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w O. Introduction 

In [6], we tried to classify a certain class of  ra t ional  singularities over a 
ra t ional  surface, algebraically. One  condit ion which made  the local rings of  
such singularities unique, was that  they all had  " logar i thmic  Koda i r a  dimen- 
sion", - o r .  In this paper  we study a p rominen t  class of  such local rings, the 
rat ional  double points. It turns out that  even in this special case, not all local 
rings are i somorphic  in some classes. To  illustrate the s ta tement  above,  we give 
the s ta tements  of  the theorems proved. Let us fix some nota t ion:  

k = a n  algebraically closed field of characteristic zero. 

A = a  normal  local domain  of dimension two which is the germs of functions 
at a point  on a normal  rat ional  surface over  k. 

R =k[X,  Y, Z]~x,r,z~ where X, Y and Z are indeterminates.  
denotes comple t ion  with respect to the maximal  ideal. 

Theorem 1. I f  
i) / i  ~ R/(X 4 + y3 + Z2), then A ~ R/(X 4 + Y 3 + Z2). (E6) 

ii) I f  A~--R/(y3 + x a y  + z  2) then A_~R/(Y3 + X3y+z2 ) .  (ET) 

iii) I f  .,t~-R/(XS+ Y3+Z2) ,  then either A~-R/(XS+ Y3+Z2)  or A~-R/(X4y 
+ X s +  y 3 +  Z 2) and these two local rings are non-isomorphic. (Es) 

Theorem 2. I f  A _~ I~/(Z" + 1 - -  X g ) ,  then 

i) A ~ R / ( Z " + I - X y )  if n#7,8.  
ii) I f  n = 7 ,  A ~ - R / ( Z S - X Y )  or A ~ R / ( Z 2 - ( y - x 2 ) ( y - x 2 - y 2 ) )  and 

these two local rings are non-isomorphic. 
iii) I f  n = 8 ,  A ' ~ R / ( Z 9 - X y )  or A ~ - R / ( Z 2 - ( X +  y 3 ) z - X  3, and these two 

local rings are non-isomorphic. (A,) 
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Theorem 3. Let X be a normal rational surface with p e X ,  a Dn-type singularity 
and X - { p } ,  nonsingular. Then either there exists a rational pencil with p, not a 
base point, whose general member is non-singular rational or n = 8  and there 
exists an elliptic pencil which does not have p as a base point. 

Remark. In Theorem 3, one hopes that the local rings are unique for n:# 8, but 
we have not been able to find a proof. 

These results grew out of an attempt to prove that the Chow groups of 
affine rational surfaces containing at worst rational double points are zero. For 
instance, the above theorems tell us that Chow groups for rational affine 
surfaces containing exactly one rational double point and non-singular outside, 
are zero if it is of type A, with n + 7, 8 or D, with n + 8. We will prove a precise 
result in w 4. Spencer Bloch had informed us that he has a proof for all rational 
double points without classifying the local rings themselves. 

The proofs of these theorems, especially that of Theorem 2, are somewhat 
tedious. The arguments are repetitive and so we would sometimes only sketch 
the proofs of steps which are similar to earlier steps. 

We fix some more notations and conventions. We will always be dealing 
with rational surfaces and hence the term "surface" without qualification 
would always mean so. We will write "exceptional curve" for exceptional 
curves of the first kind. We will say that a curve C "meets" a curve D to 
sometimes mean also that they meet transversally at one point. All unproved 
statements about rational double points can be found in [2], [3] and [8]. We 
may use the same letter for a divisor or its support when there is no confusion. 
Also "ruling" always would mean a pencil of curves with no base points whose 
general member  is non-singular rational. 

We state below some of the known results which are frequently used, for 
the convenience of the reader. 

I. Let X be a complete non-singular rational surface and let E be an 
effective divisor on it. Suppose that t c ( E + K ) = -  ~ ,  where K is the canonical 
bundle of  X. Then for any L e P i c X ,  [L+m(E+K)[=O for m>>0 [3]. 

II. Let X be a non-singular rational surface and let E be any effective 
divisor. Le tD be a reduced irreducible curve on X. If [D+E+K[=O, then 

E.(E+K) 
D ~ I P  1 and (D.E)<= 

2 

Proof Apply Riemann-Roch inequality for [D + KI and [D + E + K[. 

In particular, if E is the fundamental cycle of a rational double point and 
e (E + K) 

[D+E+KI=O, then (D.E)<__ 1, since - - 1. 
2 

III. a) If C ~ I P  1 and C 2 = 0  on a non-singular rational surface X, then l(C) 
= 2  and C gives a ruling of X. If F~ICI  is a reducible member, then there 
exists an exceptional curve of the first kind L in the support of F. Also any 
curve in Supp F which meets a section of this ruling occurs with multiplicity 
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one in F. In particular, if L meets a section, then there exists another excep- 
tional curve M in Supp F. If C is a curve on X which gives a ruling and D is 
any other curve with C.D=O, then D is contained in a member  of LCI. Also 
D 2 < 0  and D 2 = 0  if and only if C~D [6]. 

b) If ICI is a ruling of X and FeLCI, then since I F + K I = 0 ,  we get that every 
component  of F is ~ IP  1. Let E1 . . . . .  E, be in SuppF  and D any other member 
of Supp F. Assume also that U Ei is connected. Then D.(~ Ei) <= 1. 

Proof. By (II) it suffices to show that E i . Ei+K = - 2 .  Induct on n. 
" 1  n - - 1  

n =  1 is clear since Ei~IP 1. Let E, be a component  such that ~ E i is connected. 
n - - 1  n - 1  n - - 1  1 n 

BY inducti~ ( ~ E i )  ( ~ E i + K ) = - 2  and E"'~Ei<=I" But since ~Ei i s ,  1 ~ 1 1 

connected, E,- ~ E~ = 1. Thus 

= - 2 + 2 - 2 = - 2 .  
P 

c) Let D=~n~Ei, be an effective divisor with D.Ei=OV ~ and K.D=-2.  
1 

T h e n / ( D ) = 2  and ]D[ gives a ruling of X. 

Proof Since D is connected, we get O=Ei.D=ni(E~)+ ~ nj(EiEi) and hence 
i:~j 

E~ <0, for every i, if p > 1. Inducting on p, the case p =  1 is trivial from a). If 
p > l ,  then since K . D = - 2 ,  let K.Ep<O. But then Ep is an exceptional curve. 

p - - 1  

Let f:  X ~ Y be the blowing down of Ep and D' = ~ nil(El). Then, since Ep- D 
1 

=O,f*D'=D. Esay to see that D'.f(E~)=O l<_i<_p-1. Also Kr.D'=-2 .  Now 
by induction we are done. 

IV. Rational Double Points 

The graphs in this article can be found for instance in [1]. It is also easy to 
compute the fundamental cycle, given the graph, from the definition in [2]. By 
Theorem (2.7) of [1], we get that if E = t h e  fundamental cycle of a rational 
double point on a rational surface, then tm(E+K)l=O V m > 0  where K is the 
canonical divisor. Also if E has n distinct components, then they are linearly 
independent in PicX, and do not generate PicX, since the corresponding 
intersection matrix is negative definite by [2]. So rk P i c X > n .  Also by [8], the 
rings in the theorems all correspond to rational double points. Moreover, it is 
easy to verify that non-completed rings in the theorems do correspond to 
rational surfaces. 
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V. Double Covers 

The best place to look for the facts used is M. Artin's Thesis, though it may 
not be available. An alternate reference is Principles of Algebraic Geometry by 
Griffiths and Harris, though the information is somewhat scattered. 

w 1. E6,  E 7 and E 8 

In this section we prove Theorem 1. We will separately analyse the three cases 
and prove the corresponding statements. 

Case of E 6. The graph of the special fibre of the desingularisation of this 
singularity is: 

E~ E 5 

E2 E4 E 6 

Fig. 1. 

where E~'s are non-singular rational curves with E 2 = - 2  and they meet as in 
the diagram. The scheme-theoretic inverse image of the singular normal point 
is E = E  1 + 2 E  2 + 3 E 3 + 2 E 4 + E  5 + 2 E  6. So X is a non-singular projective sur- 
face containing a configuration of E 6. First we may blow down all exceptional 
curves not meeting E. Since X is rational and it has more than one curve with 
negative self intersection, X cannot be minimal. Let I be an exceptional curve 
on X. By our choice L must meet E. Now by I, there exists an m > 0, such that 
IL+m(E+K)I:~O and ]L+(m+I)(E+K)I=O.  Fixing this m, choose an integer 
r, minimal with the property that IL + m K  +rEI 4:0 and IL+(m + 1)K +(r  + 1)El 
= 0. Thus by minimality of r, we get IL + m K + (r - 1) El = r 

Now further assume that K 2 < 0  and then K. (L + m K + rE)= - 1  + inK2< O. 
Therefore I L +mK +rEI  is not the zero divisor and hence write, L + m K + r E  
= ~ n~ C~, C~'s curves and nl > 0. Then since 

[C~+ E + K I c I L  +(m+ I )K  +(r + I)EI=O, 

by II, we get that P,(CI)=0 and ( C i . E ) < l V i .  If C 2 < - 2  for every i, then by 
genus formula, K. Ci>O, V i and hence K.(~n~Cz)>=O which is a contradiction. 
So there exists a C i, with C { > - I .  If C~.E=O, then C2>0,  since every 
exceptional curve meets E. But then by Riemann-Roch we get that /(Ci)>2. 
On the other hand, we get an exact sequence: 

0 ~ O(C i - E) ~ O(Ci) ~ 0 E--*O. 

Since [ C i - E I c l ~ n i C i - E l = l L + m K + ( r - 1 ) E [ = r  we get l(Ci)<l(OE)=l, 
which is a contradiction. 
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Thus we see that, if C 2 > - 1 ,  then C i . E = I .  Now blowing up C i, if 
necessary, away from E, we may assume that C { = - 1  and without loss of  
generality we may assume C i meets E~. (Note that all components  except E~ 
and E 5 occur with multiplicity more  than one in E and E 1 and E 5 are 
symmetric.) Thus we have found an exceptional curve C which meets E only in 
E~ and C.E~=I. Now  blow down all exceptional curves not meeting 
C u S u p p E .  We now call this new surface X. Note  that we have left a 
ne ighbourhood of  SuppE,  intact in all these proceedings. F=2C+2EI + 2 E  s 
+2E3+E4+E 6 is a divisor as in I I I c )  and E 5 is a section. If  F has another  
reducible member,  then it must  contain an exceptional divisor, by IIIa) .  By 
our  assumption this exceptional curve has to meet the section E 5. But, then 
there must  be another  exceptional curve in this member  by IIIa),  which clearly 
cannot  meet any E[s or  C. Thus we see that all other members are irreducible. 
But then if we blow down C, E l ,  E s ,  E 3 and E 6 in that order we get a 
minimal surface which implies K S = 8 - 5 = 3 > 0 .  Thus we have shown that 
eventually we may a s s u m e  K s >0.  Again blow down all exceptional curves not 
meeting E and let C be any exceptional curve. If  C meets E once as before we 
can get to the stage Ks=3. Let us assume that  all exceptional curves meet E 
more  than once. Then we get by II, ]C + E + K I # 0. By Riemann-Roch :  

l ( -E -K)> (E+K)(E+2K) + 1 = K S  >0.  
2 

Since C = ( C  + E +  K ) + ( - E - K )  and since l(C)= 1, it is immediate that either 
C+E+K=O or - E - K = O .  But since ] E + K [ = ~ ,  we get C+E+K=O. But 
then 

O=K. (C+E+K)=- I+K s ~ K 2 = l .  

Also, since E 6 . E = - I  , E6. C=-E6 .E -E6 .K=I .  Again, C . E = - C S - C . K  
=2.  But E 6 occu r s  with multiplicity 2 in E and therefore C can only meet E 6. 

Again, F=Es+E4+2E3+2E6+2C gives a ruling with E1 and E 5 as sections 
by IIIc). If  we blow down C, E6, E 3 and E 4 in that order we see that the 
image of  F is irreducible. But now E ~ = - 2  and E ~ = - I  and hence this 
cannot  be a minimal fibration. So there exists another  exceptional curve D in 
another  fibre. By our minimality D has to meet  E and hence can meet only E a 
and E s. If  it met both, then since D. C = 0 ,  we get, 

O=D.C+D.E+D.K=D.E-I>I,  

which is a contradiction. So it meets either E 1 or E 5 transversally and we are 
reduced to the case K 2 = 3 .  Now we may also assume that the exceptional 
curve C meets E a transversally once and does not meet any other components  
of  E. Now, if we blow down all curves in C w Supp E except E6,  we get lP 2 and 
image of E 6 = l, a line in IP 2, and image of  the remaining curves is a point P 
on l. 

By Riemann-Roch,  l(-K)>KS+l=4. (In fact l ( - K ) = 4 . )  If  GEl-K] is a 
general elliptic curve, the image of  G in IP s is an elliptic curve flexed at P with 
tangent  as I. Since K S = 3 ,  any two such curves must  meet at P atleast 6 
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times. If we assume that  P = ( 0 ,  1,0) and h Z = 0 ,  then a basis for this vector  
space of curves is Y Z z - x 3 ,  YZ 2, XZ  2, Z 3. In part icular  we may  find non- 
singular elliptic curves in this family with any given value of the j-function. 
Thus  given two such singularities we get two lines 11 and 12 in IP 2, points  P on 
l~ and  Q o n  l 2 and elliptic curves G~ and G 2 passing through P and Q 
respectively with flexes and l~ and l 2 the respective tangents. F r o m  the above 
remark  we may  in addi t ion assume that  G~ and G 2 have the same j. But then 
there exists an au tomorph i sm of IP 2 which takes ll to 12, P to Q and G I t o  G 2. 

It is immedia te  that  this au tomorph i sm lifts to the two surfaces containing the 
E6-singularity which takes one normal  point  to the other. Thus  we see that  all 
E6-singularities on rat ional  surfaces have isomorphic  local rings. This proves 
Theorem 1, i). 

Remark. The mapX--*IP(H~ 3 is the blowing down of the E and the 
image is a cubic normal  surface with an E6-singularity. 

Case of E 7. The graph of E 7 is 

E~._ E 5 

E~ E 6 
E2 E 4 

E7 
Fig. 2. 

and the fundamenta l  cycle is, 

E= 2El + 3E2 +4Ea + 2E4 + 3Es + 2E6 + E7. 

Exactly as before, we see that, we can assume K 2 = 2  and there exists an 
exceptional  curve C meeting only ET, with C.E=I.  Again, since / ( - K ) > 3 ,  
there exists an elliptic curve with non-zero j - funct ion in I - K ]  and the argu- 
ment  is identical as in E 6. 

Case of E 8. Here  the graph is, 

E5 

El E3-~ 

E2 

L 
E4 

Fig. 3. 

E6 

--•E 8 
E7 

and the fundamenta l  cycle E = 2E 1 + 3E2 -I- 4E  3 4- 5E 4 4- 6E 5 + 3E 6 + 4E 7 -+- 2E s. 
No te  that  no c o m p o n e n t  of E has multiplicity one and hence no other curves 
can meet  E exactly once. As before we may  reduce to the case K 2 > 0 .  Again 
we get for any  exceptional  curve C, either Cc~E=r or IC+E+KI~r  since 
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Cc~E=~ or C.E>2. But since K 2 = 1 0 - r a n k  of P icX and these 8 com- 
ponents are linearly independent in Pix X and do not generate it, K 2 ~  1 (IV). 

Thus we get that K 2 =  1 and all exceptional curves meet E at least twice. If 
C is any such, ]C+E+KI~O and I - E - K I ~ O  implies as before C+E+K=O. 
Now one may easily verify that C.E 1 = 1 and C.EI=O, i>  1. Also by somewhat 
tedious computation, one may check that I = h ~ 1 7 6  the- 
reby proving that h ~  and h l ( - K ) = 0 .  Also one checks that I - K ]  has 
exactly one base point which lies on C, away from C~E. Since general 
member  of I - K [  is non-singular near the base point, we get that general 
member  of I - K [  is non-singular elliptic. Now as before we may blow down 
these curves in the order: C, E 1, E2, E3, E4, Es, E 7 and E s to get as the image 
of E 6 a line I in IP 2 and these elliptic curves to elliptic curves in ]p2 flexed 
along l st the point P which is the image of E w C \ E  6. Also the image of 
I - K [  is generated by 31 and any of the image elliptic curves. Let G be a 
general member  of this family. Ifj(G)=t=0 we see that for almost all values of j, 
there exists a non-singular member in this pencil with this j. But if j (G)=0,  
then we see that every non-singular member  of this family has j - -0 .  In the case 
j(G)+O, we can also see that the only members with j = 0  are singular. These 
can easily be seen by putting the equation of G in the Weierstrass form, y2 
= 4 x 3 - g z x - g 3  . Thus by arguments as before, we see that there are at most 
two local rings for E s, one corresponding to the j = 0  family and the other, in 
which j varies. We will show that these two local rings are non isomorphic. 

Claim. Let X, Y be surfaces with 'minimal '  Es-singularity configurations as 
above. If rp: X--+Y is a birational map which is an isomorphism in the 
neighbourhoods of Es, and takes one E s to another in the obvious fashion, 
then r is an isomorphism. 

To show this it suffices to show that rp or r is a morphism. 
Since r is not a morphism, there exists a rational curve C on X, CmE=O 

and which after finitely many blowing ups becomes an exceptional curve. Since 
C m E = 0 ,  C,,~ -nK .  So C 2 = n  2. If {ai} are the multiplicities of the points we 
are blowing up, we get 

n 2 - - 2 ~  if= --1. 

n(n-  1) . . -  
2 t- 1 - Z : r  1 )=0  

or 
n2-n+2-y~,~+E:, ,=O. 

Substituting from (*): 

- n + 2 - 1 + E ~ i = 0  or n = E ~ i + l .  ~ ng>Ea{, 

contradicting (.). 
Now we claim that the two non-isomorphic local rings of Es-singularities 

are defined in 3-space by the equations ZZq'-y3q-X5=O and Z2+y3+X s 
+ X 4 y = 0 .  

It suffices to show that these two rings are non-isomorphic, since both these 
equations give rise to Es-singularities on rational surfaces. Note that as X 

(,) 

(**) 

t**)' 
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varies both equations give a family of elliptic curves on the normal surface. In 
the first case all non-singular members of this pencil have j = 0  and in the 
second, all non-singular members of the pencil have j4=0. So the following 
claim proves the theorem: 

Claim. On a non-singular surface with E8-configuration as above, there exists a 
unique elliptic pencil which contains E as part of a member. 

If the claim were false, there would exist in the minimal E8-surface another 
family of curves {C~}, such that C~c~E=O for general 2. As before C ~  - n K  
for some n>0 .  Let P1,-..,P, be the base points of this system and al ,  . . . ,a  r be 
the multiplicity of a general Ca, at the base points. Since we get an elliptic 
pencil when we blow up the base points, we get '  

n 2-ya =0 

n(n--1) _y,  ai(ai-1)_l.  
~ . +  1 ~ 2 

. ' . n : ~  a i. 
1 
r 

ne=~a~ ~ r=l  and al=n. 
1 

But if we have a pencil of curves and a general member  C has multiplicity n at 
a base point, then C2>n unless n = l .  So, n = l  and we see that this is the 
unique pencil which we have already constructed. 

This proves Theorem 1. 

w 2. A.-singularities 

In this section we analyse the A,-singularities and prove Theorem 2. 

The graph of an A,-singularity is, 

E2 En-1 En 

/ V/V ....... 
E1 E3 En-2 

Fig. 4. 

and the fundamental cycle E -- ~ E~. Now blow down all exceptional curves which 
do not meet E. i= 1 

Step I. There exists a non-singular rational curve C on X with C 2 > -  1 and 
C.E=I. 
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Proof i) K2~0. Let L be any exceptional curve on X. There exists by (I) an 
m > 0 such that IL + m(E + K)I 4= ~ and [L + (m + 1) (E + K)[ = ~. Choose the least 
integer r such that IL+rE+mKl+~b and IL+(r+l)E+(m+l)K]=~, which 
implies LL+mK+(r-1)EI=~. Since K 2 < 0 ,  K . ( L + r E + m K ) < - I  and so 
choose any curve C c Supp IL + rE + inK4 such that K. C < 0. So C 2 > - 1. Since 
IC+E+KIclL+(r+I)E+(m+I)K[=O, by (II), we get that C is non-singular 
rational and C.E < 1. If C .E  =0,  then by our  minimality hypothesis on X, C 
cannot  be exceptional and so C 2 >  0. 
Now we have an exact sequence: 

O~O(C-E)--,O(C)-~OE~O 

which gives I(C-E)>=I(C)-I. By Riemann-Roch  inequality, 1(C)=>2 and so 
[C- EI +0.  But then I L + ( r - 1 ) E  + m KI 4=0 which is a contradiction. 

ii) K 2 > 0 .  If  our surface X is a relatively minimal model, then n = l  and E,is  
the unique section with negative self-intersection. Here any fibre can be taken 
as C. So we may assume that X is not  minimal. Assume that every exceptional 
curve meet E more  than once. Let L be any such. Then by (II), I(L+E+K)I :~. 
By Riemann-Roch,  I - E - KI 4= 0. Since L = (L + E + K) + ( - E - K) and I(L) = 1, 
we immediately get L+E+K=O. So K 2= 1 and rk P i c X = 9 .  Since the Ei's are 
linearly independent in P i c X  and do not generate PicX@ll~,  we see that 

n + l  < 9  or n < 8 .  It easy to see that we can blow down exactly n curves, 
namely, L,E~,...,E,_~ successively and in the image E,  has positive self 
intersection. If n <  6, then we cannot  have reached a relatively minimal model. 
Taking the proper  transform of any exceptional curve, we get a non-singular 
rational curve C in X with C z = - 1 or C 2 < - 2 and C.(L + E) > 0. The second 
case clearly cannot  happen and hence we get another exceptional curve C in 
X. But C.(L + E  + K ) =  0 gives C. E < 1 which by minimality of X gives C . E  
=1.  So assume n = 7  or 8. By the equat ion L+E+K=O, we get E I = E , = I  
and ( E I . L ) = 0  for l < i < n  IEI+2L+E,I gives a ruling of  X and the member  
which contains E3,...,E,_ 2 will contain an exceptional curve by (III), which 
meets E exactly once. Q E D  

Now blow up this curve C away from E, so that the proper t ransform of C 
is an exceptional curve. Then blow down all exceptional curves which do not 
meet C or E. Thus we have a surface X where every exceptional curve meet E 
or C. 

Step II. If  K2~0, there exists a non-singular rational curve L, with L2~--1, 
L . E . = I  a n d L . E ,  o r L . E , = l .  

Proof If n = l  or 2 Step I implies Step II. If  n = 3  and if C meets E z, then by 
(III), c), [Et+2Ez+2C+E3] gives a ruling of  X and one can always choose a 
section which meets only E 1 and has positive self intersection. If  n = 4  and 
C. E2 (or C. E s) -- 1 then I E 1 + 2E 2 "}- 2 C + E s l gives a ruling of X and a general 
member  will meet only E 4 exactly once. So now onwards let us assume that 
n > 5 .  
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If C m e e t s  E 2 (or E,_I), then F ~ E I + 2 E z + 2 C + E  3 gives a ruling of X, 
E 4 is a section and Es , . . . ,E ,  belong to another member of this linear system. 
By (III)a), there exists an exceptional curve in this member. If M is any 
exceptional curve in this member and if it met E, we are done. If M met El, 
5 < i < n, then El_ 1 + 2E i + 2M + E~+ 1 is another member of this system thereby 
implying that, i - 1 = 5 ,  i + l = n .  Thus n=7.  So E ~ + 2 E z + 2 C + E 3 ~ E s + 2 E  6 
+2M+ET~C.  If all other members of this pencil is irreducible then we must 
be able to blow down the exceptional divisors in these members to reach a 
minimal ruling [6]. But for such a minimal surface K 2 = 8  and since we can 
blow down exactly 6 curves, we reach a contradiction to the fact that K2<0.  
So there exists another reducible member of C and let N be any exceptional 
curve of that member. Then N has to meet E 4. But then by (III)a) N must 
occur with multiplicity one in this member and hence there exists another 
exceptional curve in this member which cannot meet any of the Ei's or C, 
contradicting our hypothesis. 

So we may assume that any such M meets Es. If 5 = n  we are done and 
hence may assume that n>5.  By (III)a), E 5 occurs with multiplicity one in this 
member since it meets the section E 4. Write, F ~ E  5 + aM +M'. Then 0 = E  5. F 
= - 2 + c ~ + ( E 5 . M '  ). Since E 6 is contained in the support of M', ( E s . M ' ) > 0  
and therefore c~= 1. But then, - 2 = K . F = -  1 +(K.M') and so there exists 
another exceptional curve N~SuppM' .  But N also has to meet E s. Then 
M + N + E s ~ F  by (III)a) and n=5.  

So we may assume that C meets E~ for 3 < i < n - 2 ,  by symmetry. Also we 
may assume that i is the largest integer such that an exceptional curve meets E 
only in E~ exactly once. 

Now let F be a general member of the linear system E~_~+2E~+2C 
+El+ ~. Then F ~ I P  1 and F 2 = 0  by (III)a) and E i _  2 and Ei+ 2 a r e  sections for 
this ruling. Let/~'  = Ei_ 2 -I- E i _ 1.3r E i  .+. Ei + 1 -~- Ei+ 2" Then by (II), IF +/~ + K] 4: 0. 
Also by [5, Lemmas 1.1 and 1.2] no curve in the support of E is in the support 
of [F +/~ + g]. If i__> 4, then E~_ 2- (F +/~ + K - E~_ 3) = - 1 implies that El_ 2 is in 
the support of ]F+/~+K],  if E~_ 3 is, which is contradictory to the previous 
statement. So we have shown that: Ej does not belong to the support of IF +/~ 
+KI for i-3<j<=i+3. Since F.(F+E+K)=O and ]/~+Kl=qJ, we see by 
(III)a), that every curve in the support of IF+E+KI has negative self-in- 
tersection. Since K.(F+E,+K)<=-2, we see that there exists at least one 
exceptional curve in the support of ]F+/~+K[.  Also since E3.(F+E+K)=O 
for i - -2  <j  =<i+ 2, we get that no curve in the support of F + E + K intersect F 
or any of the Ej~s with i -  2__<j < i + 2. Also if M is any exceptional curve in the 
support of [F+E+K] which meets Ek, then since M and E k belong to the same 
member of the linear system IFI, we get that M.Ek=I. Thus we have, 

i--3 i i - 3  
M. ~ Ek <=I and M. E k__< l. If M. ~, "Ek=O, then M has to meet E k for 

k = l  i+3 k=l  
k>i+ 3 and this contradicts the maximality of i. So M meets E k for 1_< k < i  
-3 .  I f M  meets E k with l < k < i - 3 ,  then F~Ek_ t+2Ek+2M+Ek+I  and then 
F . E I + 2 = I  and (Ek_I+2Ek+2M+Ek+O.Ei+2=O, leading to a contradiction. 
So M meets E~ or E~_ 3. If M met E~, we may as well assume that M meets E k 
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for k>i+3  or the result is proved.  But then F ~ E I + 2 M + E  k and since Ei_ 3 
must  belong to this member ,  i - 3  = 1. In other  words  we may  assume that  all 
such except ional  curves meet  E i_ 3. 

Wri te  IF + E + K[=~M + M', 

I = E  i 3.(F + JE + K)=o: +(Ei_ 3" M'  ) 

implies  c~ = 1 and E i_ 3- M '  = 0. But 

- 2 = K . ( F  + E + K)= - 1 +(K.M') 

shows that there exists an except ional  curve in suppor t  of  M', which does not  
meet  E i 3 cont rad ic t ing  the above  deduct ion.  

Step III. N o w  we analyse the case K 2 > 0 .  F r o m  the first pa r ag raph  of the 
P roo f  of Step II, we see that  there exists a non-s ingular  ra t iona l  curve L with 
L 2 > - I  and  L . E = L . E I = I  if n < 4 .  So let us assume that  n > 5 .  Since rank  of  
P i c X  is equal  to 1 0 - K  2 and the Ei's are l inear ly independen t  in P i c X  and do 
not  generate  it, we get that  n < 9 - K  2 or  n < 8 .  Assume that  the except ional  
curve C from Step I meets E 2 (or En_ 0. Then F ~ E I + 2 E 2 + 2 C + E  3 gives a 
rul ing of X and  then there exists an except ional  curve meet ing only En or 
n = 7, K 2 =  2 and there exists an except ional  curve meet ing only E 6. 
n = 5 :  The only case to be deal t  with is when C meets E 3. F ~ E 2 + 2 E 3 + 2 C  
+ E  4. If we blow down C, E 3 and E4, the image  of  E 1 and  E 5 bo th  are 
sections for this rul ing and  bo th  have negative self intersection.  So there must  
exist at least  one more  reducible  member  in F, and  it is easy to see tha t  there 
exists an except ional  curve in this member  which meets E only in E l ,  exact ly 
o n c e ,  

n=6: By symmetry ,  again  we m a y  assume that  C meets E 3. As before taking,  
F ~ E 2 + 2 E 3 + 2 C + E 4 ,  easy to see that  there exists an except ional  curve in the 
m e m b e r  of  fFJ which conta ins  E 6 and meet ing  only  E 6. 

n = 7 :  If C met E 3 (or Es) the a rgument  is s imilar  to the one above  and we 
eventual ly  get an except ional  curve meet ing only  E~ or ET, or except ional  
curves meet ing E 2 and E 6 and  blowing down away from E, if necessary, 
K 2 = 2. If C met E 4, then by s imilar  a rguments  one can check that  there exists an 
except ional  curve M meet ing E~ and E v and no other  E~'s or  C. Blowing down 
except ional  curves in the l inear  system 

]E 3 +2E4+2C+E51 =]E  1 + 2 M  +ETI, 

one can easily see that  there mus t  be ano ther  reducible  member ,  which will 
provide  two except ional  curves meet ing E z and E 6 as before and blowing 
down  if necessary,  we may  further assume K 2 = 2. 

n =  8: By s imilar  analysis  one m a y  show that  ei ther there exists a non-s ingular  
ra t iona l  curve L with L2>=-l, L . E = I  and  L.E~ or L.E 8 equals  1 or  K 2 = l  
and  there exists an except ional  curve L with L + E + K = 0. 

So the upshot  of  all the above  analysis  is: 
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a) Either there exists a non-singular rational curve L with L . E = I  and 
L . E  1 or L . E , = I  and L a = - l .  

b) or n=7 ,  K 2 = 2  and there exists L , M  disjoint exceptional curves with 
L . E = L . E 2 = I  and M . E = M . E 6 = I .  

c) or n=8 ,  K 2 = l ,  and there exists an exceptional curve L with L + E + K  
~ 0 .  

Proposition 2.1. Let A be the local ring of an A,-singularity on a rational surface 
and R=k[X ,Y ,Z] (x , y , z ) .  X be a complete surface as before which is "the" 
desingularisation of  such a singularity. Then the following are equivalent: 

i) A ~ - R / ( Z " + I - x y ) ,  n> l. 

ii) There exists a pencil of curves on X whose general member is non-singular 
rational and a special member contains E and it has no base points on E, where 
we are allowed to blow up points or blow down exceptional curves away from E. 

iii) There exists an exceptional curve on X,  if necessary after blowing up or 
blowing down away from E, meeting E exactly once either in E 1 or E,. 

Proof i) ~ ii). Consider the family given by Z -- constant. 

ii) =~ iii). By blowing up and removing base points of the pencil, the result 
is clear. [Basically one has to only use (III), except when n=3 ,  and then a 
suitable section has to be used.] 

iii) ~ i). The result is clear if we show the following: 
If X and Y are two non-singular surfaces containing E, the configuration of 

an A,-singularity and in both if we have exceptional curves meeting once, in 
only the extreme components of E, then we can find a birational map (p: 
X ~ Y which is an isomorphism in a neighbourhood of Supp E and matches 
these configurations correctly. 

We proceed to prove this statement: Let L be the exceptional curve 
meeting say E I. Then since E + L  is an exceptional divisor, we may blow this 
down to a point. By [12] this can be identified with any point on any non- 
singular rational surface and hence blowing up or blowing down away from 
this point, we can obtain a non-singular rational curve M with M2=O and 
whose proper transform in X is an exceptional curve meeting only E,. We call 
this proper transform also by M. Now E + L +  M gives a ruling of X without 
base points, whose general member  is a non-singular rational curve. By blow- 
ing down exceptional curves in other reducible members of this linear system 
we may also assume that all other members are non-singular rational curves. 
We can also find a section S meeting only L. By elementary transformations 
we may further assume that $2= - n - 3 .  

So if we have two surfaces X and Y as in the statement above, we may 
further assume E, L, M, S in X exists as above and E',/2, M', S' in Y Now we 
will construct an isomorphism of X and Y of the required kind. 

Blowing down L, EI,  . . . ,E ,  we get a relatively minimal surface isomorphic 
to IF z and image of S has become the unique section of negative self-in- 
tersection and image of M has become a fiber. Similarly for Y. Now taking an 
isomorphism of these surfaces which take the image of M to image of M', one 
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can easily check that  it lifts to an i somorphism of X and Y of the required 
type. 

This proves par t  of  Theorem II and settles the case a). Now we will analyse 
the cases b) and c). 

b) First we will show that  this case cannot  lead to the case in the above 
proposi t ion.  For  this it clearly suffices to show that  there exists no curve D 
which meets E 1 once and does not meet  any other  Ei's. If  such a curve existed 
let D. L = r and D. M -- s. Since 

El +2E2+2L+E3~Es+2E6+2M+E7 
we get 

D.(E~ + 2E2 + 2L + E3)=D.(E 5 + 2 E  6 + 2 M + E T )  

implying 2 r + l = 2 s  which is a contradiction.  Thus we see that  this A 7- 
singulari ty is not i somorphic  to the one in the Proposit ion.  N o w  we shall show 
that  there is only one such and prove  ii) of Theorem 2. 

The  following s ta tements  are easy to verify using R iemann-Roch  theorem 
and intersection theory:  

i) - K =Ea + Ev + L + M + 2E2 + 2E3 + 2Er + 2Es + 2E 6. 
ii) I ( -K)=3,  I - K [  has no base points  and K.D+O for any curve D, not  

equal to one of the Ei's. 
So one gets a morph i sm X~IP(H ~  2 and this factors through Y,, 

which is the b lown down of E. Also the m a p  f :  Y ~ I P  z is finite and of degree 
2, since K 2 =  2. 

Let  P e Y  be the AT-singular point  and Q=f(P). We have f i x - E :  
X - E ~ I p 2 - Q  a double cover  and a line l in IP 2 pulls back to - K  in X - E .  
Using general formulas about  double covers, one gets, -K=f* l=f* (31)  
- �89 where B = b r a n c h  locus o f f  Let  d e g B = 2 d .  Then f*(1)=f*((3-d)l) on 
X - E  or f*((d-2)l)=O. But f*(l) is not a torsion element in P i c ( X - E )  
because nK,'~2iPiE i for any n,p~, on X:  Therefore  d = 2 .  Thus  f :  Y--~IP 2 is a 
double cover branched  along a quartic. Also the singular points  of this curve 
will give rise to singular points of  Y and hence it has exactly one singular 
point. 

If  f(x,y)=O define the branch curve near  the singular point, Z 2 = f ( x , y )  
gives the equat ion of the rat ional  double point.  Since we know the initial form 
of such an equat ion  to be product  of two distinct "va r i ab le s ' ,  we see that  
order  o f f  must  be exactly two. i.e. B has a double point. We may  blow up IP z 
at this point, successively and resolve singularities of B. By taking the double  
cover  of  the desingularisation, b ranched  a long the proper  t ransform, we get a 
desingularisat ion of  the rat ional  singularity. But, since there are 7 componen t s  
in this special fibre and each exceptional curve of the b lown up of IP 2 can have 
at most  two curves in its inverse image, we see that  the number  of  times we 
need to blow up is bigger than  or equal to 7/2. In other  words, the quart ic  
must  have at least 4 singular points  (including the infinitely near). If  the 
quart ic  were irreducible, then it can have at most  3 singular points. So it must  
be reducible. If  the quart ic  is a cubic and the tangent  at a flex, it is easy to see 
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that  it has only 3 singular points. So the quart ic must be two conics touching 4 
times at a point. Since every pair of  such conics can be taken by an au tomor-  
phism of IP 2 to the ones given by y - x  ~ = 0  and y - - x  2 - - y 2 = 0 ,  we have proved 
Theorem 2, ii). 

c) In this case again we will show that the singularity we get is not the 
same as in the proposition. If  not, there must  be a curve F on X such that 
F . E . = I  and F . E  1 or F. E s = I .  Without  loss of  generality, assume that F . E  8 
=1.  Now we may blow down L , E  1 . . . .  ,E  7 to get IP 2 and the image o f E  8 is a 
cubic, with one ordinary double point :  If l is the pull back of a general line of  
IF) 2 in X, then it is easy to see that, E s ~ 3 1 - 2 E T - 3 E  6 ... 8 E I - 9 L .  So F.E s 
= F . ( 3 1 - 9 L ) = 3 . F . ( I - 3 L ) + - I .  Any such As-singularity can be obtained from 

IP  2 by blowing up points on a nodal cubic (also infinitely near) and the choice 
of these points is completely determined once we fix the cubic and the two 
tangents at the singular point. But any such cubic with prescribed tangents can 
be taken to any other by an au tomorph ism of IP 2, we see that any such A s- 
singularity is isomorphic to any other of  the same kind. So it suffices to study 
any one such. 

Let E4, E 5 and L be three lines in IP 2 forming a triangle. Also let ~r: 
IF) 2----+ IP  2 be an involution which takes E 4 to E 5 and leaves L fixed. Now blow 
up E4c~L and E s n L  and call the exceptional curves E~ and E s respectively. 
Also denote by the same names the proper  transforms of  our original curves. 
Then ~ lifts to an involution of  this new surface and E~c~E 4 is taken to 
E 5 c~E 8 by this. Blow up these two points and call the new exceptional curves 
E 2 and E 7. The involution still liftes and blow up E z ~ E  4 and E s ~ E  7 and call 
the exceptional curves E 3 and E 6 respectively. The involution still lifts. Let P 
be some point  of  E 3 away from E2c~E 3 and E 3 ~ E  4 and let Q be its image 
under the involution o n  E 6. 

Blow up P and Q and we have a surface X of  the type described in c) and 
in addit ion it has an involution as above. Call the last two exceptional curves 
M and N and let us call this involution also cr. For  the involution of ]p2 it is 
easy to see that  the fixed point  set is a line through E 4 ~ E  s and an isolated 
point  on L away from E 3 and E 4. So the fixed point  set of a:  X ~ X  is a non- 
singular rational curve S through E4c~Es, not  meeting any other  Ei's, $ 2 = 1 ,  

S.L = 1 and a point  on L away from E. Blowing up this point  and calling this 
new surface still X, the fixed point  set is Sw{the  new exceptional c u r v e = T  
say}. If  we take the quotient of  X by this involution, we get a smooth  surface 
Y and call the map from X to Y,, f One can verify the following easily: 

f (E4)  =f(Es)=/74 ,  an exceptional curve. 

f(E3) = f ( E 6 ) = F  3 a non-singular  rational curve with F 2 = - 2 .  

f ( E 2 ) = f ( E T ) = F 2 ~ I P  ~, F22= - 2 .  

f ( E O = f ( E s )  = F  1 ,,~IP ~, F(  = - 2. 

f (S )  = S', S' 2=  2, S' is tangent to F 4. 

f ( L ) = E ,  E 2= - 1 ,  f ( T ) = T ' ,  T ' z =  - 2 ,  

f ( M )  = f ( N )  = M', M '2 = - 1. 
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(S',2) 

(F,-2) 

(M',-1) 

(F2,-2) 

(L',-1) 
Fig. 5. 

F 4 , -  1) 

(F3,-2) 

(T',2) 

Now we blow down E and the corresponding F/'s. Since Ffs form a re- 
ducible exceptional divisor, the blown down is a smooth  surface say Y'. Let X '  
be the blown down of X and f ' :  X '  --, Y', the corresponding double cover. Of  
course Y' is rational and it is easy to see that K 2,= 8. Also the image D of  T'  
in Y' is a curve with se l f - in tersec t ion-2  and hence Y' ~IF  2. Let f be a fibre of 
IF 2. The branch locus of f '  is the disjoint un ion  of the image of S' in Y' and D. 
The image of  S' in Y' is a rational curve with a cusp and 3 consecutive cusps. 
By an elementary computat ion,  one can show that the equat ion of  this curve 
in l F 2 \ ( D w a  general fibre) to be (X+y3)2+X 3. So the equation of  the X', 
near the As-singularity is, Z 2 =  (X + y 3 ) 2 +  X 3 and this proves Theorem 2, iii). 

w 3. D.-singularities 

The D.-configurat ion is: 

E4 En-1 E n 

E s E5 En-2 

Fig. 6. 

and the fundamental  cycle E=EI+E2+2E3+...+2E,_I+E,,.E.Ei=O if 
i4: n - 1  and E. E , _ I  = -  1. Also if L is an exceptional curve which meets E in 
only E, exactly once then IE+E,+2LI gives a ruling of  X. So our at tempt 
will be to show that such an exceptional curve exists in most  cases. 

Now blow down all exceptional curves not meeting any of  the Ei's. 
Let L be any exceptional curve. If L . E , = I ,  we are done by the above 

remark. Also if L. E = L. E t = 1, then I2L + 2E 1 + E 2 + 2E 3 + E J  gives a ruling 
and hence if n <4 ,  we would have proved the theorem. If  n = 5, then a general 
member  of the linear system meets only Es,  exactly once and blowing it up 
once we would be done. If n > 5, then E6, . . . ,  E. belong to another  member  of 
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the same linear system and by (III), this must contain an exceptional curve M 
which meets only one of the Ei's exactly once. If  M.E,= 1, we are done. If 
M.EI=I for 6 < i < n ,  then Ei_I+2E~+2M+Ei+ 1 is another  member  of this 
linear system giving us n = 8  and M meeting only E 7. This case is the excep- 
tional case. So if n4: 8, we may assume M m e e t s  E 6 and then M occurs with 
multiplicity one in this member  giving us one more  exceptional curve N in this 
member.  So N should also meet E 6 ,  o r  we are done. But then M + N + E  6 is a 
member  of this linear system, giving us n = 6 and an exceptional curve meeting 
only E 6. So in all these cases we are done. So now on we may assume in 
addit ion that L. E > 2 for every exceptional curve. 

i) K2<O. By (II) ]L+E+KI4:9 and by (I) we can find an m > 0 ,  such that 
IL + m(E + K)I 4:9 and [L + (m + 1)(E + K)I = 9. Since K.(L + m(E + K)) < 0, take 
any curve C~]L+m(E+K)i such that  K.C<O. Then since IC+E+KI=9, we 
see by (II) that  C is a non-singular rational curve and C .E  < 1. Since K. C <0 ,  
C 2 > - 1 .  If C 2 = - 1  then C . E = I  and we are done. If C2>0, since C.E<I, 
it is easy to see that this case quickly leads to the theorem. 

ii) K z > 0 .  Again by (II). IL+E+K[4:9 and by R iemann-Roch  inequality, 
[-E-K[4:9.  B u t / ( L ) = I  and L = ( L + E + K ) + ( - E - K )  implies that L + E + K  
= 0. E,_  1. (L + E + K) = 0 implies E ,_  1. L = 1. Also L .E .  = 2. But E,_ 1 occurs 
with multiplicity 2 in E and hence L meets only E,_ 1 amongst  the E[s. N o w  
IEn-2 + 2 E , _  1 + 2 L + E , ]  gives a ruling of X. (n > 3). Using this ruling it is easy 
to verify that if n 4: 8, there is the required ruling. The only trouble comes when 
n = 8  and there exists exceptional curves L and M meeting E in E 1 and E 7 
respectively, exactly once. 

In  this case we will show that there is no rational pencil on X of the 
required kind, but an elliptic pencil. If  there were such a rational pencil, then if 
necessary after blowing up or blowing down away from E, we must  be able to 
find an exceptional curve meeting only E s, exactly once. So in X, there must  
exist a curve C with C.E 8 = C. E = 1. But 

2L + 2E 1 + E 2 + 2E 3 + E 4 ~ E 6 + E s + 2E 7 + 2 M  

so C.2L=I+(C.2M), which is impossible. K 2 = l  and it is easy to see that 
I - K I  gives the required elliptic pencil. 

w 4. K o of Surfaces 

In this section we will state some facts about  K 0 of affine surfaces and see how 
the earlier theorems help us to compute  certain K-groups.  Ko(A ), where A is a 
ring, as usual, would mean  the Grothendieck group of  finitely generated 
projective modules upto stable equivalence or equivalently the abelian group 
generated by all finitely generated modules of  finite homological  dimension with 
equivalences defined by exact sequences. The results are all due to M.P. 
Murthy.  A will denote the affine ring of  a normal  affine surface X. 

L e m m a  1. If there exists a rational curve on X, passing through a point  x E X 
and not  passing through any singular point of  X, then the class [k(x)] ~Ko(A) 
is zero. 
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Proof Let P be the prime ideal defining the rational curve and M = P, define x. 
Let B=in teg ra l  closure of AlP and let N be some maximal ideal of B sitting 
over M/P. Then [B]eKo(A), by our  assumption and [k(x)]=[A/M]=[B/N]. 
But B is a principal ideal domain  and hence N is principal over B. [B/N] 
= [U] - [N]  = [B] - [B] = 0. 

Lemma 2. If  X is a rational affine surface which has exactly one rational 
singularity of  the type A n, n # 7, 8 or D,,, n # 8, then/~0(X)  = Pic X. 

Proof Let the ring of functions of  X be A. By the theorems, there exists a 
pencil of rational curves on X, which is a ruling. Let C be the member  of this 
pencil, which contains the singular point. So for any point x E X, x r  [k(x)] 
= 0  in Ko(A) by Lemma 1. 

If P is any projective module  of rank >1 ,  then P = F r e e |  ( ' . ' d im 
A = 2). So to prove the lemma, it suffices to consider projective modules of rank 
2. Let P be projective of rank 2. Then PI* is a projective module  of rank 2 on 
a curve and hence has a nowhere vanishing section. Lifting such a section, we 
get a map, P ~ I ~ 0, where the variety defined by the ideal I is disjoint from C. 
It is clear by checking locally that the kernel of  this map is projective of  rank 
1. So it suffices to show that [ I ]  is the class of  a projective module  of rank 1. 
Filtering I by height one and two primes, and since [k(x)] = 0  for every x r  C, 
we get [A/I] =[A/J], where J is an ideal of pure height one and J is locally 
free of  rank one at every point. Thus [ I ]  = [ J ]  e Pic X. 

Corollary. Any projective module  P over A as before is isomorphic to Free 
rk 

module  |  P. 

Proof Follows from Lemma 2 and the cancellation theorem of Mur thy-Swan 
[113. 

Remarks. The above results borrow heavily from the work of Miyanishi and 
Sugie [9] and what is done here is an at tempt to obtain a IPl-ruling of a 
certain kind whereas in [13], it is proved following closely the techniques of 
[9] that an " A  l-ruling ' ' can always be obtained. Also similar results can be 
proved for some non-rat ional  surfaces, especially for ruled surfaces. These 
results will be published at a later stage. 

I sincerely thank Professors M.P. Murthy,  Spencer Bloch, Rick Miranda,  
Adam Ginenski and many  others at the University of Chicago for providing 
me with the required amount  of stimulation while the work was in progress. I 
thank the University of Chicago for their hospitality. 

References 

1. Artin, M.: Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. 
Math. 84, 485-496 (1962) 

2. Artin, M.: On isolated rational singularities of surfaces. Amer. J. Math. 88, 129-136 (1966) 
3. Brieskorn, E.: Rationale Singularit~iten Komplexer F15.chen. Invent. Math. 4, 336-358 (1968) 
4. DuVal, P.: On isolated singularities of surfaces which do not affect the conditions of adjun- 

ction. Proc. Cambridge Phil. Soc. 30, 453-459 (1934) 



268 N.M. Kumar 

5. Fujita, T.: On Zariski Problem. Proc. Japan Academy, fifA No. 3, 106-110 (1979) 
6. Gizatullin, M.H.: On affine surfaces that can be completed by a non-singular rational curve. 

Math. USSR-Izvestija 4, 787-810 (1970) 
7. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Math. No. 52 Springer-Verlag 1977 
8. Lipman, J.: Rational Singularities .. . .  Publ. Math. IHES, 36, 195-280 (1969) 
9. Miyanishi, M., Sugie, T.: Affine surfaces containing cylinder like open sets. J. Math. (Kyoto 

Univ.) 20, No. 1, 11-42 (1980) 
10. Mohan Kumar, N., Murthy, M.P.: Curves with low self intersection on rational surfaces. (in 

preparation) 
11. Murthy, M.P., Swan, R.G.: Vector bundles over affine surfaces. Invent. Math. 36, 125-165 

(1976) 
12. Nagata, M.: On rational surfaces I. Mern. College of Science, University of Kyoto, Series A, 

Vol. XXXII, No. 3, 351-370 (1960) 
13. Russel, P.: On affine-ruled rational surfaces. (Preprint) 

Received March 23, 1981 


