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Abstract 

A new attractive interaction in metalloprotein structures, between the thiolate anion of a metal-bound cysteine (acting 
as  a nucleophile) and a carbonyl carbon of a peptide group (an electrophile), has been identified. From 82  cases extracted 
from 23 metalloprotein structures, the interacting S and  C atoms are found to be at a distance of 3.2 (+2) A, such that 
the angle S*--C-O is 109" (k 15"). Usually, the interacting atoms are from the same Cys residue, and to allow the S 
to interact with the carbonyl group the side-chain and the main-chain torsion angles deviate from those found in 
cysteines not bound by metals. There  is  a good correlation between the S- . -C distance and the angular deviation of the 
S . - - C  vector from the normal to the peptide plane. Various data points may  be envisaged to represent "snapshots" along 
the reaction coordinate for the intra-residue attack of Cys S on the CO group. 
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In spite of the progress made over the last few decades in theory 
and  experiment, the protein folding problem still remains elusive 
(Honig & Yang, 1995). Although the major forces (hydrophobic, 
van der Waals, electrostatic and hydrogen bonding) contributing to 
the stability have been known for  a long time, weaker ones like the 
C-H-..O (Derewenda  et al., 1995), OH or NH*--aromatic (Bur- 
ley & Petsko, 1986; Perutz, 1993), aromatic * * - aromatic (Burley & 
Petsko, 1985), CH-.-aromatic (Chakrabarti & Samanta, 1995), 
and S ***aromatic (Reid et al., 1985) are only now being identified. 
These interactions are directional in the sense that each group has 
a reasonably rigid geometry in which it can engage its partner, and 
can thus direct the structural organization of the protein molecule 
and its recognition of the substrate. In this paper we characterize 
one such interaction that could have important bearing on the 
structure and function of metalloproteins. 

Results from small molecule crystallography have been used not 
only to understand molecular architecture and structure-function 
relationship (Dunitz, 1979); they have also been used by Burgi and 
Dunitz to derive information on reaction pathways (Burgi et al., 
1973, 1974a, 1974b, 1974~;  Dunitz, 1979; Burgi & Dunitz, 1983). 
A striking example  is the nucleophilic addition of an amino or a 
hydroxyl group to an electrophilic carbonyl group. One can then 
ask the question if this energetically favorable (Burgi et al., 1974c) 
and thus stabilizing interaction can be observed in protein struc- 
tures. The cation-bound sulfhydryl group, which really exists as 
the thiolate anion, is likely to have nucleophilic characteristics as 
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has been shown in some biological systems (Myers  et al., 1993; 
Wilker & Lippard, 1995), and our analyses of cysteine-containing 
metalloproteins show that this can indeed interact with a carbonyl 
group behaving like an electrophile. 

Results and  discussion 

Geometrical parameters (Fig. 1 )  involving the S and C atoms that 
satisfy our distance criterion are given in Tables 1 and 2, the 
former listing the cases where the two atoms are from the same 
Cys residue, the latter those where the atoms emanate from dif- 
ferent residues. The greater number of entries in Table 1 as com- 
pared to Table 2 (78:4) suggests that the interaction is predominantly 
an intra-residue phenomenon, although the existence of cases in 
Table 2 points to its more general nature. 

The sum of van der Waals radii (Bondi, 1964) of single-bonded 
S and sp2-hybridized  C atoms is 3.6 A. Distances shorter than this 
(the average S**.C length is 3.2 (+2) A) point to the attractive 
nature of the interaction. The S..-C-O angle, 109" (kl5"), be- 
tween the nucleophile and the CO group is similar to what Burgi 
and Dunitz observed (Burgi et al., 1973, 1974b; Burgi & Dunitz, 
1983).  Unfortunately,  another  hallmark of the  electrophile- 
nucleophile interaction, namely, the deviation of the C atom from 
the plane defined by CA, N, and 0 (Fig. 1) toward the nucleophile 
(Burgi et al., 1973) cannot be seen in protein structures, as it is 
small and in any case the refinement process that applies the con- 
straint of planarity on the peptide group would artificially conceal 
any such displacement. However, in the following sections we put 
forward some more evidence in support of the attraction between 
the S and C atoms. 
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Fig. 1. Definition of the spherical polar coordinate system used  to analyze 
the sulfur position ( S )  around the peptide CO group. Atom C is assigned as 
the origin, the x-axis is along the 0 - C  direction, the y-axis is on the 
peptide  plane  and going toward the N position: the z-axis is along the 
normal to  the peptide group. 0 is the angle made by the C*-*S  vector with 
the  z-axis: p is the angle between  the x-axis and the projection of the C . - . S  
direction on the xy plane (p=90" along the y-axis and  -90" along the 
reverse direction). 
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Cysteine  side-chain conformation 
The torsion angle, x, of a  Cys residue can take up three values, 60" 
( g - ) ,  -60" ( g ' )  and 180" ( t )  (Janin et al., 1978; McGregor et al., 
1987). The x, distribution of all Cys  ligands is shown in Figure 2, 
and resembles the one obtained in an earlier analysis on ligand cys- 
teines (Chakrabarti, 1989). Interestingly, all the residues with S and 
C  atoms  in  close  contact  have  values  around +60° and 180" 
(Table 1).  In these orientations the S atom is above or below the pep- 
tide group (Fig. 3). At the g+  conformation, the two concerned at- 
oms are farthest from each other (see the curve in Fig. 2) and there 
is no intra-residue interaction. However, a few of these S atoms are 
in close proximity to a carbonyl C atom belonging to a different res- 
idue  (Table 2), and  exhibit  a  similar  geometry of interaction 
(Fig. 4). In general, in protein residues the g -  state is the least sta- 
ble because of steric factors, and of the remaining two, g+ appears 
to be  slightly more favored (Janin et al., 1978; McGregor et al., 1989). 
In our sample, the population of g+ has been drastically reduced 
(only 17% in Fig. 2) in favor of the g- and t states, where the intra- 
residue S --*C interaction is feasible. Another factor that underlines 
the attractive nature of the interaction is the shift of the g- peak to 
a value larger than 60°, a change that minimizes the S . - -C distance 
(Fig. 2). 

Table 1. Metal bound cysteine residue showing S...C interaction involving its SG and carbonyl C  atoms 

Protein name Codea Residueb 

Alcohol dehydrogenase 20HX 4%4) 
9764) 

1WA) 
11 l(A) 
174(A) 

Carbonic anhydrase IDCA 199 
Metallothionein 4MT2 5 

13 
15 
19 
24 
29 
33 
34 
36 
41 
48 
57 

7(C 1 
12(C) 
37K) 

65 (C 1 
68(C) 

Glucocorticoid receptor 1 GLU 440(A) 
443(A) 
457(A) 
476(A) 
492(A) 

Aspartate carbamoyl 8ATC 109(B) 
transferase 114(B) 

138(B) 
141(B) 

4 ~ )  

DNA binding protein 1 ZAA 
(ZIF268) 

Distance 
(A) 

s...c 
3.17 
3.17 
3.09 
3.08 
3.07 
3.30 
3.33 
3.12 
3.28 
3.18 
3.27 
3.45 
3.50 
3.42 
3.46 
3.1 1 
3.28 
2.98 
3.14 
3.1 1 
3.1 1 
3.25 
3.14 
3.1 1 
3.13 
2.84 
3.44 
3.12 
3.26 
3.21 
3.60 
3.26 
3.49 

Angle 
("1 

s...c-o 
122.5 
109.4 
95.3 

114.5 
109.6 
112.9 
113.9 
122.5 
133.7 
95.7 

116.1 
109.2 
1 16.7 
93.2 

122.0 
105.2 
117.3 
80.8 

109.0 
127.2 
109.9 
96.4 

114.9 
100.6 
117.1 
61.3 

112.3 
136.2 
92.4 

109.5 
124.2 
112.8 
115.4 

Spherical 
Torsion angle r)' polar angle (")d 

XI x2 (C) 

172.4 
74.5 
74.7 

174.6 
182.4 
50.1 

174.1 
182.6 
52.6 
52.8 

196.9 
200.2 
43.4 
45.3 
32.6 

180.2 
189.7 
87.2 

178.0 
183.4 
168.9 
70.8 

164.4 
67.7 

180.8 
98.0 
55.1 

156.5 
203.7 
178.3 
205.7 
190.4 
49.5 

-25.7 
26.7 
25.1 

-26.1 
-28.5 

33.3 
-28.9 
-28.3 

34.7 
31.8 

-34.5 
-34.4 

34.2 
33.8 
36.2 

-26.9 
-33.8 

20.1 
-27.5 
-27.1 
-25.9 

28.4 
-23.1 

29.8 
-29.1 

12.7 
33.6 

- 16.3 
-33.9 
-24.8 
-39.1 
-34.9 

34.6 

147.5 
- 20.0 
166.3 
137.6 

-72.0 
- 10.8 
130.0 
138.0 

-33.8 
174.1 
131.6 
123.8 
-8.9 
165.7 
-8.5 
122.4 
129.6 
150.0 
121.1 
143.7 
127.0 
- 1.2 
139.0 
-0.7 
127.8 
19.4 

174.1 
138.5 
80.8 

122.9 
142.2 
123.5 

-22.6 

144.9 
25.3 

154.5 
151.2 
23.7 
34.9 

150.5 
145.5 
47.3 

147.8 
145.2 
143.4 
37.9 

142.7 
45.4 

152.1 
146.5 
154.9 
149.0 
140.9 
151.3 
30.9 

150.6 
28.0 

146.4 
43.1 

144.4 
140.5 
137.3 
150.0 
134.9 
147.6 
39.3 

P 

- 19.9 
-35.1 
-77.5 
-24.9 
-43.5 
-38.9 
-42.5 
-23.6 
-24.6 
-78.5 
-33.2 
-51.0 
-44.6 
-84.1 
-41.8 
-55.2 
-39.9 
- 112.7 

-51.1 
- 14.6 
-45.8 
-77.6 
-32.3 
-66.8 
-35.8 
- 127.0 

-52.7 
-30.0 
-86.8 
-48.6 
-36.9 
-43.7 
-45.4 

(continued) 
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Table 1. Continued 

Distance Angle 
(A) (“1 

Protein  name  Code: Residueb S”.C s...c-o XI 

Torsion angle r)‘ 

Plastocyanin 
Azurin 
Pseudoazurin 
Amicyanin 
Cytochrome P450 
Nitrite  reductase 
Pthalate dioxygenase 

reductase 

Ascorbate oxidase 
Rubredoxin 

High  potential Fe-S 
protein 

Ferredoxin I 

Ferredoxin I1 

Aconitase 

Endonuclease 

Trimethylamine 
dehydrogenase 

Nitrogenase Iron 

Nitrogenase Mo-Fe 
protein 

protein 

7PCY 
2AZA 
1 PAZ 
1 AAN 
2CPP 
I AFN 
2PIA 

1 AOZ 
8RXN 

IISU 

1 FRR 

1 FDX 

8ACN 

1 ABK 

2TMD 

1 NIP 

IMIN 

84 
112(A) 
78 
92 

357 
136(A) 
272 
277 
280 
308 
507(A) 

6 
9 

39 
42 
2 5 ~  
4 w  
55@) 
3 W )  
4364) 
4664) 
76@) 
8 

11 
14 
18 
35 
38 
41 
45 

358 
424 
187 
197 
203 
345(A) 
348(A) 
35 1 (A) 
364W 
9 7 W  

132(A) 

275(A) 

153(B) 
7003) 

3.16 
3.05 
3.04 
3.19 
3.1 1 
3.36 
3.21 
3.15 
3.12 
3.27 
3.08 
3.13 
3.07 
3.14 
3.14 
3.14 
3.1 1 
3.13 
3.09 
3.12 
2.98 
3.17 
3.49 
3.24 
3.36 
3.35 
3.06 
2.80 
3.27 
3.18 
3.41 
3.30 
3.37 
3.06 
3.05 
3.12 
3.21 
3.42 
3.13 
3 .OO 
2.85 
3.06 
2.88 
3.06 
3.46 

100.2 
116.8 
102.5 
109.6 
98.4 

108.2 
126.4 
109.4 
88.5 

121.6 
112.6 
104.4 
102.3 
107.0 
102.0 
116.4 
113.7 
109.3 
119.8 
118.9 
86.0 

114.6 
101.4 
126.5 
123.4 
110.2 
108.0 
90.2 

143.4 
123.4 
133.5 
80.8 
76.7 

103.6 
111.2 
105.2 
117.2 
143.9 
115.2 
141.0 
90.7 
93.0 
92.3 
98.3 

130.7 

166.5 
169.1 
165.5 
181.1 
179.2 
187.6 
80.6 
86.1 
68.7 
67.6 

174.6 
178.3 
75.1 

179.3 
76.7 

177.4 
171.6 
91.7 
74.2 
82.5 
68.0 
69.2 

188.1 
80.9 
64.5 

174.2 
176.7 
85.7 
47.6 

21  1.8 
56.8 

189.2 
197.6 
171.5 
170.9 
172.2 
68.1 
46.8 

174.2 
173.5 
56.8 
71.1 

180.8 
74.1 
23.2 

Spherical 
polar angle (“)d 

x 2 a  
~ 

-24.8 
-25.5 
-29.9 
-30.8 
-28.9 
-32.9 

26.0 
22.2 
27.5 
30.7 

-28.8 
-30.0 

29.1 
-31.2 

27.0 
-27.4 
-25.2 

20.1 
27.1 
17.3 
29.9 
27.4 

-34.1 
17.1 
37.4 

-24.6 
-31.8 

18.4 
32.4 

-39.5 
30.8 

-30.3 
-33.4 
-25.0 
-24.5 
-26.8 

29.0 
35.2 

-26.9 
- 20.7 

29.4 
29.2 

-29.6 
20.6 
46.6 

* 
115.6 
128.4 
121.4 
122.7 
124.9 
123.0 

-37.5 
-22.7 

16.7 
-23.5 
134.1 
119.7 
-8.8 
127.6 
- 12.2 
139.6 
135.9 
161.9 

-33.2 
190.1 
23.0 

-15.1 
128.4 

-46.8 
-42.0 
119.6 
129.2 
- 1.0 

-36.4 
122.2 

-26.3 
-35.1 

56.4 
122.8 
133.6 
129.1 

-22.2 
-48.2 
129.3 
154.3 
190.8 
170.8 
102.8 
159.6 

-40.5 

~ 

e 
~ 

150.5 
147.3 
152.9 
148.9 
156.5 
148.8 
37.4 
25.9 
32.4 
34.8 

150.9 
150.5 
24.0 

151.4 
23.6 

149.5 
151.1 
151.6 
33.9 

147.7 
30.6 
29.9 

153.9 
39.3 
38.8 

148.0 
155.7 
29.5 
54.3 

138.9 
45.5 
42.5 

114.1 
155.2 
153.6 
155.3 
32.5 
56.6 

150.8 
131.1 
160.2 
155.1 
154.3 
146.7 
51.2 

P 

-70.6 
-41.0 
-60.7 
-50.9 
-61.7 
-55.1 
- 19.0 
-39.9 
-92.8 
-31.7 
-35.8 
-61.0 
-58.6 
-47.3 
-54.0 
-27.7 
-33.9 
-46.9 
-28.8 
-21.8 
-98.0 
-33.1 
-54.1 
-8.9 

-24.4 
-53.2 
-41.7 
- 89.5 
- 10.8 
-39.2 
-21.7 
- 104.2 
- 104.8 
-57.8 
-37.3 
-48.2 
-30.5 
- 10.0 
-39.9 
-9.2 

-85.9 
-82.3 
-83.3 
-76.9 
-30.5 

~ 

aFile identifiers in  PDB. 
bThe letter in parenthesis identifies the  subunit  to  which  the cysteine belongs  when  the  protein  is  made up  of different type of subunits 

dAs defined in Figure 1. 
‘XI = N-CA-CB-SG, x2(C)  CA-CB-SG*..C. 

Directionality vs. the strength of interaction protein  structure,  the  near  linearity of the  distribution  of  the  points 

The  interaction between the nucleophile and electrophile will be For maximum  interaction (along the  tetrahedral direction),  the 
stronger  if  the  sulfur  lone-pair  orbital  approaches  the CO group absolute  value of p should be as  small as possible. The  steric 
from  a  nearly  perpendicular  direction  (Burgi et  al., 1973). In  other constraints in the  intra-residue  interaction force the p angles in 
words,  the S - - - C  distance  should be shorter as 0 (Fig. 1) de- Table 1 to assume negative values. Shorn of those constraints, 
creases, as observed (Fig. 5A). Given the  relative  inaccuracy of the the p angles in Table 2 lie in  the positive region also. 

is noteworthy. 
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Table 2. Metal bound cysteine whose SG atom interacts with the carbonyl C atom of another residue a 

Residues providing Distance 
Spherical 

polar angle (") Angle Torsion angle (") 
(4 ("1 

Protein name Codeh SG co s *"C S ~ ~ ~ c - 0  XI x2 (C 1 0 /L 

Metallothionein 4MT2 37 C36 3.60 83.6 -65.1 21.6 39.5 1 0 0 . 1  
60 c 5 9  3.54 94.0 -53.4 14.6 38.3 83.2 

Glucocorticoid receptor lGLU  495(A) N480(A) 3.53 108.1 -88.5 -110.7 160.9 -7.5 
High potential Fe-S protein IISU 22(A) G53(A) 3.44 81.0 -58.4 64.6 170.38 157.6 

aFor all the definitions see Table 1 footnotes with the modification that C is from the residue whose CO group is interacting. 
"The  cysteines that are  neither  involved in intra- nor inter-residue  interaction  are  (code  followed by residue  number):  20HX(103(A)), 

4MT2(7,21,26,44,50,59), IGLU(460(A),482(A)), 8ACN(421), IMIN(95(B),154(A)). All these noninteracting residues have t,bl around -60". 

Mapping a reaction coordinate 

The attack by the thiolate anion on the carbonyl group of a  Cys 
residue would lead to the formation of a thietane derivative: 

N 
I 

I 

Because of various bonded and non-bonded constraints in a protein 
milieu, a covalent S-C bond cannot possibly be formed. Never- 
theless, each entry in Table 1 can be regarded as a "frozen" inter- 
mediate at different points along the reaction pathway at an incipient 
stage. The geometrical changes taking place whenever there is  a 

3 

0 1" A L  
O z E Z g E  s2g$gzg 0 0 0  

X1 

Fig. 2. Distribution of ,yI torsion angle (") of all metal-bound Cys residues. 
Open and closed bars are for the cases with intra- (Table 1) and inter- 
residue (Table 2) interactions; hatched bar represents the examples (given 
in Table 2 footnote) showing no interaction. To facilitate visualization, 
another torsion angle, ,yl (C), (C - CA - CB - SG), has been marked against 
the upper abscissa-the two angles are related by x1 = mod 360(xl(C) + 
120). The curve shows the variation of the S..-C distance (A) (right side 
ordinate) as the torsion is changed through 360" using a model of a Cys- 
containing peptide fragment constructed using the standard dimensions and 
a main-chain t,b torsion angle of 120" 

short contact between the y position of the side-chain and the CO 
group, as  is the case here, can be delineated by a plot of the 
CB-SG...C angle against the S-..C distance (Fig. 5B). As the 
former increases from around 40°, the latter shortens from around 
3.6 A. Besides x, one can also use x2(C) (Table 1) to monitor the 
conformational changes . This angle exists in the range 0 f 35" 
depending on whether x, is in the g -  or t state, respectively. 
Moreover, the absolute value of x2(C) decreases with the short- 
ening of the S ** .C  distance. 

Stabiliry of the interaction 

The stabilizing interaction between a nucleophile and an electro- 
phile results from the overlap between the highest occupied mo- 
lecular orbital (HOMO) of the former (usually a lone pair of 
electrons) and the lowest unoccupied molecular orbital (LUMO) 
of the latter (Liotta et al., 1984; Fujimoto, 1987). Ab initio calcu- 
lation (Madura & Jorgensen, 1986) indicates that the addition of 
hydroxide ion to formaldehyde is exothermic by AE = 35 kcall 
mol. Other theoretical studies on addition reactions (Burgi et al., 
1974a, 1974c) have produced energy surfaces with no barrier to 
the tetrahedral species. Even if there is an energy barrier between 
the reactants and the product, it can be surmised that at a separation 
distance below the "critical" distance  (which is -2.8 A for 
O.**C =0) (Menger, 1985, 1987) the system is  on the product 
side and thus can provide increasing stability. For the S.*-C=O 
interaction the distance would be -3.2 8, (taking into account the 
difference of the van der Waals radii of S and 0), a value around 
which most of our sample points are distributed. Arguments based 
on the electrostatics also substantiate the favorable nature of the 
atomic arrangement. For the 0 .-*C = 0 interaction, Maccallum 
et al. (1995) have shown that the Coulombic interaction between 
the oppositely charged non-bonded atoms, even when they are at a 
distance greater than the sum of their van der Waals radii, can have 
a magnitude as much as 80% of a hydrogen bond. In the present 
case, the non-bonded atoms are not only at a much shorter dis- 
tance, they also orient for the optimal overlap of their respective 
molecular orbitals, and the gain in energy could be comparable to 
a hydrogen bond. 

Cysteine main-chain torsion, t) 
The intra-residue interaction between S and C atoms places re- 
striction on the values t) can assume (see the left side of equation 
1); only a limited number of ($,x1) combinations can achieve the 
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Fig. 3. The superposition (using the atoms belonging to the peptide group), displayed in stereo, of all Cys residues given in  Table 1 

geometric requirement of the interaction. As can be seen in Fig- 
ure 6, the points are clustered in two main groups: for , y I  in the g- 
state, is in the range of -50 to 20"; whereas the t state of xI  
places $ between 110 and 150". Besides, there is a minor group 
with x, in the g- state and $ = 150-200". This is strikingly 
different from the general distribution. The x1 vs. plot for all 
residues with a y atom (Chakrabarti & Pal, to be published) shows 
this region to be populated equally with the other two, and more- 
over, $ values are centered about 150". Additionally, there is no 
dearth of points having the fourth combination (xl in the t state 
and @ - -50"), which is practically non-existent in Figure 6. 
Thus, relative to the normal distribution, the ($,x1) pairs of Cys 
ligands have a lower propensity for two regions, one of which also 
shows  a shift towards larger $ values. This could be because the 
optimum interaction between the nucleophile and the electrophile 
requires the S ---C-O angle to be in the range of 100-1 10" (Burgi 
et al., 1973). The regions along the $ axis that permit this mag- 
nitude of the angle to be maintained are shown against the two 
curves in Figure  6.  The virtual absence of points centered at 
(-50,180) can be attributed to the fact that the S - - -C  - 0 angle 
can be in the optimum range when $ values are between - 100 and 
-50°, a zone that is sparsely occupied in the plot of Ramachandran 
and coworkers (1963). Although the S ---C-O angle gives a sim- 
plistic representation of the relative orientation of the two inter- 
acting groups, the stereochemistry can be best described using the 

0 
0 0 

n 

Ca 

spherical polar angles, B and p. The points in the region of (160,60) 
tend to have a larger absolute value of p (Table l) ,  which results 
in a larger deviation of the S atom from the tetrahedral direction 
(109", relative to the carbonyl group) and a position closer to the 
carbonyl oxygen atom (carrying a partial negative charge). This 
may explain why this region is less dense. 

In Figure 2 it has been shown that only those , y I  values are 
allowed that provide shorter contact between S and C atoms. Now 
for a given x,, only those $ values are occupied that can maintain 
the optimum S-*.C-O and p angles, giving credence to the 
nucleophilic and electrophilic characters of the two interacting 
groups. 

S. - .C=O interaction vs. hydrogen bonding 

One might argue that the geometry observed for the S.**C=O 
interaction is not the result of any attractive force existing between 
the two groups, but is really imposed by the steric requirement of 
the previously documented (Adman et al., 1975) NH**-S hydro- 
gen bond between the cysteine sulfur atom and the peptide NH 
group two residues following it. To investigate this we have pre- 
sented in Table 3 the hydrogen bond partners (within a rather long 
distance limit of 3.8 A) of all the Cys residues discussed in 
Tables 1 and 2. Out of a total of 82 Cys residues twelve partake in 
no hydrogen bond at all, and a further twelve have only side-chain 

0 
0 

Ca 

Fig. 4. Disposition of the sulfur atoms (Table 1 examples are  represented  by open circles, Table2 by tilled circles) with  respect to the 
interacting CO group, shown in stereo. 
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Fig. 5. Plot of S .*.C distance; A vs. (A) 0 (if  the  angle is greater  than  90" 
inTab1e1,itismadeacutebysubtractingfrom180")and(B)CB-SG~~~C 
angles ("). In A the  best-fitted  straight  line  has  an  equation y = 2 6 . 9 ~  - 
52.1  and  a  correlation  coefficient of 0.51; in B they  are y = -26 .8~  + 
137.0 and  -0.90,  respectively. 

atoms or water molecules  as partners. Of the remaining 58 residues 
(at position i ) ,  the proton donor  is a peptide NH group (at position 
i + 2) in 45 cases, which tend to have other hydrogen bond 
interactions as well. Also, not all these interactions have the opti- 
mum geometry, for example, 5 out of the 45 examples mentioned 
above deviate  from a linear X-H angle orientation by more 
than 50". Thus,  even when it is present there is no  common hy- 
drogen bonding pattern encompassing all the Cys residues which, 
nevertheless, maintain a very consistent S -**C=O geometry, thus 
pointing to the  importance and the stability of this interaction 
vis-a-vis hydrogen bonding. 

Implications 

Various stabilizing interactions in protein structures, like hydrogen 
bonding or salt bridges, involve the participation of protons. Here 
we have identified  an interaction that does not  involve any protons, 
but requires the  placement of a S atom (from a metal bound  Cys 
residue) onto  the  top of the  carbonyl C atom of the peptide plane. 
In the majority of the cases the S and C atoms are from  the same 
Cys residue. Attractive interaction between different residues is 
believed to hold the protein structure together  (Karlin et al., 1994). 
Inasmuch  as most of the nucleophile-electrophile pairs used in this 
analysis are  from the same  Cys  residue  it  can be surmised that 
atoms belonging to the  same residue, as  long  as they are brought 
to  each other in  the right orientation in the folded state, can  con- 

i 

-100 -50 0 50  100  150 200 
Y 

Fig. 6. Joint distribution of the  torsion  angles (") ,yl and @. The two  curves 
represent  the  variation of the S -*.C-O angle(")  (right  side  ordinate)  with 
@, keeping ,y1 fixed  at 70" (to represent  the g- state for which  the  peak 
shows  a  shift  toward 70" in Fig. 2)  and 180" in a  model  peptide  moiety. 
Over  the  @-space  the S *-.C-O angle  lies in  the  range  90-125"  in  two 
regions which  are  approximately  indicated by the  two  pairs of markers.  The 
triangles  point  in  the  direction of the  four  zones  in  the  plot  that  have  been 
discussed in  the  text. 

tribute to the overall stability. In this light it  is instructive to look 
at the structure of ferredoxin (Adman et al., 1976). Although the 
regular secondary structures are supposed to  be the  stable building 
blocks of  a protein, ferredoxin is almost devoid of such structures. 
In this connection it  is noteworthy that the structure has  two Fe4S4 
clusters, and all eight ligands are  in a conformation (four g- and 
four t )  that can sustain nucleophile-electrophile interaction. Simi- 
larly, in  alcohol  dehydrogenase  the structural zinc site  has  four 
ligands, all Cys residues at positions 97, 100, 103,  and  11 1; all but 
one of them show S ..*C =O interaction (Table 1) pointing to the 
usefulness of the metal coordination by Cys residues. 

In our discussion so far, although we have considered metal- 
bound Cys residues, the metal atoms  have been confined to the 
background. However, the S *- .  C = 0 interaction could be of ut- 
most importance to the function of metalloproteins because of 
possible charge delocalization from the metal center to the car- 
bonyl  group through the intervening ligand S atom. This then, in 
addition to hydrogen bonding (Adman et al., 1975), can modulate 
the redox potential of the metal center. Moreover the overlap be- 
tween the metal and  Cys S orbitals (Solomon et al., 1983;  Chakra- 
barti,  1989;  Han  et al., 1991), and then S and peptide orbitals as 
discussed here provides an elegant way of electron transfer from 
the metal center. For example, in plastocyanin (Collyer et al., 
1990), of the two paths of electron to and from the Cu atom, one 
was identified to involve Tyr 83 (Colman et a1.,1978; Sykes, 1991). 
As shown in Figure 7, the atoms Cu, S, and C (the last two 
belonging to the ligand Cys 84) are  close to linear, and the dis- 
tances involving various atoms (especially C and N) in the  Cys 84- 
Asp 85 peptide group  and the Tyr ring center are much shorter than 
the Cu-**Tyr length. Essentially, this is a "through space" (rather 
than "through-bond'') pathway, and yet there is sequential overlap 
between various orbitals along the way to direct the electron trans- 
fer. Although a considerable number of free (i.e., non-ligand) Cys 
in various proteins also exhibit  this interaction (52%, as  compared 
to 87% found here) (Pal & Chakrabarti, to  be published), it is  in 
metalloproteins that it  is likely to have the most profound impli- 
cations for the protein function. 
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Table 3. Hydrogen bond interactions involving the thiolate SG stoma 

Residue hydrogen-bonded, atom name(X) 
Code Residue (distance X..-S(A),  angle X-H*-.S(")) 

20HX 

1 DCA 

4MT2 

1 ZAA 

IGLU 

8ATC 

7PCY 
2AZA 
1 PAZ 
1 AAN 

2CPP 
1 AFN 

46 
97 

100 
111 
174 
199 

5 
13 
19 
24 
29 
33 
34 
36 
41 
48 
57 

7 
12 

37 
40 
65 
68 

440 
457 
476 
492 
109 
138 
84 

112 
78 
92 

357 
136 

48N (3.44,163), 67NE2 (3.65,132) 
99N (3.34,153), lOON (3.27,141), 113NZ (3.46) 
102N (3.60.127). 103N (3.36,164), 112N (3.54,173) 
97N (3.44,165), 113N (3.41,171) 
67NE2 (33 ,133)  
94NE2 (3.74,154), 96NE2 (3.62.140). 

3140w (3.71) 
7N (3.49,157), 25N (3.33,176), 1240w (3.46) 
15N (3.19.145) 
31NZ (3.54) 
26N (3.65.162) 
17N (3.02,135), 710w (3.18) 
860w (2.99), 960w (3.20) 
37N (3.71.120) 
1200w (3.05) 
IOlOw (3.16), 1370w (3.41) 
50N (3.59,148) 
60N (3.15,144),  1060w (3.23) 
9N (3.71,161) 
14N (3.43,154), 25NE2 (3.57.137) 

39N (3.44,142), 40N (3.52,165), 53NE2 (3.54,123) 
42N (3.73,154), 53NE2 (3.52,142), 57NE2 (3.47.145) 
67N (3.37,137), 68N (3.32,165), 81NE2 (3.54,121) 
70N (3.57,150), 81NE2 (3.38,147), 

85NE2 (3.52,143), 4150w (3.30) 
442N (3.54,157), 443N (3.61,125), 457N (3.65.132) 
4590G (2.56) 
478N (3.30,136), 480N (3.51.121) 
495N (3.45.136) 
11  IN (3.53.149) 
140N (3.69.143). 141N (3.70,158), 1780w (3.06) 
37ND1 (3.57.145). 38N (3.51,157) 
47N (3.52,171), 114N (3.50,161), 117ND1 (3.60.128) 
41N (3.61,162), 81N (3.76.152). 81NDI (3.54.131) 
53ND1 (3.79.143). 54N (3.66,165) 

359N (3.25,126) 
96N (3.63.167) 

29NE2 (3.67,160), 4210w (2.86) 

95ND1 (3.38.135) 

Residue hydrogen-bonded, atom name(X) 
Code Residue (distance X...S(A) , angle X-H...S(")) 

2PIA 

1 AOZ 
8RXN 

IISU 

IFRR 

1 FDX 

8ACN 

1 ABK 

2TMD 

1 NIP 

1 MIN 

1 GLU 

272 

277 

280 
507 

6 
9 

39 
42 
25 
40 
55 
38 
43 

46 
76 

8 
1 1  
35 
38 
45 

358 
424 
187 
197 
203 
345 
348 
364 
97 

132 
62 

275 
70 

153 
495 

274N (3.33,163), 275N (3.46,121), 
276N (3.39,162), 2760Gl  (3.47), 
277N (3.30,149) 

2710G (3.16). 272N (3.72,168), 
279N (3.51.163). 2790G (3.33) 

308N (3.53.155) 
509N (3.46.168). 512ND1 (3.67,135) 
8N (3.54,147), 9N (3.55.168) 
11N (3.42,161) 
41N (3.57.144). 42N (3.62.155) 
44N (3.50.152) 
27N (3.42.162). 59N (3.54.162) 
42N (3.39.144) 
57N (3.48.151) 
40N (3.44,161), 42N (3.51.159) 
370G (3.45). 45N (3.33,164), 

450G (3.51) 
76N (3.54,163) 
41N (3.62,131) 
ION (3.63,144), 28N (3.37.164). 
13N (3.59.156) 
2N (3.46,160), 37N (3.34,156) 
40N (3.36.142) 
47N (3.69,161), 49N (3.60,160) 
258ND2 (3.31.159) 
790w (3.74).  3200w  (3.20) 
147NE (3.78,153), 147NH2 (3.61,162) 
199N (3.56,153) 
205N (3.35,153), 206N (3.38,159) 
347N (3.37,159) 
350N (3.68.167). 365061 (3.05) 
366N (3.53,124), 367N (3.25,160) 
99N (3.70.121) 
134N (3.36,145) 
64N (3.50.129). 65N (3.49,158) 
278N (3.42,148), 27806 (2.96), 
910H (3.17) 
1880G (3.49) 
482N (3.57.171) 

aCys residues are presented in the sequence they occur in Tables 1 and 2 (but the subunit name has been removed). For the hydrogen bond donor NH 
group  (peptide, histidine), the hydrogen has been placed at the stereochemically expected position. For the other XH groups, the proton cannot be fixed 
unambiguously; for these there is no entry for the parameter X - H * . * S  angle. The label Ow stands for a water molecule. The criteria used for identifying 
hydrogen bonds: the distance X-*.S less than 3.8 A, and the angle X - H - - - S  (in cases where the H position can be calculated) greater than 120". The 
cut-off distance  for distinguishing a hydrogen bond is more lenient than what has been discussed in Methods. Six carbonyl oxygen and two carboxylate 
oxygen atoms, found within this limit, have been omitted from the table as they cannot donate any proton to the sulfur atom. 

The apparent pK,  of the active site thiol in many enzymes are 
lowered considerably (Jeng et ai., 1995; Zhang  et al., 1995). This 
reduction is usually attributed to the stabilization of the thiolate by 
the surrounding residues. Our  findings suggest that a CO group, if 
suitably juxtaposed near the S atom, can help to delocalize the 
negative charge, and thus lower the pK, of the thiol group. 

The x, preferences of residues are known to depend on the 
secondary structure they are embedded in (McGregor et al., 1987). 
Here we have shown that, irrespective of the secondary structure, 
the direct interaction between the main-chain and side-chain atoms 
of a residue can modify the conformational preferences of x ,, as 
well as of I). The Ramachandran plot is the embodiment of various 

nonbonded interactions in a polypeptide chain. However, for metal- 
bound Cys, the I) values appear to be controlled by an additional 
potential that confines the S - - -C-O angle to be in the range of 
90-125". 

Finally, as  the interaction is likely to be quite common in me- 
talloprotein structures, the existing force-field parameters and the 
crystallographic refinement programs should take cognizance of 
the fact that the S and C atoms can constitute a cohesive interaction 
that may result in pulling the C atom out of the plane of its bonded 
neighbors. 

In summary, we have identified a new interaction in protein 
structures that manifests in having S and carbonyl C atoms in close 
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Fig. 7. Stereoview  showing  the  disposition of the ligand Cys  84  and Tyr 83  relative  to Cu and  its three other  bonded  atoms, in 
plastocyanin.  The  dashed  line  represents  the S -..C interaction.  Distances  involving  the  centroid of the  aromatic  ring  and a few  relevant 
atoms,  as  also a bond  angle  are  marked.  The  angle  between  the  planes of the  Cys 84-Asp 85 peptide  group  and Tyr 83  aromatic ring 
is 88". 

contact, mostly within the same residue, thereby affecting the dis- 
tribution of the side-chain as well as the main-chain conforma- 
tions. The interaction between an electrophile and a nucleophile 
drives many chemical reactions. Nature can also use this type of 
interaction to impart stability to the protein structure. 

Methods 

Brookhaven Protein Data Bank (PDB) (Bernstein et al., 1977), 
version April 1994, was searched for Cys residues coordinated to 
any metal ion in refined crystal structures. When more than one 
structure of the same protein was available, the one with the best 
resolution and/or R-factor was used, irrespective of the organism 
from which the protein was derived. For [Fe4S4] ferredoxin, the 
structure with two clusters was used as it offered the maximum 
number of ligands. For multimeric proteins (or when the crystal 
asymmetric unit had more than one independent molecule), only 
one subunit was considered. 

Structures were displayed centered at the metal site on a graph- 
ics workstation, and all the carbonyl C atoms within 3.6 8, from the 
Cys S (or SG, as the atom is labeled in PDB) were recorded. The 
reason for choosing this cut-off distance was the earlier observa- 
tion (Ippolito et al., 1990) that hydrogen-bonded neighbors are 
found at a distance of 3.5 (k 1 )  8, from the S atom. Besides car- 
bonyl C atoms and hydrogen-bonded partners (usually a main- 
chain NH or water) (Adman et al., 1975), we rarely encountered 
any other atom type at such close distances. Other relevant geo- 
metric parameters, such as the virtual bond angles, SG*--C -0 
and CB"SG*..C, torsion angles, x, (N-CA-CB-SG as an 
indicator of the  side-chain  conformation),  and x*(C) 
(CA-CB -SG---C,  which defines the position of the interacting 
CO group relative to the Cys residue) were measured. To view the 
interaction from the perspective of the CO group, the relative 
position of S was expressed in terms of the spherical polar angles 
(0 and p) defined in Figure 1. The plots given in Figures 1 ,4 ,  and 
7 have been created using SCHAKAL (Keller, 1992). 
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