Invent. math. 104, 313-319 (1991) Inventjones

mathematicae
© Springer-Verlag 1991

Smooth degeneration of complete intersection curves
in positive characteristic

N. Mohan Kumar

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay,
400 005

Oblatum 2-V-1990 & 24-1X-1990

0 Introduction

In this paper we study the limit of smooth complete intersection curves in
IP3. Lazarsfeld told me of the following problem, which is raised by Peskine
[BC] and Kollar:

Question. In a family of smooth curves in IP3, if the general member is a complete
intersection, is the special member also a complete intersection?

The smoothness of the special member is necessary. It is easy to construct
examples, where the special member is projectively Cohen-Macaulay, but not
a complete intersection. When the special member is smooth, the above problem
is equivalent by Serre’s construction, to the following question:

Question. In a family of rank two bundles on P>, if the general member is
a direct sum of line bundles, is the special member also a direct sum of line
bundles?

Remark. Of course, one can ask the same question for P* and arbitrary rank
bundles on IP". It is easy to construct examples, which give a negative answer
if rank is n+1.

In this paper, we construct a family of rank two bundles which gives a
negative answer to the above question in all positive characteristics. In zero
characteristic, no easy modification of these examples can work, since they
depend on very special curves in positive characteristic.

Acknowledgements. 1 thank R. Lazarsfeld who made me aware of these questions. I thank
the referee for suggestions and pointing out an error in the Corollary.
1 A criterion for deformability

In this section we will work over a field k of arbitrary characteristic. For general
facts like Serre’s construction we refer the reader to [OSS]. If S is a parameter
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scheme, we will denote by # its generic point and ¢ its special point. (Usually
S will be the spectrum of a power series ring in ¢ over k.) If X is any scheme
let =X xS, and let p: ¥ - X and q: & — S be the two projections.

We give a brief sketch of why the two questions in the introduction are
equivalent. Let us first assume that & is a rank two vector bundle on P> x §
with &, a direct sum of two line bundles and &, indecomposable. After twisting
& by O(n) for large n, we may assume that H°(&)— H°(6,) is surjective and
&; is globally generated. Lifting a general section of &; to &, one sees that
the zeroes of this lifted section gives a family of smooth curves in IP3. Such
a curve is a complete intersection or not depends on whether the corresponding
vector bundle is decomposable or not (see [OSS], lemma 5.2.1,, p. 101). By the
assumptions on &, we see that, the general member of this family is a complete
intersection and the special member is not a complete intersection.

Conversely assume that a family of curves % contradicting the question
in the introduction exists. Since € is smooth over S, w5, the relative canonical
sheaf is a line bundle. By hypothesis, (w4,s), = O(]), for some I. Let L=w®0(—).
Then L is trivial at x. This shows that L=0¢(D), for a divisor D, supported
on the special fibre. Since the special fibre is irreducible, D is a multiple of
the special fibre. But the special fibre is principal and thus Lis the trivial bundle.
So w=0(l) on all of ¥. Now one appeals to Serre’s construction to obtain
an example of a family of rank two vector bundles with the desired properties.

Next we prove the following general result:

Proposition. Let A, B be two vector bundles of rank r on a scheme X. Let S
be the spectrum of a power series ring in t over k. Let ' =X x S. Then there
exists a rank r bundle & on & which is isomorphic to A at the generic point
and is isomorphic to B at the special point if and only if the following happens
— there exists a vector bundle E (of arbitrary rank) on X, a nilpotent endomorphism
¢ of E and a homomorphism y: A— E such that the map 0=(¢,y): E@A—E
is surjective and Ker 6= B.

Proof. Assume such an E exists. Define @: p*E®p*A - p*E as follows: @
=(tI+ ¢, ). Then O is surjective. So Ker @ =4 is a rank r vector bundle on
Z. I t+0, since ¢ is nilpotent, tI + ¢ is an isomorphism. So &, = 4,. By assump-
tion, &= B,.

Conversely assume that such an & exists over Z. Since &,=A4,, we can
find a map & —p* 4 whose cokernel is annihilated by some power of . Further,
replacing & by t&, we may assume & =t-p*A. So we have an exact sequence,

(*) 0-8->p*A->%-0

Since "% =0 for some n, & is a sheaf over X xS,, where S,={t"=0} in S.
Let m: X x S, —» X be the map got by base-changing the structure map S, — Spec
k. Then = is finite and flat. Let E=n,¥. Since ¥ has homological dimension
one over X x §, one sees that E is a vector bundle over X. Multiplication by
t induces a nilpotent endomorphism ¢ of E. The map p* 4—¥ induces a map ¢ :
A — E. It is immediate that ¢ (E)+y(4)=E. So we have an exact sequence,

0->E->E®A->E-0

where the map on the right is given by (¢, ¥). Since &<t-p* A4, we see that
A—E/¢(E), induced by ¢ is an isomorphism. Hence E'cE and thus E’
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=Ker(E i>E). On the other hand, restricting (*) to the special point and noting
again that & <t-p* 4, we see that &; =B =Tor{*(0;, %). Using the resolution

00,50, 0;~0,

to compute the Tor, one sees that, B=Ker(% L %) =Ker(E i>E)=E’. O

Corollary. Let X=P" and A a direct sum of line bundles in the above notation.
Then B (the special member) is not a direct sum of line bundles if E constructed
in the lemma is not a direct sum of line bundles.

Proof. This follows easily from Horrock’s criterion that a vector bundle is a
direct sum of line bundles if and only if all its middle cohomologies vanish
[OSS] and the fact that ¢ (as in the Proposition) is nilpotent. []

The fact that there are families of rank two bundles on IP? with general
member direct sum of line bundles and special member indecomposable seems
well known. The following example, though not the most pleasant, I inciude
here, only to prepare the reader for the next section.

Example. We will assume that k is algebraically closed. Let P,, P,, P; be three
non-collinear points in P2, Let I be the ideal sheaf defining these points. Let
C={G=0} be a smooth conic passing through these points. Let D={H =0}
be a cubic touching C at these points. Let Q ={F =0} be a quintic intersecting
C at the P’s transversally. Let J be the ideal sheaf generated by G and H.
Then scheme-theoretically I=(F, G, H)=J +(F). Since J is a complete intersec-
tion, we have an exact sequence,

() 0—0(—550(-2)Q0(-3)=4-25J 0
The map O(—5) £ 0, induces a map,

k=Ext*(J, 0(—95)) » Ext'(J, 0)= H°(Ext' (J, 0)) = H°(0/J).

The fact that Q meets C transversally implies that the ¢-module generated
by k in @/J is the natural submodule ¢/I < @/J. The inclusion J < I induces
a map,

Ext!'(I, 0)= H°(Ext!(l, 0))> H° (Ext'(J, 0))=Ext! (J, ©).
This is also induced by the natural inclusion of ¢/I < @/J. Thus the element

x in Ext!(J, ) corresponding to (i) gives an element in Ext' (1, ¢), which gener-
ates H°(Ext! (I, ©)). Thus we have an extension, by Serre’s construction,

(i) 0—-05M51-0,
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M a rank two bundle. Also by our choice we have a commutative diagram,

(i) F "

0 O —2 oLt 71— 0

Using the natural inclusion of I in @, we get a nilpotent endomorphism ¢=a-f
of M. H®°(M(x))— H°(I(x)) is surjective, since H'(@O(x))=0. So we may lift
FeH(I(5)) to a section of M(5). Thus we get a map g: ¢ —5)— M, such that
f-g corresponds to F. Thus we have,

(iv) ¢-g=a-F
Near P’s, since F and G generate I, we see that,
) g(O(=5)+n(4)=M.

Away from Ps, 2(0)= ¢ (M) and the inclusion J < I is an isomorphism. So,
(vi) dM)+n(4)=M

Now consider the map ¢(— 5)—£>M€|—)A, given by f(a)=(g(a), — p(a)). Since out-
side P’s p(0(—5)) is a subbundle of A and near F’s g(0(—5)) is a subbundle
of M, f(0(—75)) is a subbundle of M® 4. Let E be its cokernel. E is a rank
three vector bundle. Consider the map8: M®A->M®A, given by
0(a, b)=(¢(a)+1(b), 0). Then 6% =0 since $>=0. So 6 is a nilpotent endomorph-
ism. Using (iii) and (iv) one sees that 6-f=0. So € descends to a nilpotent
endomorphism & of E. Also we have the natural map y: 4 — E.

We will show that §(E)+y(4)=E. Since M is not a direct sum of line
bundles, nor is E. Thus the corollary will furnish an example as required.

To show H(E)+y(A)=E, it clearly suffices to show that, ¢(M)
+n(A)+ g(O(—5))= M. But this follows from (v) and (vi).

2 Examples in P?

Now we assume that k is a field of characteristic p> 0.

Let x, yel'(Ops(p—1)) and X', y'eI'(Op:(p+ 1)) be chosen, so that, these four
have no common zeroes in IP>. Let F=xx'+yy. If we denote by L=0(—2p),
then Fel'(L™*%). For 1<i<p, let I, be the ideal sheaf generated by x?, y? and
F', Let C; be the corresponding curves. Let C=Supp C; (this of course is indepen-
dent of i). One first observes that, C/s are local complete intersection curves,
since the characteristic is p. In fact at any point near C, F* and one of x?
or y? define I;,. Also C, is a complete intersection curve defined by x” and
y*. Using these facts, it is easy to check that,

wC,-(4)=L—i+1®@c,-,
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where w¢, denotes the dualising sheaf of C;. So by Serre’s construction, one
has exact sequences,

) 0— L' 2uM Loy ——0
with M;, rank two bundles on IP3,

Let F: L'> I}~ be multiplication by F. We may arrange the extensions
in (i) so that one has commutative diagrams,

0 L @141 M., Biyy I, 0
(ii) -F (.
0 L2, M, L 0

For i=1, we have ¢ =0, f§,, a nilpotent endomorphism of M.
Claim. M/, (M, ) is annihilated by F, 1 Si<p.

Notice that outside {F =0}, since - F and natural inclusions of ideal sheaves
are isomorphisms, 7, is also an isomorphism. So we need to verify the claim
at points on F=0. For such a point, which is not on C, I; ; ; & I; is an isomorph-
ism. So the cokernel of #;,, is the same as the cokernel of -F, so claim is
proved for such points. Now let peC. Then near p, I;=(z, F'), where z=x?
or y* at p. Also I, ,=(z, F'*!). Easy to check using (ii) that cokernel of #,,,
is annihilated by F.

Thus the map M;® L —» M,, got by multiplication by F, factors through #;, ,.

Claim. There exists g;: L' — M,, such that B;-g; corresponds to F'el, and
(iii) ¢-gi=oF, n-g=g_F.

We will construct g;’s inductively. Since H° (M (x))— H°(I,(x)) is surjective,
we may lift FeH(I, ®L™") to H*(M,®L""). This gives g,: LM, as desired.
Assume we have constructed g;. So we have g;-F: !*!— M,. Clearly this

is the same as the composite, L® L LIV ®L-~——>M But the latter map
factors through #;, . So we get g;,,: L'** ——»Ml+1 such that, Nie18ic1=8F
To compute B;,,g+; We may compose it with the inclusion I,,, < I;. But
Bi+, followed by the inclusion is ;7. . So suffices to show that 1, g+:
corresponds to F'*!. But #,,, g+, =g;-F and B;g; corresponds to F’ by induc-
tion. This proves the claim.

Properties of these maps
(a) At PeC, g,(I}) is a subbundle of M; and g/(L)+n;, (M, )=M, for 1 Li<p.
At such points F' is a minimal generator of I; and B;g; corresponds to

F'. So g,(L)) is a subbundle of M,. At PeC, M;—*>, is a minimal resolution,
Bis1(Myyy)=Iis, and =1, +(F). So gL+ (M )=M,.
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(b) At P not on C, o;(I!" ') is a subbundle of M; and o;(L! ") 47,4 (M, ) =M;
for 1gi<p.
The first part is clear. For the second part, since the inclusion I,,, < I;
is an isomorphism at such points §;4;,, is surjective and then the assertion
is clear.
(c) At Pnotin C, ¢(M,)+n,(M,)=M,.
By (b), o, (0)+n,(M,)=M,. But if P is not in C, &, (0)=H(M,).
Now we define a map f as follows: f* @2~ L'= A —» @®f M;=G given by,

(iv) flay,...,a,-1)

=(gl(a1)’ gZ(aZ)_aZ(al)a LR gp—l(ap—l)_ap— l(ap—z)’ _ap(apAl))

Claim f makes A a subbundle of G.

We must show that f is injective when evaluated at any point. So let PeC.
Then a/s are zero. So if f(a,, ..., a,~,)=0 then g;(a;)=0. Property a) implies
that all a’s must be zero. If P is not in C, by Property b) a;/s are injective.
We will show that if f(a,, ..., a,-)=0 then o;(a;- ) =0 by descending induction.
o,(a,-1)=0 by definition of f. If a;,,(a)=0 then a;=0 since the point is not
on C. But g;(a)—a;(a;-,)=0 since f is zero. Hence «;(a;_;)=0. This proves
the claim.

Denote by E the cokernel of f. Then E is a rank p+ 1 vector bundle. Next
we define an endomorphism 8 of G as follows:

™ 01, ..., b)=(¢(by)+12(b2). n3(b3), ... 71, (b)), 0).

Claim 8 is nilpotent. In fact 6°** =0.
It is clear that 87~ 1(G)= M, . Thus it suffices to show that 6*(M,)=0.

62(b,0,...,00=0(¢(h),0, ...,0)=(¢*(»),0, ...,00=0

Claim 8 descends to an endomorphism ¢ of E.

We should show that Image 8f < Image f. One checks using (iv) and (v) that,
0f(ay,...,a,_1)=f(Fa,,Fa,,...,Fa,_,,0)

Denote by ¥ the natural map from M, to E.

Claim The map E@ M, Y% E is surjective.

Clearly it suffices to prove that, G':=Im f+Im 0+ M, is equal to G. Again
let P be a point not in C. We will show that if b=(b,, ..., b,)eG then there
exists ¢;€ G’ such that the j* cordinate of b—c; is zero for every j=i. We may
clearly take c,=(0, ..., 0, b,). By Property b) we may write b,_; =a,_(s)+n,(?).
Letc, ;=f(0,...,0, —s,00+8(0, ..., 0, t)+c,. Easy to see that b—c,_, has its
p™ and (p—1)" cordinates zero. Assume we have found c;,,. Let us look at
the case i>1. Let u be the i cordinate of b—c;.,. Again by Property b)
one may write u=ov)+n.,w. Now put ¢=f(0, ..., -0 ...,0)
+86(,...,w,...,00+c¢;.,. This element has the required property. Finally
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assume i=1. If b—c,=(1, 0, ..., 0) then by Property ¢} I=¢(m)+1n,(n). Let ¢,
=c¢,+0(m n 0, ...,0)and then b=c,.

Now let PeC and b be as before. Now we will show that there exists ¢;e G’
such that b—c; has its j* cordinate zero for every j<i. By Property a) b, =g, (s)
+1,(t). Take ¢, to be f(5,0,..., )+ 6(0, ¢, 0, ..., 0). Assume we have found ¢; _,.
First look at the case i<p. If the i cordinate of b—c;_, is u, then by Proper-
ty a) we may write wu=g;@©)+n_,w). Take ¢=f0,...,v...,0)
+6(0, ...,w,...,0)+c¢;_,. One easily checks that c; has the required property.
Finally assume i=p. Then b—c,_,=(,...,0, x,). But this element clearly
belongs to G'. So G=G".

Notice that since M, is a non-trivial bundle, E is also not a direct sum
of line bundles. So by Corollary we have constructed a family of rank two
vector bundles on IP? with general member direct sum of line bundles and
special member indecomposable.

Remark. In the above example M, is a direct sum of the same line bundle.
So for the question about curves one sees that for all large n there exists a
family of smooth curves in IP* with general member a complete intersection
of type (n, n) and special member not a complete intersection (in positive charac-
teristic).
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