assume that the exceptional
curve C meets E, transversally once and does not meet any other components
of E. Now, if we blow down all curves in CuSupp E except E, we get IP? and
image of E,=I, a line in IP?, and image of the remaining curves is a point P
on [

By Riemann-Roch, I(~K)=K?+1=4. (In fact I(—K)=4) If Ge|—K]| is a
general elliptic curve, the image of G in IP? is an elliptic curve flexed at P with
tangent as I Since KZ?=3, any two such curves must meet at P atleast 6
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times. If we assume that P=(0,1,0) and [: Z=0, then a basis for this vector
space of curves is Y?Z— X3, YZ? XZ? Z3. In particular we may find non-
singular elliptic curves in this family with any given value of the j-function.
Thus given two such singularities we get two lines !, and I, in IP?, points P on
I, and Q on [/, and elliptic curves G, and G, passing through P and Q
respectively with flexes and I, and [, the respective tangents. From the above
remark we may in addition assume that G, and G, have the same j. But then
there exists an automorphism of IP? which takes /, to [,, P to Q and G, to G,.
It is immediate that this automorphism lifts to the two surfaces containing the
E¢-singularity which takes one normal point to the other. Thus we see that all
E-singularities on rational surfaces have isomorphic local rings. This proves
Theorem 1, i).

Remark. The map X —IP(H°(—K))=1P? is the blowing down of the E and the
image is a cubic normal surface with an E-singularity.

Case of E,. The graph of E, is

and the fundamental cycle is,
E=2E +3E,+4E,+2E,+3E;+2E,+E,.

Exactly as before, we see that, we can assume K2=2 and there exists an
exceptional curve C meeting only E,, with C.E=1. Again, since I(—K)=3,
there exists an elliptic curve with non-zero j-function in |— K] and the argu-
ment is identical as in Eg.

Case of E,. Here the graph is,

Es |

E4

Fig. 3.

and the fundamental cycle E=2E, +3E,+4E,+5E,+6E,+3E,+4E,+2E,.
Note that no component of E has multiplicity one and hence no other curves
can meet E exactly once. As before we may reduce to the case K2>0. Again
we get for any exceptional curve C, either CNnE=§ or |C+E+ K|+0, since



Rational Double Points on a Rational Surface 257

CnE=§ or C.E=2. But since K*=10—rank of PicX and these 8 com-
ponents are linearly independent in Pix X and do not generate it, K2 <1 (IV).
Thus we get that K?=1 and all exceptional curves meet E at least twice. If
C is any such, |C+E+K|+0 and |—E —K|=+0 implies as before C+E+K=0.
Now one may easily verify that C.E, =1 and C.E;=0, i> 1. Also by somewhat
tedious computation, one may check that 1=h%(—K~E)=h%(—~K)~1, the-
reby proving that h°(—K)=2 and h'(—K)=0. Also one checks that |—K]| has
exactly one base point which lies on C, away from CnE. Since general
member of |—K]| is non-singular near the base point, we get that general
member of |- K] is non-singular elliptic. Now as before we may blow down
these curves in the order: C, E, E,, E5, E,, E5, E, and E4 to get as the image
of E¢ a line ! in IP? and these elliptic curves to elliptic curves in IP? flexed
along | st the point P which is the image of Eu C~E¢. Also the image of
|— K| is generated by 3/ and any of the image elliptic curves. Let G be a
general member of this family. If j(G)+0 we see that for almost all values of j,
there exists a non-singular member in this pencil with this j. But if j{(G)=0,
then we see that every non-singular member of this family has j=0. In the case
j(G)=0, we can also see that the only members with j=0 are singular. These
can easily be seen by putting the equation of G in the Weierstrass form, y?
=4x3—g,x—g,. Thus by arguments as before, we see that there are at most
two local rings for Eg, one corresponding to the j=0 family and the other, in
which j varies. We will show that these two local rings are non isomorphic.

Claim. Let X, Y be surfaces with ‘minimal’ E-singularity configurations as
above. If ¢: X—Y is a birational map which is an isomorphism in the
neighbourhoods of Eg, and takes one Eg to another in the obvious fashion,
then ¢ is an isomorphism.

To show this it suffices to show that ¢ or ¢ ' is a morphism.

Since ¢ is not a morphism, there exists a rational curve C on X, CnE=0
and which after finitely many blowing ups becomes an exceptional curve. Since
CnE=0, C~—nK. So C*=n? 1f {a;} are the multiplicities of the points we
are blowing up, we get

=Y af=—1 (%)
nn—1) ai(ai_l)_
—2—+1—Z——2——0 ()
or
nz—n+2—§:ai2+2ai=0. (%Y

Substituting from (x):
—n+2-1+Y0,=0 or n=) o,+1. = n*2Y o},

contradicting ().

Now we claim that the two non-isomorphic local rings of Eg-singularities
are defined in 3-space by the equations Z?+y*+X°=0 and Z?+y*+X°
+X*y=0.

It suffices to show that these two rings are non-isomorphic, since both these
equations give rise to Eg-singularities on rational surfaces. Note that as X
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varies both equations give a family of elliptic curves on the normal surface. In
the first case all non-singular members of this pencil have j=0 and in the
second, all non-singular members of the pencil have j+0. So the following
claim proves the theorem:

Claim. On a non-singular surface with Ec-configuration as above, there exists a
unique elliptic pencil which contains E as part of a member.

If the claim were false, there would exist in the minimal E g-surface another
family of curves {C,}, such that C;nE=0 for general A. As before C,~ —nkK
for some n>0. Let P,,..., E be the base points of this system and a,,...,a, be
the multiplicity of a general C,, at the base points. Since we get an elliptic
pencil when we blow up the base points, we get:

n* =Y al=0
nn—1)
2

+1 —Z——ai(a‘; D_.

a;.

1
n=Ya=r=1 and a,=n
1
But if we have a pencil of curves and a general member C has multiplicity » at
a base point, then C?*>n unless n=1. So, n=1 and we see that this is the
unique pencil which we have already constructed.
This proves Theorem 1.

§2. A, -singularities

In this section we analyse the A4, -singularities and prove Theorem 2.

The graph of an A4,-singularity is,

Fig. 4.

n

and the fundamental cycle E= ) E,. Now blow down all exceptional curves which
do not meet E. i=1

Step I. There exists a non-singular rational curve C on X with C?= —1 and
C.E=1.
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Proof. i) K*<0. Let L be any exceptional curve on X. There exists by (I) an
m=0 such that |L+m(E+K)|%@ and [L+(m+1)(E+K)|=0. Choose the least
integer r such that |[L+rE+mK|+§ and |L+(r+1)E+(m+1)K|=0, which
implies |L+mK +(r—1)E|=0. Since K*<0, K. (L+rE+mK)<—1 and so
choose any curve C eSupp|L-+rE+mK]| such that K. C<0. So C*> —1. Since
|C+E+K|c|L+(r+1)E+(m+1)K|=0, by (I}, we get that C is non-singular
rational and C.E 1. If C.E=0, then by our minimality hypothesis on X, C
cannot be exceptional and so C2=0.

Now we have an exact sequence:

0-0(C—E)—»0(C)>0;—-0

which gives [(C—E)=1l(C)—1. By Riemann-Roch inequality, [{(C)=2 and so
|C —E|+0. But then |L+(r—[)E+mK|+0 which is a contradiction.

ii) K2>0. If our surface X is a relatively minimal model, then n=1 and E,is
the unique section with negative self-intersection. Here any fibre can be taken
as C. So we may assume that X is not minimal. Assume that every exceptional
curve meet E more than once. Let L be any such. Then by (II), (L +E+ K)| +.
By Riemann-Roch, |[—E—K]|#+@. Since L=(L+E+K)+(—~E—K) and [(L)=1,
we immediately get L+ E+ K =0. So K*=1 and rk Pic X =9. Since the E;’s are
linearly independent in Pic X and do not generate Pic X(X)®@Q, we see that

YA

n+1=Z9 or n<8. It easy to see that we can blow down exactly n curves,
namely, L, E,,...,E, | successively and in the image E, has positive self
intersection. If n<<6, then we cannot have reached a relatively minimal model.
Taking the proper transform of any exceptional curve, we get a non-singular
rational curve C in X with C?=—1 or C?< —2 and C.(L+E)>0. The second
case clearly cannot happen and hence we get another exceptional curve C in
X. But C.(L+E+K)=0 gives C.E=<1 which by minimality of X gives C.E
=1. So assume n=7 or 8 By the equation L+E+K=0, we get E,=E, =1
and (E;-L)=0 for 1 <i<n |E;+2L+E,| gives a ruling of X and the member
which contains E,,...,E, , will contain an exceptional curve by (IlI), which
meets E exactly once. QED

Now blow up this curve C away from E, so that the proper transform of C
is an exceptional curve. Then blow down all exceptional curves which do not
meet C or E. Thus we have a surface X where every exceptional curve meet E
or C.

Step II. If K?<0, there exists a non-singular rational curve L, with > —1,
L.E.=land L.E.or L.E =1.

Proof. If n=1 or 2 Step T implies Step II. If n=3 and if C meets E,, then by
(1), ¢), [E,+2E,+2C+E,| gives a ruling of X and one can always choose a
section which meets only E, and has positive self intersection. If n=4 and
C.E, (or C.E;)=1 then |[E, +2E,+2C+E,| gives a ruling of X and a general
member will meet only E, exactly once. So now onwards let us assume that
nz35.
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If C meets E, (or E,_,), then F~E,+2E,+2C+E, gives a ruling of X,
E, is a section and E,, ..., E, belong to another member of this linear system.
By (IIl)a), there exists an exceptional curve in this member. If M is any
exceptional curve in this member and if it met E, we are done. If M met E,,
S5<i<mn, then E,_,+2E,+2M+E, , is another member of this system thereby
implying that, i—1=35, i+1=n Thus n=7. So E, +2E,4+2C+E,~E ,+2E,
+2M +E,~ C. If all other members of this pencil is irreducible then we must
be able to blow down the exceptional divisors in these members to reach a
minimal ruling [6]. But for such a minimal surface K?=8 and since we can
blow down exactly 6 curves, we reach a contradiction to the fact that K> <0.
So there exists another reducible member of C and let N be any exceptional
curve of that member. Then N has to meet E,. But then by (III)a) N must
occur with multiplicity one in this member and hence there exists another
exceptional curve in this member which cannot meet any of the E;s or C,
contradicting our hypothesis.

So we may assume that any such M meets E,. If 5=n we are done and
hence may assume that n>5. By (IIT)a), E; occurs with multiplicity one in this
member since it meets the section E,. Write, F~E;+aM +M'. Then 0=E,.F
=—-2+a+(E;.M’). Since E; is contained in the support of M’, (E;.M')>0
and therefore a=1. But then, —2=K.F=—14+(K.M’) and so there exists
another exceptional curve NeSuppM’'. But N also has to meet E,. Then
M+ N+E,~F by (1Il)a) and n=5.

So we may assume that C meets E, for 3<i<n—2, by symmetry. Also we
may assume that i is the largest integer such that an exceptional curve meets E
only in E, exactly once.

Now let F be a general member of the linear system E;, ,+2E,+2C
+E,;, ;. Then F~IP! and F?=0 by (Ill)a) and E; , and E,, , are sections for
this ruling. Let E’ =E,_,+E,_,+E; +El+1+El+2 Then by (1), |F +E+K|+0.
Also by [5, Lemmas 1.1 and 1.2] no curve in the support of E is in the support
of F+E+K| Ifi=4, then E, ,.(F+E+K — El ;)= —1 implies that E;, , is in
the support of |[F+E+K]|, if E,_, is, which is contradictory to the previous
statement. So we have shown that E; does not belong to the support of |F +E
+K| for i—3Zj<i+3. Since F. (F+E+K)=0 and |[E+K|=0, we see by
(ItH)a), that every curve in the support of |F +E-+K]| has negative self-in-
tersection. Since K.(F+E+K)< —2, we see that there exists at least one
exceptional curve in the support of |F+E+K|. Also since EJ.(F+I§+K)=O
for i—2<j<i+?2, we get that no curve in the support of F+E+K intersect F
or any of the E/’s with i—2<j<i+2. Also if M is any exceptional curve in the
support of |F + E+ K| which meets E,, then since M and E, belong to the same

member of the linear system |F|, we get that M.E,=1. Thus we have,
i—3

M. ZE 1 and M. Y E,S1 If M. Z -E,=0, then M has to meet E, for
i+3
k>l+3 and this contradicts the max1ma11ty of i. So M meets E, for 1<k<i

—3. If M meets E, with 1 <k<i—3, then F~E,_, +2E, +2M-f—Ek+1 and then
F.E,, ,=1 and (Ek_1+2Ek+2M+Ek+1).Ei+2=0, leading to a contradiction.
So M meets E; or E, ;. If M met E,, we may as well assume that M meets E,
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for k2i+3 or the result is proved. But then F~E +2M+E, and since E;_,
must belong to this member, i—3=1. In other words we may assume that all
such exceptional curves meet E;, 5.

Write |F +E+K|=aM + M,

1=E, ,.(F+E+K)=a+(E,_,-M)
implies o=1 and E; ,.M'=0. But
—2=K.(F+E+K)=—1+(K.M’)

shows that there exists an exceptional curve in support of M’, which does not
meet E; ; contradicting the above deduction.

Step I11. Now we analyse the case K?>0. From the first paragraph of the
Proof of Step I, we see that there exists a non-singular rational curve L with
I’z ~1and L.E=L.E, =1 if n£4. So let us assume that n>5. Since rank of
Pic X is equal to 10~ K? and the E;’s are linearly independent in Pic X and do
not generate it, we get that n<9—K? or n<8. Assume that the exceptional
curve C from Step 1 meets E, (or E,_,). Then F~E,+2E,+2C+E, gives a
ruling of X and then there exists an exceptional curve meeting only E, or
n=7, K?*=2 and there exists an exceptional curve meeting only E,.

n=>5: The only case to be dealt with is when C meets E;. F~E,+2E,+2C
+E,. If we blow down C, E; and E,, the image of E, and E, both are
sections for this ruling and both have negative self intersection. So there must
exist at least one more reducible member in F, and it is easy to see that there
exists an exceptional curve in this member which meets E only in E,, exactly
once.

n=06: By symmetry, again we may assume that C meets E;. As before taking,
F~E,+2E,+2C+E,, easy to see that there exists an exceptional curve in the
member of [F| which contains E, and meeting only E,.

n="7:If C met E, (or E;) the argument is similar to the one above and we
eventually get an exceptional curve meeting only E; or E., or exceptional
curves meeting E, and E, and blowing down away from E, if necessary,
K?=2.1f C met E,, then by similar arguments one can check that there exists an
exceptional curve M meeting E, and E, and no other E;s or C. Blowing down
exceptional curves in the linear system

|E,+2E,+2C+E{|=|E, +2M+E,),

one can easily see that there must be another reducible member, which will
provide two exceptional curves meeting E, and E, as before and blowing
down if necessary, we may further assume K*=2,

n=28: By similar analysis one may show that either there exists a non-singular
rational curve L with I?2 —~1, L.E=1 and L.E, or L.E, equals 1 or K*=1
and there exists an exceptional curve L with L+ E+ K =0.

So the upshot of all the above analysis is:
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a) Either there exists a non-singular rational curve L with L.E=1 and
L.E,or L.LE,=1 and ’=—1.

b) or n=7, K?*=2 and there exists L,M disjoint exceptional curves with
L.E=L.E,=1and M.\E=M.E =1.

¢) or n=8, K?=1, and there exists an exceptional curve L with L+E+K
=0.

Proposition 2.1. Let A be the local ring of an A, -singularity on a rational surface
and R=k[X,Y,Z]x y z- X be a complete surface as before which is “the”
desingularisation of such a singularity. Then the following are equivalent:

i) A~R)Z"* 1 —XY), nx1.

i) There exists a pencil of curves on X whose general member is non-singular
rational and a special member contains E and it has no base points on E, where
we are allowed to blow up points or blow down exceptional curves away from E.

ili) There exists an exceptional curve on X, if necessary after blowing up or
blowing down away from E, meeting E exactly once either in E, or E,.

Proof. 1) = ii). Consider the family given by Z = constant.

ii) = iii). By blowing up and removing base points of the pencil, the result
is clear. [Basically one has to only use (III), except when n=3, and then a
suitable section has to be used.]

iii) = 1). The result is clear if we show the following:

If X and Y are two non-singular surfaces containing E, the configuration of
an A,-singularity and in both if we have exceptional curves meeting once, in
only the extreme components of E, then we can find a birational map ¢:
X =Y which is an isomorphism in a neighbourhood of Supp E and matches
these configurations correctly.

We proceed to prove this statement: Let L be the exceptional curve
meeting say E,. Then since E+ L is an exceptional divisor, we may blow this
down to a point. By [12] this can be identified with any point on any non-
singular rational surface and hence blowing up or blowing down away from
this point, we can obtain a non-singular rational curve M with M?=0 and
whose proper transform in X is an exceptional curve meeting only E,. We call
this proper transform also by M. Now E+L+ M gives a ruling of X without
base points, whose general member is a non-singular rational curve. By blow-
ing down exceptional curves in other reducible members of this linear system
we may also assume that all other members are non-singular rational curves.
We can also find a section S meeting only L. By clementary transformations
we may further assume that $?= —n-3.

So if we have two surfaces X and Y as in the statement above, we may
further assume E, L, M, S in X exists as above and E', ', M’, §’' in Y. Now we
will construct an isomorphism of X and Y of the required kind.

Blowing down L,E,,....E, we get a relatively minimal surface isomorphic
to IF, and image of S has become the unique section of negative self-in-
tersection and image of M has become a fiber. Similarly for Y. Now taking an
isomorphism of these surfaces which take the image of M to image of M’, one
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can easily check that it lifts to an isomorphism of X and Y of the required
type.

This proves part of Theorem II and settles the case a). Now we will analyse
the cases b) and c).

b) First we will show that this case cannot lead to the case in the above
proposition. For this it clearly suffices to show that there exists no curve D
which meets E, once and does not meet any other E;s. If such a curve existed
let D. L=r and D.M =s. Since

E,+2E,+2L+E,~E,+2E.+2M+E,
we get
D.(E,+2E,+2L+E3)=D.(Eq+2E,+2M +E>)

implying 2r+1=2s which is a contradiction. Thus we seec that this A.,-
singularity is not isomorphic to the one in the Proposition. Now we shall show
that there is only one such and prove ii) of Theorem 2.

The following statements are easy to verify using Riemann-Roch theorem
and intersection theory:

i) —K=E,+E,+L+M+2E,+2E,+2E,+2E,+2E..

i) I(—K)=3, |—K]| has no base points and K.D =0 for any curve D, not
equal to one of the E/’s.

So one gets a morphism X —»IP(H°(—K))=1IP? and this factors through ¥,
which is the blown down of E. Also the mapf: Y —1IP? is finite and of degree
2, since K?=2.

Let PeY be the A,-singular point and Q=f(P). We have fly_g:
X —E—IP2—Q a double cover and a line ! in IP? pulls back to —K in X —E.
Using general formulas about double covers, one gets, —K=f*I=f*(3])
—1f*B where B=branch locus of f. Let deg B=2d. Then f*(l)=/*((3—d)!) on
X—E or f¥*((d—2))=0. But f*() is not a torsion element in Pic(X —E)
because nK~ Y p,E; for any n,p,, on X: Therefore d=2. Thus f: Y—>IP* is a
double cover branched along a quartic. Also the singular points of this curve
will give rise to singular points of Y and hence it has exactly one singular
point.

If f(x,y)=0 define the branch curve near the singular point, Z2=f(x,y)
gives the equation of the rational double point. Since we know the initial form
of such an equation to be product of two distinct “variables”, we see that
order of f must be exactly two. i.e. B has a double point. We may blow up IP?
at this point, successively and resolve singularities of B. By taking the double
cover of the desingularisation, branched along the proper transform, we get a
desingularisation of the rational singularity. But, since there are 7 components
in this special fibre and each exceptional curve of the blown up of IP? can have
at most two curves in its inverse image, we see that the number of times we
need to blow up is bigger than or equal to 7/2. In other words, the quartic
must have at least 4 singular points (including the infinitely near). If the
quartic were irreducible, then it can have at most 3 singular points. So it must
be reducible. If the quartic is a cubic and the tangent at a flex, it is easy to see
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that it has only 3 singular points. So the quartic must be two conics touching 4
times at a point. Since every pair of such conics can be taken by an automor-
phism of IP? to the ones given by y—x?>=0 and y—x?—y?=0, we have proved
Theorem 2, ii).

c) In this case again we will show that the singularity we get is not the
same as in the proposition. If not, there must be a curve F on X such that
F.E.=1 and F.E, or F.E;=1. Without loss of generality, assume that F.E,
=1. Now we may blow down L,E,,...,E; to get IP* and the image of E; is a
cubic, with one ordinary double point: If [ is the pull back of a general line of
IP? in X, then it is easy to see that, Eg~3/—2E,—3E,...8E,—9L. So F.E,
=F.(31-9L)=3.F.(I-3L)%1. Any such Ag-singularity can be obtained from
IP? by blowing up points on a nodal cubic (also infinitely near) and the choice
of these points is completely determined once we fix the cubic and the two
tangents at the singular point. But any such cubic with prescribed tangents can
be taken to any other by an automorphism of IP?, we see that any such A,-
singularity is isomorphic to any other of the same kind. So it suffices to study
any one such.

Let E,, E; and L be three lines in IP?* forming a triangle. Also let o:
IP? > IP? be an involution which takes E, to E5 and leaves L fixed. Now blow
up E,nL and E;nL and call the exceptional curves E; and E, respectively.
Also denote by the same names the proper transforms of our original curves.
Then o lifts to an involution of this new surface and E,nE, is taken to
E,nEg by this. Blow up these two points and call the new exceptional curves
E, and E,. The involution still liftes and blow up E,nE, and E;~E, and call
the exceptional curves E, and E. respectively. The involution still lifts. Let P
be some point of E; away from E,nE; and E;nE, and let Q be its image
under the involution on E.

Blow up P and Q and we have a surface X of the type described in c) and
in addition it has an involution as above. Call the last two exceptional curves
M and N and let us call this involution also ¢. For the involution of IP? it is
easy to see that the fixed point set is a line through E,nE, and an isolated
point on L away from E; and E,. So the fixed point set of ¢: X - X is a non-
singular rational curve S through E,nE, not meeting any other Es, $?=1,
S.L=1 and a point on L away from E. Blowing up this point and calling this
new surface still X, the fixed point set is Su {the new exceptional curve=T
say}. If we take the quotient of X by this involution, we get a smooth surface
Y and call the map from X to Y, f. One can verify the following easily:

f(E)=f(E;)=F,, an exceptional curve.

fE)=fE)=F a non-singular rational curve with F7 = —2.
fE)=f(E))=F,~P', F'=-2

fIE)=fEg=F, =P, F'=-2

f(§)=S, §'?=2, § is tangent to F,.
fy=L, L*=-—1, f(D=T, T?*=-2
fM)=f(N)=M', M?*=-1.
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Now we blow down E and the corresponding F’s. Since F's form a re-
ducible exceptional divisor, the blown down is a smooth surface say Y. Let X’
be the blown down of X and f': X' — Y, the corresponding double cover. Of
course Y’ is rational and it is easy to see that K7 =8. Also the image D of T
in Y’ is a curve with self-intersection —2 and hence Y'xIF,. Let f be a fibre of
IF,. The branch locus of /7 is the disjoint union of the image of §" in Y” and D.
The image of §" in Y’ is a rational curve with a cusp and 3 consecutive cusps.
By an elementary computation, one can show that the equation of this curve
in IF,~(Dua general fibre) to be (X +Y??+ X3 So the equation of the X',
near the Ag-singularity is, Z?=(X + Y?*)?*+ X? and this proves Theorem 2, iii).

§3. D, -singularities

The D, -configuration is:

and the fundamental cycle E=E +E,+2E,+...+2E,_ | +E, .E.E=0 if
i+n—1 and E.E, ;= —1. Also if L is an exceptional curve which meets E in
only E, exactly once then |E+E,+2L| gives a ruling of X. So our attempt
will be to show that such an exceptional curve exists in most cases.

Now blow down all exceptional curves not meeting any of the E;s.

Let L be any exceptional curve. If L.E,=1, we are done by the above
remark. Also if L.E=L.E, =1, then 2L+2E,+E,+2E,+E,] gives a ruling
and hence if <4, we would have proved the theorem. If n=35, then a general
member of the linear system meets only E, exactly once and blowing it up
once we would be done. If n>5, then Eg, ..., E, belong to another member of
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the same linear system and by (III), this must contain an exceptional curve M
which meets only one of the E/’s exactly once. If M.E =1, we are done. If
M.E,=1 for 6<i<n, then E; | +2E,+2M+E, | is another member of this
linear system giving us #=8 and M meeting only E,. This case is the excep-
tional case. So if n+8, we may assume M meets E; and then M occurs with
multiplicity one in this member giving us one more exceptional curve N in this
member. So N should also meet E, or we are done. But then M+ N+E is a
member of this linear system, giving us n=6 and an exceptional curve meeting
only E.. So in all these cases we are done. So now on we may assume in
addition that L. E =2 for every exceptional curve.

i) K2<0. By (ID [L+E+K|#*0 and by (I) we can find an m=0, such that
IL+m(E+K)|#0 and |L+(m+1)(E+K)|=0. Since K.(L+m(E+K))<0, take
any curve Ce|L+m(E+K)| such that K.C <0. Then since |[C+E+K|=0, we
see by (II) that C is a non-singular rational curve and C.E =1. Since K. C <0,
C*z—1.If C*=—1 then C.E=1 and we are done. If C*20, since C.EZ1,
it is easy to see that this case quickly leads to the theorem.

ii) K*>0. Again by (II). |IL+E+K}+0 and by Riemann-Roch inequality,
|—E—K|#0. But [(L)=1 and L=(L+E+K)+(—E—K) implies that L+ E+K
=0. E,_;.(L+E+K)=0 implies E, ,.L=1. Also L.E.=2. But E,_, occurs
with multiplicity 2 in E and hence L meets only E, |, amongst the Es. Now
|E,_,+2E, ,+2L+E, gives a ruling of X. (n23). Using this ruling it is easy
to verify that if n38, there is the required ruling. The only trouble comes when
n=38 and there exists exceptional curves L and M meeting E in E; and E,
respectively, exactly once.

In this case we will show that there is no rational pencil on X of the
required kind, but an elliptic pencil. If there were such a rational pencil, then if
necessary after blowing up or blowing down away from E, we must be able to
find an exceptional curve meeting only Eg4, exactly once. So in X, there must
exist a curve C with C.E;=C.E=1. But

2L+2E,+E,+2E,+E,~E;+Eg+2E,+2M

so C.2L=1+(C.2M), which is impossible. K?=1 and it is easy to see that
| — K| gives the required elliptic pencil.

§4. K, of Surfaces

In this section we will state some facts about K, of affine surfaces and see how
the earlier theorems help us to compute certain K-groups. K (4), where 4 is a
ring, as usual, would mean the Grothendieck group of finitely generated
projective modules upto stable equivalence or equivalently the abelian group
generated by all finitely generated modules of finite homological dimension with
equivalences defined by exact sequences. The results are all due to M.P.
Murthy. A will denote the affine ring of a normal affine surface X.

Lemma 1. If there exists a rational curve on X, passing through a point xe X
and not passing through any singular point of X, then the class [k(x)] e Ky(A)
is zero.
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Proof. Let P be the prime ideal defining the rational curve and M o P, define x.
Let B=integral closure of 4/P and let N be some maximal ideal of B sitting
over M/P. Then [B]e K,(A), by our assumption and [k(x)]=[A/M]=[B/N].
But B is a principal ideal domain and hence N is principal over B. [B/N]
=[B]-[N]=[B]-[B]=0.

Lemma 2. If X is a rational affine surface which has exactly one rational
singularity of the type A,, n+7,8 or D,, n=+38, then K,(X)=Pic X.

Proof. Let the ring of functions of X be 4. By the theorems, there exists a
pencil of rational curves on X, which is a ruling. Let C be the member of this
pencil, which contains the singular point. So for any point xe X, x¢C, [k(x)]
=0in K,(4) by Lemma 1.

If P is any projective module of rank > 1, then P=Free@Prank?2. ("."dim
A =2). So to prove the lemma, it suffices to consider projective modules of rank
2. Let P be projective of rank 2. Then P|§ is a projective module of rank 2 on
a curve and hence has a nowhere vanishing section. Lifting such a section, we
get a map, P —1 — 0, where the variety defined by the ideal I is disjoint from C.
It is clear by checking locally that the kernel of this map is projective of rank
1. So it suffices to show that [I] is the class of a projective module of rank 1.
Filtering I by height one and two primes, and since [k(x)]=0 for every x¢ C,
we get [A/1]1=[A/J], where J is an ideal of pure height one and J is locally
free of rank one at every point. Thus [/]=[J] e Pic X.

Corollary. Any projective module P over A as before is isomorphic to Free
rk
module @ A P.

Proof. Follows from Lemma 2 and the cancellation theorem of Murthy-Swan
[11].

Remarks. The above results borrow heavily from the work of Miyanishi and
Sugie [9] and what is done here is an attempt to obtain a TP'-ruling of a
certain kind whereas in [13], it is proved following closely the techniques of
[9] that an “A’-ruling” can always be obtained. Also similar results can be
proved for some non-rational surfaces, especially for ruled surfaces. These
results will be published at a later stage.

I sincerely thank Professors M.P. Murthy, Spencer Bloch, Rick Miranda,
Adam Ginenski and many others at the University of Chicago for providing
me with the required amount of stimulation while the work was in progress. 1
thank the University of Chicago for their hospitality.
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